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Abstract: The metabolomics approach represents the last downstream phenotype and is widely used
in clinical studies and drug discovery. In this paper, we outline recent advances in the metabolomics
research of autoimmune diseases (ADs) such as rheumatoid arthritis (RA), multiple sclerosis (MuS),
and systemic lupus erythematosus (SLE). The newly discovered biomarkers and the metabolic
mechanism studies for these ADs are described here. In addition, studies elucidating the metabolic
mechanisms underlying these ADs are presented. Metabolomics has the potential to contribute to
pharmacotherapy personalization; thus, we summarize the biomarker studies performed to predict
the personalization of medicine and drug response.

Keywords: metabolomics; autoimmune disease; pharmacometabolomics

1. Introduction

Metabolomics is a field of -omics technology that comprehensively studies metabolites
in organisms using high-throughput analytical technology, a collection of metabolome
studies. Metabolites are known to represent the last downstream of biochemical reaction,
and they are widely used in clinical study and drug discovery [1]. They are produced by
the host and are involved in important cellular functions, including energy production,
signal transduction, and apoptosis, and can also reflect dietary and other environmental
sources [2,3]. The current metabolomics study not only looks for diagnostic biomarkers but
is also an attempt to discover the mechanism that will identify metabolites for treatment.
The clinical application of metabolomics aims to determine the diagnostic biomarkers of
disease, pathological mechanisms, and novel drug targets and therapeutic responses [4].

Autoimmune disease (AD) is a type of chronic disease closely linked to metabolic
aberrations and changes [5,6]. It is a disorder that produces responses against self-antigens,
owing to a breach in self-tolerance. It includes various disorders such as multiple scle-
rosis, rheumatoid arthritis, and lupus, afflicting 5–10% of the global population [7]. The
importance of metabolomics in autoimmune disease has been raised because it can aid in
understanding the molecular mechanism behind a specific phenotype of the disease [8]. The
most important unmet need regarding autoimmune disease is that most treatments only
alleviate symptoms by targeting inflammatory pathways and fail to recover self-immune
tolerance [9]. Some autoimmune diseases are systemic (e.g., systemic lupus erythematosus
(SLE)), but others target specific tissues (e.g., multiple sclerosis (MuS)) [10].

Metabolism is an important integrator of both genetic and environmental factors,
and it can control immune cell differentiation under physiological and pathological con-
ditions [11]. Recently, the regulation of immune cell metabolism to target drug discovery
for immune-mediated diseases was explored [5]. Immune cells have unique character-
istics that demand bioenergetic plasticity, and bioenergetics are particularly important
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in autoimmune diseases [12]. A new field of metabolic study in immune cells is called
immunometabolism, which is thought to provide new insights into immune system reg-
ulation in pathogenesis [5]. In addition to this, metabolomics is important in precision
medicine research to provide a unique metabolic fingerprint of the patient’s disease state
or drug response [13].

For these reasons, metabolism studies on autoimmune disease have been studied, and
their significance has been generously discussed [5,14–17]. Herein, we comprehensively
summarize the trials and advances in metabolomics research on autoimmune diseases
such as rheumatoid arthritis, multiple sclerosis, and erythematosus and provide insights in
this paper.

2. Application of Metabolomics
2.1. Defining Metabolomics

Metabolomics is a field of ‘omics’ technology that is defined as the identification and
measurement of endogenous small molecules in biochemical processes. It aims to diagnose
disease by biomarkers and provide fundamental information for developing treatment.
Metabolites are measured in various biological samples and provide phenotypes that
differentiate between health and disease [18].

There are two main approaches to metabolomics experiments, non-targeted and
targeted metabolomics. First, non-targeted metabolomic approaches involve profiling a
wide range of metabolites without a prior hypothesis [19]. They focus on simultaneous
detection of all accessible metabolites in a biological sample, giving an overall view of
the whole metabolome [20,21]. They are usually performed to identify whole metabolites
and explore biomarkers. Secondly, targeted metabolomics is a quantitative approach
to measure specific metabolites. It focuses on the quantitative analysis of pre-defined
metabolites in biological samples [20,21] and is usually based on specific biochemical
hypotheses that focus on relevant pathways of interest. Therefore, prior information is
required to develop and optimize the method of specific metabolite analysis to assess
targeted metabolomics [19], which provides higher sensitivity and selectivity than non-
targeted metabolomics. As previously noted, since both approaches have completely
different analytical purposes, it is important to choose the appropriate approach according
to the study purpose.

2.2. Metabolomics Workflow

According to previous studies [6,18,22–25], a typical metabolomics workflow includes
the following six steps: (1) experimental design, (2) sample collection, (3) sample pretreat-
ment (metabolite extraction), (4) instrumental analysis, (5) data processing and statistical
analysis, and (6) biomarker verification. A typical metabolomics workflow is shown in
Figure 1.
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2.2.1. Sample Collection and Pretreatment

In the sample collection step, there are many types of biological samples, but the
most used biological samples for biomarker discovery are serum/plasma, urine, and
fecal extracts because they are minimally invasive and contain thousands of metabo-
lites [6]. Usually, the sample pretreatment method differs according to the type of sample,
metabolite of interest, and analysis platform used. For example, nuclear magnetic reso-
nance analysis can be performed without special pretreatment of the sample, but mass
spectrometry-based analysis generally requires sample pretreatment, including the extrac-
tion of metabolites [26]. Typical biological sample pretreatments for metabolomics studies
include protein precipitation, extraction, and derivatization/reconstitution [27]. The most
common method for protein precipitation is the use of organic solvents such as methanol
and acetonitrile. Metabolite extraction is a major step in the analysis because the results
of metabolomics are highly dependent on the extraction procedure. The main goals of
extraction are acquiring the metabolite from the sample and removing the interfering sub-
stance [28]. The extraction method varies depending on the biological sample. Solid–liquid
extraction is performed for solid samples, and liquid–liquid extraction (LLE), solid-phase
extraction (SPE), or solid-phase microextraction (SPME) are applied for liquid samples [28].
LLE can separate metabolites into two parts, polar and non-polar, using organic solvents
and aqueous solutions [27]. It is used to remove unwanted substances and extract the
metabolites of interest. SPE uses various extraction sorbents, including reversed-phase
materials and ion-exchange materials to absorb interfering substances [27]. Owing to the
availability of a wide variety of sorbents, SPE allows for a more selective protocol design
than LLE [27].

2.2.2. Instrumental Analysis

The two main analytical platforms in metabolomics are nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS). NMR spectroscopy is a non-destructive
technique, which means samples can be analyzed more than once [24,29]. The NMR
measurement process is based on the principle that certain atoms (1H, 13C, 31P) within
molecules can absorb characteristic radiation that occurs when the molecules are placed in
very strong magnetic fields [26,30]. These strong magnetic fields change the direction of
the nuclear spin in each atom in the molecule. Each molecule has a distinct pattern of NMR
chemical shifts because of its chemical structure, and the arrangement of hydrogen atoms
around the molecule is different [24,26]. These features allow compounds to be identified
and quantified by NMR.

MS instruments detect metabolites in a completely different way than NMR instru-
ments. MS is a destructive technique, for, in all MS-based techniques, ionization of the
molecules is the key to metabolite detection and identification [24]. Compounds can
be identified by measuring the mass-to-charge (m/z) ratio or fragments of the ionized
molecules [24]. MS is usually combined with other separation techniques such as liquid
chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) [19].

There are three differences between NMR and MS methods. Firstly, the MS method is
thousands of times more sensitive than NMR methods [6]. NMR loses information related
to metabolites present in a low concentration of the sample [19]. Secondly, unlike the
MS method, NMR analysis does not require special pretreatment of the sample, usually
requiring only dilution of the sample [6]. Thirdly, the amount of sample used for NMR
analysis is typically 300 µL, but MS-based analysis requires only 10–30 µL [6].

2.2.3. Sample Normalization

Regardless of which of the two analytical platforms is used, all metabolomics analysis
requires the use of internal standards (IS) and quality control (QC) samples [29,31,32].
Internal standards (IS) are known compounds at known concentrations that are added to
the biological sample, and quality control (QC) represents the metabolite composition of
the samples [24]. They help to perform accurate and precise metabolomics analysis of the
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actual concentration differences of individual metabolites found in different samples and to
ensure that the run is satisfactory [26,33]. Because whole sample amounts or concentrations
of metabolites can be considerably different from sample to sample, it is crucial to reduce
or eliminate the effect of variation [33].

Furthermore, sample normalization is also an essential process. Sample normalization
methods differ depending on the type of sample. Urine is a commonly used biofluid in
metabolomics, and creatinine is the most commonly used reference. It is assumed that the
creatinine concentration reflects the urine concentration [33,34]. For mammalian cells, cell
counting is commonly used for cell amount normalization. For many other biofluids or
biological samples, there is no known compound that is widely accepted as a reference for
sample normalization, and it can vary greatly [33].

2.2.4. Statistical Analysis

In large-scale metabolomic data sources, appropriate statistical analysis is essential to
extract meaningful results. There are generally two types of approaches in multivariate
statistics. The first approach is unsupervised learning, which identifies patterns in the
data set without knowing any labels or scores [25]. Unsupervised learning finds occurring
patterns autonomously and automatically groups and clusters to compress the data set and
extract meaningful results [25]. In unsupervised learning, the most common technique is
called principal component analysis (PCA), which is aimed at reducing the dimension of the
number of metabolites analyzed when there is a significant correlation between metabolites
in a given data set [24,35]. The other approach is supervised learning. Supervised learning
is a method of data interpretation by knowing label information [25]. It provides an inferred
function that can be used for mapping labeled data [25]. In supervised learning, the most
common technique is partial least squares discriminant analysis (PLS-DA), which finds
the projection direction that gives the largest covariance between the original data and the
labels [24,25]. In this way, it is possible to describe the efficacy of a treatment strategy and
the progression of the pathology [36].

3. Metabolomics in Biomarkers of ADs
3.1. Discovery of Biomarkers in ADs

Numerous metabolomics studies have been conducted on autoimmune diseases. One
important goal of metabolomics is to develop biomarkers that can identify and diagnose
disease based on changes in metabolite levels. The cause of most autoimmune diseases
such as rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus is
currently unclear. It is related to genetic factors, environmental factors, gut microbiota,
gender, etc. [37]. Because of these disease characteristics, it is important to systematically
identify differences between healthy people and AD patients through metabolomics and to
discover biomarkers for diagnosis and treatment.

3.1.1. Biomarkers of Rheumatoid Arthritis (RA)

In previous studies, metabolic alterations have been reported between HCs (healthy
controls) and RA (rheumatoid arthritis) patients using serum, urine, and synovial fluid.
We summarized a list of altered metabolites in patients with RA in Table 1.

Table 1. Metabolic changes and related studies in patients with rheumatoid arthritis (RA).

Date Sample Instruments Upregulated Downregulated Ref.

2011 Plasma GC-MS
LC-MS

Glyceric acid,
D-ribofuranose,
Hypoxanthine

Histidine, threonic acid, methionine,
cholesterol, asparagine, threonine [38]
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Table 1. Cont.

Date Sample Instruments Upregulated Downregulated Ref.

2011 Serum 1H NMR
Glucose, glycoprotein,

lactate, VLDL, LDL

Valine, tyrosine, pyruvate, lysine,
phenylalanine, HDL, cholesterol,

isoleucine, histidine, alanine,
phosphocholine, glycerol, glutamine,

glutamate, creatinine, citrate

[39]

2009 Serum 1H NMR

3-hydroxybutyrate,
lactate,

acetylglycine, taurine,
glucose

LDL, alanine, methylguanidine [40]

2013 Serum GC/QTOF-MS
LC/QTOF-MS

Lactic acid,
dihydroxyfumaric acid,

glyceraldehyde,
aspartic acid,
homoserine

4,8-dimethylnonanoyl carnitine [41]

2015 Synovial
fluid GC/TOF-MS

Lactic acid, carnitine,
diglycerol, pipecolinic

acid
beta-

mannosylglycerate,

Valine, citric acid, gluconic lactone,
glucose, glucose-1-phosphate,

mannose, 5-methoxytryptamine,
D-glucose, ribitol

[42]

2016 Serum GC-MS

Docosahexaenoate,
palmitelaidate, oleate,
trans-9-octadecenoate,
D-mannose, glycerol,

ribose

2-Ketoisocaproate, isoleucine,
leucine, serine, phenylalanine,

pyroglutamate, methionine, proline,
threonine, valine, urate

[43]

2016 Urine 1H NMR Tyrosine N-acetyl amino acids, citrate, alanine [44]

2016 Serum 1H NMR

3-hydroxyisobutyrate,
acetate,

NAC, acetoacetate,
acetone

Isoleucine, lactate, alanine,
creatinine, valine, histidine [45]

2018 Serum LC-MS

4-methoxyphenylacetic
acid,

glutamic acid, L-leucine,
L-phenylalanine,

L-tryptophan,
L-proline,

glyceraldehyde,
fumaric acid, cholesterol

Capric acid, argininosuccinic acid,
bilirubin [46]

2019 Serum LC-MS Glutamine

Taurine, asparagine, serine, glycine,
ethanolamine, aspartic acid, proline,
threonine, sarcosine, alanine, valine,

histidine, arginine, leucine,
ornithine, methionine, tryptophan,

phenylalanine

[47]

2021 Plasma GC-MS L-cysteine, citric acid, L-glutamine [48]

In a clinical study on RA patients, amino acids such as isoleucine, valine, methionine,
threonine, alanine, and histidine significantly decreased. Glucose and lactic acid also
changed in the RA group, showing different trends in all studies. Glucose metabolism not
only provides energy for physical activity but also forms a complex network of signals
that mediate various physiological functions [42]. These metabolite changes are related
to glycolysis, TCA cycle, amino acids, and lipid metabolism. Amino acids were found
at lower concentrations in the RA patients group. This result may indicate that proteins
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were degraded into amino acids in response to energy homeostasis, inflammation, and
autoimmunity responses [39].

Citric acid also tends to downregulate in RA patients, indicating that the aerobic
metabolic process was weakened [39]. The citric cycle is the major metabolism for all
aerobic decomposition, and a downward trend of citric acid means a reduction of energy
productivity under inflammatory conditions [49]. Citric acid is the most potent metabolite
for the diagnosis of ADs and is thought to be highly related to disease activity [44]. Various
lipid metabolites are involved in the development and progression of RA. Patients with
RA with active inflammation have low total cholesterol levels [38].

3.1.2. Biomarkers of Multiple Sclerosis (MuS)

Several metabolomics studies have been conducted to elucidate biomarkers of multiple
sclerosis in biological fluids such as cerebrospinal fluid (CSF), plasma, urine, and brain
tissue. Table 2 shows the metabolic changes in patients with MuS.

Table 2. Metabolic changes and related studies in patients with multiple sclerosis (MuS).

Date Sample Instruments Group Upregulated Downregulated Ref.

2014 Serum 1H NMR MuS Lysine L-Glutamine, valine [50]

2014 CSF 1H NMR MuS Threonate, choline, myo-inositol

Phenylalanine,
mannose, citrate,

3-hydroxybutyrate,
2-hydroxyisovalerate

[51]

2015 CSF
MALDI-TOF-

MS,
LC-MS/MS

MuS L-glutamate [52]

2016 Serum 1H NMR MuS
Alanine, acetoacetate,

acetone, choline,
3-hydroxybutyrate

Tryptophan,
5-hydroxytryptophan,

glycerol, glucose
[53]

2016 CSF GC/MS MuS

1-Monopalmitin,
1-monostearin,

pentadecanoic acid,
oleic acid, methionine, valine,

phenylalanine, tyrosine, leucine,
proline, threose, isoleucine,

putrescine, oxoproline,

[54]

2016 Urine 1H NMR MuS
Trimethylamine N-oxide,

3-hydroxyisovalerate,
hippurate, malonate

Creatinine,
3-hydroxybutyrate,

methylmalonate
[55]

2017 Plasma GC-MS MuS L-asparagine, L-ornithine,
L-glutamate, L-glutamine

Pyroglutamate,
fructose,

myo-inositol,
threonate, phosphate

[56]

2017 CSF NMR MuS Pyroglutamate,
2-hydroxybutyrate, formate Glucose, acetate, citrate [57]

2017

CSF

UHPLC-FLD,
GC/MS

MuS L-glutamine, lactate

[58]
Serum

RRMS Kynurenic acid, picolinic acid

PPMS 3-hydroxykynurenine,
quinolinic acid

Kynurenic acid,
picolinic acid

SPMS 3-hydroxykynurenine,
quinolinic acid

Kynurenic acid,
picolinic acid

2017 Serum HPLC-ECD SPMS,
RRMS

Methionine,
glutathione [59]
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Table 2. Cont.

Date Sample Instruments Group Upregulated Downregulated Ref.

2019 CSF UPLC-HRMS SPMS

Trigonelline, citrulline,
O-Succinyl-homoserine,
N6-(delta2-isopentenyl)-

adenine, pipecolate,
1-methyladenosine,

4-acetamidobutanoate,
5-hydroxytryptophan,

kynurenate
N-acetylserotonin

3-methoxytyramine,
caffeine [60]

2020 CSF LC-MS/MS MuS Kynurenine, quinolinic acid,
neopterin, kynurenic acid

tryptophan,
5-hydroxy-indolacetic acid,

piconilic acid
[61]

2020
CSF

LC-MS
MuS 3-hydroxykynurenine,

quinolinic acid
L-kynurenine,
picolinic acid [62]

Serum MuS quinolinic acid 5-hydroxyindoleacetic acid

PPMS, primary progressive multiple sclerosis; RRMS, Relapsing-remitting multiple sclerosis; SPMS, secondary-progressive multiple sclerosis.

CSF is the most valuable biological sample in that it provides a deeper understanding
of CNS disease because it serves as an interface between blood and brain tissue and
directly provides a MuS pathology [63]. Metabolite analysis and interpretation of CSF is
fundamental to understanding the mechanisms of neuroinflammation, enabling biomarker
discovery and disease diagnosis, and suggesting therapeutic directions. There are many
challenges, however, to obtaining CSF normal controls from healthy individuals, owing to
ethical issues and the invasive nature of the matrix [64]. Unlike CSF, biological samples
such as blood and urine can be obtained non-invasively and safely, and various metabolic
changes can be observed. They are also involved in many pathways, such as amino acid,
carbohydrate, and lipid metabolism. Still, most of these are related to general inflammatory
responses and cannot be used as clinical diagnostic indicators [65]. Therefore, the study of
CSF metabolomics is essential to discover biomarkers for multiple sclerosis [64].

The results of CSF metabolite profiling in patients with MuS were highly correlated
with the tryptophan–kynurenine pathway. There was a general tendency for inflammation
to result in decreased tryptophan, increased kynurenine or kynurenic acid, and an increased
kynurenine/tryptophan ratio (or a decreased tryptophan/kynurenine ratio). Quinoline
acid was almost universally upregulated and picolinic acid generally downregulated as
measured. Analysis of CSF metabolites in the tryptophan–kynurenine pathway main-
tained their potential as inflammatory biomarkers in the early diagnosis and prognosis of
neuropathology [60–62,66,67].

Plasma profiling of MuS patients and controls resulted in decreased levels of glucose
and tryptophan and increased levels of acetoacetate, acetone, choline, and alanine. Fluctua-
tions in these metabolites were associated with changes in the tryptophan pathway and
energy metabolism and had similar results to metabolic changes in CSF [53].

3.1.3. Biomarkers of Systemic Lupus Erythematosus (SLE)

As with rheumatoid arthritis, metabolic changes in biological samples from patients
with SLE were related to glycolysis, TCA cycle, and amino acid metabolism. Table 3 shows
the metabolic changes in patients with SLE.
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Table 3. Metabolic changes and related studies on patients with systemic lupus erythematosus (SLE).

Date Sample Instruments Upregulated Downregulated Ref.

2011 Serum 1H NMR N-acetyl glycoprotein, VLDL, LDL

Valine, tyrosine, phenylalanine, lysine,
isoleucine, histidine, glutamine, alanine,

citrate, creatinine, creatine, pyruvate, HDL,
cholesterol, glycerol, formate

[39]

2016 Serum GC-MS
Methionine, glutamate, cystine,

1-monopalmitin, 1-monolinolein,
1-monoolein, 2-hydroxyisobutyrate

Tryptophan, alanine, proline, glycine, serine,
threonine, aspartate, glutamine, asparagine,

lysine, histidine, tyrosine, valine, leucine,
isoleucine, fumarate,

threonate, 2-hydroxyisovalerate,
carbohydrates, 2-keto-3-methylvalerate,

2-ketoisocaproate, fatty acids,
aminomalonate, alpha-tocopherol

[68]

2016 Urine GC-MS

Valine, leucine, fumarate, malate,
cystine, pyroglutamate, cysteine,

tryptophan, threonate, uracil, urate,
pseudouridine, xanthine, glyceric acid,

myo-inositol, p-cresol, glutarate,
hydroxyisobutyrate,
dihydroxybutyrate,

3,4,5-trihydroxypentanoic acid

[69]

2016 Serum GC-MS Urea, cystine, threonine,
naproxen, glucose

Lysine, fumaric acid, malic acid, methionine,
tyrosine, alanine, cysteine, tryptophan

asparagine, threonic acid, histidine, citric acid,
lactic acid, caffeine, theobromine

[70]

2016 Serum 1H NMR Acetate, NAG, glucose Leucine, valine, alanine, glutamate, citrate,
choline, proline, glycine, lactate, LDL, VLDL [71]

2017 Plasma GC-MS Myristic acids, palmitoleic acids, oleic
acids, eicosenoic acids

Caproic acid, caprylic acid, linoleic acid,
stearic acid, arachidonic acid, eicosanoic acid,

behenic acid, lignoceric acid,
hexacosanoic acid

[72]

2019 Feces LC-MS

Proline, L-tyrosine, L-methionine,
L-asparagine, Dl-pipecolinic acid,

glycyl-L proline, L-carnosine,
xanthurenic acid, kynurenic acid,

1,2-dioleoyl-rac-glycerol, lysoPE 16:0,
lysoPC 22:5, PG 27:2, MG 22:6,

MG 16:5

D-Ala-D-ala, lauryl diethanolamide, SQDG
26:5, adenosine, mucic acid,

adenosine 5′-diphosphate, trigonelline
thiamine pyrophosphate

[73]

2019 Serum LC-MS Ceramide, trimethylamine n-oxide,
xanthine

Acylcarnitine, caffeine, hydrocortisone,
itaconic acid, serotonin [74]

2020 Feces GC-MS

Triethylene glycol, erucamide, leucic
acid, 1-phenyl-1,2-ethanediol,

pyrimidine, 4-aminobutanoic acid,
vaccenic acid, L-valine, L-ornithine,

L-phenylalanine, L-leucine, lactic acid,
arachidic acid, behenic acid,

putrescine, benzoic acid, erucic acid,
n-(4-aminobutyl) acetamide

2,4-di-tert-butylphenol, phosphoric acid,
Glyceric acid, (Z)-13-octadecenoic acid,

γ-tocopherol
[75]

2021 Serum LC-MS MG 20:2, L-pyroglutamic acid
Arachidonic acid, adenosine, SM 24:1,

MG 17:0, lysoPE 18:0, lysoPE 16:0,
lysoPC 20:0, lysoPC 18:0

[76]

Generally, in serum or plasma, most of the metabolites required for energy production
associated with these pathways have been shown to decrease in SLE patients. Some
studies have shown that glycolysis is inhibited in SLE. It was found that glucose increased
but lactic acid decreased [70,71]. Similarly, several studies have shown that TCA cycle
intermediates are decreased in SLE, suggesting decreased activity of the TCA cycle in
SLE. Inhibition of glycolysis due to a decrease in the TCA cycle intermediate reflects the
systemic inflammatory response rather than a response to specific end-organs because SLE
is a systemic disease.
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In addition, most amino acids analyzed in SLE were generally downregulated in
serum [39,69,71,72], but contradictory results were found in the results of analyses of feces
and urine [69,75].

Most metabolic changes were consistent with lipid metabolites in patients with SLE
and have been reported to regulate immune responses and disease progression [77,78].
Arachidonic acid, a precursor of many inflammatory mediators, has been observed in
several studies and tends to decrease in the serum of most SLE patients.

3.1.4. Comparing Biomarkers of ADs

A mapping network was generated by comparing the major biomarkers of the three
ADs (Figure 2). Glutamate, amino acids (glycine, phenylalanine, methionine), glycolysis-
related metabolites (glucose), and TCA cycle-related metabolites (citrate) are commonly
altered in three ADs.
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However, specific metabolisms are also changed with each disease. Amino acid
metabolisms (glycine, serine, and threonine metabolism; valine, leucine, and isoleucine
biosynthesis; alanine, aspartate, and glutamate metabolism) are mainly involved in RA
(Figure 2A).

Arachidonic acid metabolism and fatty acids metabolism have been associated with
SLE (Figure 2B). SLE is a chronic disease that causes inflammation, and arachidonic acid
is a representative metabolite associated with inflammation [79]. In addition to this, fatty
acids affect inflammation through various mechanisms [80].

Interestingly, the tryptophan and glutathione metabolisms change in MuS patients
(Figure 2C). MuS causes inflammation and degeneration in the central nervous system.
Tryptophan is utilized for the generation of several neuroactive compounds [81], such
as in the synthesis of the aminergic neurotransmitter serotonin and the neurohormone
melatonin [82]. Nourbakhsh et al. reported that the tryptophan metabolism of the gut
microbiota and the kynurenine pathway could be relevant to the risk of MuS in children [83].
Overall, the pathway associated with these biomarkers can be outlined to characterize
the disease.

3.2. Limitation of Current Biomarkers

Metabolomics-based studies have provided a potential means for diagnosing disease,
determining disease course, predicting progression, and evaluating the effectiveness of
drug responses. There are several challenges to discovering biomarkers for more accurate
and personalized disease-specific diagnosis and prognosis. Despite the useful prospects
of metabolomics, its limitations need to be overcome for clinical practice and research.
Metabolic analysis requires the appropriate experimental method and statistical analysis to
identify metabolites. For this, a metabolomics study needs expertise not only in analytical
chemistry but also a combination of analytical techniques, statisticians, and biologists [84].

Another problem is that discovered metabolites are non-specific and lack diversity.
Most of the identified biomarkers in metabolomics have failed to replace clinical tests, and
the pathway-based approach has been suggested as a key technology in metabolomics [85].
Metabolomics cannot work alone because it is difficult to find very specific metabolites for
disease. Different trends in metabolites also render biomarkers less successful.

Even in patients with the same disease, metabolic changes may show contradictory
results from variables such as medications, co-morbidities, and other environmental in-
fluences. For example, a metabolic difference between races has been reported [86,87].
Small changes in physiology can also significantly influence the metabotype [1,16]. A
multitude of single nucleotide polymorphisms in metabolic enzymes such as cytochromes
P450 (CYPs) and uridine 5′-diphospho-glucuronosyltransferase (UGTs) can contribute to
metabolic differences between individuals [88–90]. The expression of these enzymes affects
drug metabolism, hormone synthesis, and breakdown.

These biological differences may have resulted in different trends in the metabolic
profile of the same disease. Different results may also have been obtained owing to
differences in the biological sample types, analytical methods, instruments, etc. The
standardization of sample collection and processing methods is important in metabolomics
analysis [91].

While an ideal biomarker that could diagnose a disease with a single metabolite
is desirable, multiple biomarkers involved in various metabolic processes may be the
best possible way of diagnosing ADs. As is commonly accepted, an integrated approach
between metabolomics and other omics is needed [92].

4. Metabolomics in Drug Discovery for ADs
4.1. A New Target Discovery

Discovering the metabolic markers can help to target enzymes involved in key pro-
cesses and develop cost-efficient and effective drugs for better disease treatment [93]. The
metabolic imbalances that underlie ADs are poorly described, and there have been at-
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tempts to discover the metabolic mechanism underlying ADs. Herein, we introduce a
metabolic mechanism study on representative ADs such as rheumatoid arthritis (RA),
multiple sclerosis (MuS), and systemic lupus erythematosus (SLE) in this paper.

Recently, immunometabolism study has increased over the past decade, and it is
dedicated to discovering the metabolic mechanism of immune cell function. Immune cells
have their own unique metabolic characteristics. Depending on the type of immune cells,
they require a different metabolic change to generate energy [94]. The metabolic rewiring
of immune cells is known to be a promising target of novel drug discovery. ADs cause the
metabolic rewiring of immune cells, and the metabolic aberrations in cells contribute to the
inflammatory phenotype in ADs.

Activated T cells and B cells should respond to signals including synthesis cytokines,
migration, and massive expansion. Therefore, the immune response requires immense
energy and its biosynthetic precursors. Activated B cells that require metabolic repro-
gramming depend on Glut1 (Glucose transporter 1) to support proliferation and antibody
production that is distinct from T cells [95]. T lymphocytes play a critical role in defense
and immune response [94,96]. Glucose is an important energy source in proliferating T
cells, and the triggering T-cell receptor (TCR) enhances the mitochondrial function but
also increases extramitochondrial glycolysis for rapid ATP generation [97]. The metabolic
characteristics of immune cells are different for each AD, just as immune cells have unique
metabolic properties. Some ADs dysregulate metabolisms such as glycolysis, glutaminoly-
sis, or the kynurenine pathway (KP), depending on each characteristic [58,98,99], and this
metabolic vulnerability could be a new target for drug discovery. In this part, we briefly
described the metabolic characteristics of each disease and their potential as a target.

4.1.1. Rheumatoid Arthritis (RA)

Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent
immune activation [100,101]. The immoderate cytokine production, dysregulated prolifer-
ation of synovial fibroblasts, formation of complex lymphoid microstructures in inflamed
joints, autoantibody production, and uncontrolled activity of bone-destructive osteoclasts
are pathogenic functions in RA [12]. It has been suggested that a specific metabolic alter-
ation could be a therapeutic target in RA [99]. For example, glycolysis, glutaminolysis,
choline metabolism, amino acids, and fatty acid synthesis have been proposed as thera-
peutic targets for RA [98,99,102–107]. Additionally, proteins involved in these pathways
such as pyruvate kinase M2 (glycolysis), hypoxia-induced factor (glycolysis), GLS1 (glu-
taminolysis), and choline kinase (choline metabolism) have been suggested as therapeutic
targets [104,107–109]. Targeting these metabolisms can provide a chance for disease modu-
lation and restoration of homeostasis.

As in tumors, glucose uptake has been observed in metabolically active joints or
other inflammatory sites in RA [99]. In addition, elevated glycolysis activity is associated
with hypoxia in RA synovial membranes [110], and anaerobic glycolysis was related to
an increasing degree of RA synovial vascularity and inflammation [111]. Aberrant gly-
colysis metabolism was related to RA, and the association of its markers with RA was
investigated. Hypoxia-induced factor (HIF-1) is required for glycolysis induction and
arouses the transcription of genes involved in glucose uptake and glycolysis [112,113]. It is
a transcription factor that orchestrates adaptation to hypoxia environments [114] and regu-
lates the angiogenesis process and glycolysis metabolism. HIF-1 increases glucose uptake
and anaerobic glycolysis through the upregulation of glucose transporter 1 (GLUT1) [115].
HIF-1 was reported to be highly expressed in RA [116] but not expressed in patients with
osteoarthritis (OA). HIF-1 factor was also related to the VEGF (vascular genesis) and c-myc.
VEGF can induce angiogenesis in RA and FLS, a typical characteristic of RA. Since HIF-1 is
associated with the alteration of glucose metabolism, changes in glucose metabolism in RA
may be related to HIF-1. The genes related to the glycolytic pathway, such as HK2, LDHA,
and PDK1, affected by HIF-1, play important roles in the RA fibroblast-like synoviocyte
(FLS) phenotype [112]. HIF-1 has a strong association with RA and could be a therapeutic
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target. At this point, a tylophorine-based compound reduced inflammation in RAW2.4
cells and meliorated the severity and incidence of collagen monoclonal antibody-induced
rheumatoid arthritis in a mouse model by targeting the HIF-1 and c-myc [117]. Succinate
remodeled the HIF-1α/VEGF axis to induce synovial angiogenesis and suppressed succi-
nate dehydrogenase (SDH) to prevent succinate accumulation results in inhibition of the
HIF-1α/VEGF axis, showing the potential to attenuate revascularization in arthritis [118].

For decades, the infiltration of CD4 T cells in RA patients’ synovial joints has been
reported [119]. Thus, the metabolic characteristics of CD4 T cells in RA patients were
studied in an in vitro study [12]. Aerobic glycolysis was expected to be upregulated rapidly
when naive CD4 T cells were transitioned into effector T cells by stimulating T-cell receptors,
but RA T cells failed to produce as massive ATP and lactate as healthy control T cells in HLA
class II-associated RA [12,120]. In the RA patients’ CD4 T cells, they favor lipogenesis rather
than mitochondrial activity and have low ROS concentrations, which impose reductive
stress instead of oxidative stress [97]. RA T cells also have been reported to skew toward
fatty acids [121]. Retarding lipogenesis by inhibiting fatty acid synthesis can reduce tissue
inflammation and correct the tissue-invasive and arthritogenic behavior of RA T cells [122].
This suggests regulating T-cell metabolism in RA as a new therapeutic target.

Contrary to this concept, omega-3 fatty acids have anti-arrhythmic action and can
reduce inflammation, and they have been proposed as therapeutic agents [123–127]. In a
clinical study, the therapeutic effects of omega-3 fatty acids were evaluated for decades.
Fish oil (containing omega-3 fatty acids) ingestion decreased the production of leukotriene
B4 (LTB4), tender and swollen joints, and improved physician assessments of pain and
disease [127]. From these studies, omega-3 fatty acids have been shown to reduce disease
and have an anti-inflammatory action in RA.

4.1.2. Multiple Sclerosis

Multiple sclerosis (MuS) is a chronic inflammatory, demyelinating, and neurodegener-
ative disorder in the central nervous system (CNS) [128]. The immune system attacks the
myelin sheath and the cells that comprise it; thus, de novo lipid synthesis for myelin remod-
eling and repair is critical in MuS [129]. Clinical trials have investigated statin inhibitors
of HMG-CoAR and cholesterol biosynthesis as an add-on therapy for MuS patients [130].
Studies of statins in a murine MuS model have shown decreased disease severity but could
not be converted to a proven effect in relapsing MuS in humans [131].

It was also discovered that the majority of alterations in MuS were related to en-
ergy metabolism [58,130]. The kynurenine pathway (KP) has a strong association with
MuS, and activation of the KP results from chronic inflammation [58,132]. Some KP
metabolites play a neuroprotective role (kynurenic acid, picolinic acid, and the cofactor
nicotinamide adenine dinucleotide), but others play a neurotoxic role (quinolinic acid,
3-hydroxykynurenine) [132]. The KP accounts for ~95% of overall tryptophan degradation,
and it is rate-limited by indoleamine 2,3-dioxygenase (IDO), which is regulated by IFN-γ
and cytokines [133]. The connection between the KP and MuS was discovered in 1979, and
it showed lower levels of tryptophan in MuS patients compared to controls [133]. IDO-1
expression and KYN levels were decreased in the peripheral blood monocytes (PBMCs) of
relapsing–remitting MS (RRMS) patients compared to healthy controls [134]. PBMCs from
MuS patients showed reduced amino acids, and this reduction decreased regulatory T cells,
with an increase in myelin basic protein-specific T cell proliferation and proinflammatory
cytokines secretion [134]. This study marked the importance of the KP as a promising target
for the development of drugs for the treatment of MuS. Several compounds related to the
KP have been developed for the treatment of MuS; endogenous tryptophan metabolites,
structural analogs, IDO inhibitors, and kynurenine-3-monooxygenase inhibitors have been
investigated [135,136].

In addition, sterol and bile acids have been explored in association with MuS, pro-
ducing a loss of myelin oligodendrocytes in the CNS related to MuS. Zita Hubler et al.
discovered that the accumulation of the 8,9-unsaturated sterol is a key mechanistic node
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that promotes oligodendrocyte formation through GC-MS-based profiling [137]. Recently,
lower levels of multiple primary and secondary bile acids were observed in patients with
MuS compared to controls [128,138]. The supplementation of tauroursodeoxycholic acid
(TUDCA) has been demonstrated to reduce the severity of disease through G protein-
coupled bile acid receptor 1 (GPBAR1) in experimental autoimmune encephalomyelitis
(EAE) [138]. The suppression of immune cell proliferation represents a successful treatment
strategy in T-cell-mediated autoimmune diseases such as RA and MuS. The inhibition
of dihydroorotate dehydrogenase (DHODH) that mediates de novo pyrimidine synthe-
sis showed repertoire diversity in patients with RRMS [139]. Klotz et al. revealed that
DHODH inhibition priorly suppressed the proliferation of high-affinity T cells and sug-
gested that increased susceptibility to DHODH inhibition resulted from high-affinity T cells,
preferably using oxidative phosphorylation (OXPHOS) in the early activation stage [139].
These studies suggested that the metabolic vulnerability caused by MuS could be the
therapeutic target.

4.1.3. Systemic Lupus Erythematosus (SLE)

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects
multiple organs with diverse clinical features [140]. The metabolomics studies of SLE
patients’ serum/plasma mainly have reported reduced energy substrates from glycolysis,
TCA cycle, fatty acid β oxidation, and glucogenic and amino acid metabolism [91,141]. SLE
showed a decrease in amino acids such as arginine, which upregulates the levels of nitric
oxide (NO) metabolites related to oxidative stress [70]. Increased nitro-oxidative stress can
modulate the severity of the disease and play a role in the pathology of SLE [77]. Disease
severity allied with oxidative stress and apoptosis is associated with glutathione (GSH)
depletion [142,143]. GSH also decreased in the peripheral blood of SLE patients [144].

In SLE patients, N-acetylcysteine (NAC), a precursor of GSH, reversed the depletion
of GSH, blocked mTOR1 activation, and improved disease severity in lupus [145]. It was
reported that mTOR reduced the development of CD4+/CD25+/Foxp3+ regulatory T
cells [146], and they are known to be deficient in patients with SLE [147]. NAC enhanced
the NADPH and reduced kynurenine in SLE patients in vivo, and kynurenine accumulation
potentially contributed to mTOR activation and may be a therapeutic target [148].

Th1, Th17, regulatory T (Treg) cells, and CD4-/CD8- T cells are involved in the
development of organ inflammation in SLE through distinct mechanisms [134,149,150].
Because glutaminolysis plays a key role in the generation of pro-inflammatory effector
T cells, Th1 and Th17 cells, the enzymes involved in glutaminolysis have been explored.
Glutaminase, which converts glutamine to glutamate, promotes Th17 cells through distinct
mechanisms. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), which
are glutaminase inhibitors, reduced Th17 cell differentiation and disease action in an EAE
animal model [151]. Like other autoimmune diseases, Lupus CD4+ T cells of SLE patients
showed a high level of glucose metabolism [152,153]. Michihito Kono et al. revealed that
BPT ES affects glycolysis as well as glutaminolysis by decreasing Hif1α protein in Th17
cells [154].

4.2. Metabolomics Applications in Precision Medicine

Precision medicine comprises tailored therapies for each individual and contributes
effective drug treatment while avoiding the off-target effect of drugs [155]. Predicting
treatment response is a useful tool to bring us one step closer to precision medicine. This is
necessary for strategies for future medicine. The likelihood of a response will be known
before exposure to a drug, and we can avoid drugs with little potential for efficacy, saving
time, minimizing costs, and improving risk/benefit ratios [156]. The effect of drugs in-
volves many different enzymes, multiple organs, and the microbiome [157]. As previously
reported, current pharmaceutical treatments have no effect for 30–60% of patients [158,159].
Patients have different clinical characteristics that affect the drug metabolism, which results
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in a different drug response even if the same drug is taken. To understand the individual
characteristics, clinical pharmacology can benefit from metabolomics technology.

The metabolome is a comprehensive and most informative level that provides an
overview of the physiologic status [159]. Pharmacometabolomics is a branch of metabolomics
that has the potential to contribute to pharmacotherapy personalization [160]. The effects
of drugs on individuals and the factors that alter drug metabolism can be detected using
pharmacometabolomics. Above all, it can identify biomarkers that are related to the
patient’s response to drug administration [159]. In Table 4, we summarize the biomarker
studies that predicted drug response in AD patients.

Table 4. Relevant potential biomarkers for AD treatment outcome prediction identified through a metabolomics approach.

Disease Year Treatment Sample Instruments Biomarker Ref.

RA

2012 MTX Serum 1H-NMR

α-oxoglutarate, glycine, citrate,
aspartate, acetate, alanine, cholesterol,

cysteine,
histidine, hypoxanthine, lactate,

glutamine, methionine, serine, taurine,
tryptophan, trimethylamine-N-oxide,

uracil, uric acid

[161]

2012 Anti-TNF Urine 1H-NMR

Uric acid, taurine, histidine,
methionine, glycine, uracil, acetate,

α-oxoglutarate,
aspartate, tryptophan, hypoxanthine,

TMAO, methionine, acetate

[162]

2013 Infliximab or ETA Urine NMR Histamine, glutamine, xanthurenic
acid, ethanolamine [163]

2015 ETA Serum 1H-NMR
Isoleucine, leucine, valine, alanine,

glutamine, tyrosine, glucose [164]

2016 5 TNFis Serum LC-MS Sn1-LPC(18:3-ω3/ω6), sn1-LPC(15:0),
ethanolamine, lysine [165]

2016 Anti-TNF Plasma TOF-MS D-glucose, D-fructose, sucrose, maltos [166]

2016 Glucocorticoids Serum LC-MS Lysophospholipids [167]

2020 TNFis or ABT Serum CE-TOF-MS

Glycerol 3-phosphate, betonicine,
N-Acetylalanine, hexanoic acid,

taurine (TNFis) 3-Aminobutyric acid,
citric acid, quinic acid (ABT)

[168]

2020 MTX Fecal NMR,
LC-MS Bacteria-produced metabolites [169]

2021 MTX Serum UPLC–MS no effect (lipidomics) [170]

2021 DMARDs Plasma NMR/MS N-acetylgalactosamine,
N-acetylneuraminic acid [171]

MuS

2019 IFN ß Plasma NMR Lactate, acetone, 3-OH-butyrate,
tryptophan, citrate, lysine, glucose [172]

2020 SFE Plasma MRI 12- and 15-lipoxygenase products [173]

2020 IFNβ formulations Serum NMR 29 metabolites
(e.g., TG, XL-VLDL-PL, etc.) [174]

2020 Glatiramer acetate Serum 1H-NMR
Lactate, tyrosine, hypoxanthine,
hydroxyproline, ADP, citrulline,

ornithine, tryptophan
[175]

SLE
2018 Cyclophosphamide

+ prednisolone Serum NMR Lipid metabolites and acetate [176]

2020 Cyclophosphamide Urine NMR Citrate [177]
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4.2.1. Rheumatoid Arthritis (RA)

Treatment for RA has recently been well-developed. RA patients receive disease-
modifying antirheumatic drugs (DMARDs) that can reduce the symptoms and signs of the
disease [178]. Methotrexate (MTX) has been used in the treatment of RA and is often the
first-line medication for RA treatment [179]. Up to 50% of patients, however, do not achieve
a clinically adequate outcome when treated with MTX. TNF inhibitors such as etanercept
(ETA), infliximab, and adalimumab are also widely used biologic agents in RA because
TNF-α is a pro-inflammatory cytokine that is important for regulating the inflammatory
response in RA. However, 30–40% of the patients undergoing biological treatment showed
an ineffective response [168].

Metabolomics has been a useful tool for predicting patient responses to these treat-
ments in RA [45,161–164,166–171]. These studies have investigated biomarkers to predict
clinical response to the therapies and were mainly conducted with MTX or TNF inhibitor
treatment. 1H-NMR, acetate, aspartate, histidine, tryptophan, hypoxanthine, and uric acid
were commonly discovered as biomarkers for the response to MTX [161,162]. The urine
metabolomes of 16 RA patients were screened, and histamine, glutamine, xanthurenic acid,
and ethanolamine were suggested as markers predicting anti-TNF agent response with a
sensitivity of 88.9% and a specificity of 85.7% [163]. Artacho et al. reported that significant
associations of the gut microbiome and their genes with future clinical response, including
orthologs related to purine and MTX metabolism [169]. In the BiOCURA (Biologicals
and Outcome Compared and predicted Utrecht region in Rheumatoid Arthritis) cohort of
105 RA patients taking TNF antagonists, combining four metabolites with several clinical
parameters correctly classified 60% of patients by responder status. The selected predictors
were sn1-LPC(18:3-ω3/ω6), sn1-LPC(15:0), ethanolamine, and lysine [165].

However, Mateusz Maciejewski et al. showed that serum lipid levels during pre-
treatment or early treatment are unfit for classifying the response to MTX in the routine
clinical care setting [170]. Since this study was conducted for four weeks after drug adminis-
tration in RA patients treated with MTX, the short study period was considered unsuitable.

4.2.2. Multiple Sclerosis (MuS)

Research to discover biomarkers for the response after treatment in multiple sclerosis
has been relatively recent. The first disease-modifying treatment available to treat MuS
was interferon beta (IFNβ); four IFNβ agents are approved to treat MuS [180]. IFNβ
responder and non-responder patients have different levels of lactate, acetone, 3-OH-
butyrate, tryptophan, citrate, lysine, and glucose [180]. Glatiramer acetate (GA) is also an
immunomodulating agent for the treatment of MuS; the predictive role of PTX-3 protein
and metabolites (lactate, tyrosine, hypoxanthine, hydroxyproline, ADP, citrulline, ornithine,
and tryptophan) was revealed by analyzing plasma from patients [175].

Neutralizing anti-drug antibodies (ADAs) can greatly reduce the efficacy of treatment
for MuS, depending upon ADA-positive (ADA+) or ADA-negative (ADA–) status during
the first year of treatment. Between ADA+ and ADA–, significantly different metabolites
were found in the serum of patients, mostly in the lipids; M-HDL-TG or XXL-VLDL-FC
were observed [174].

It was demonstrated that frankincense extract reduces disease activity in RRMS with-
out toxicity [181,182]; its therapeutic response was investigated by metabolomics, and
different levels of 12- and 15-lipoxygenase products were identified [173].

4.2.3. Systemic Lupus Erythematosus (SLE)

The research on therapeutic response in lupus using metabolomics has not yet been
well studied. We were able to find a metabolomics study in which lupus nephritis pa-
tients were treated with cyclophosphamide. Cyclophosphamide is a general treatment
for severe organ-threatening SLE [183]. These studies can reveal altered metabolites after
drug treatment but cannot show the difference between a drug responder and a non-
responder [176,177]. Citrate levels were changed in the urine sample, and lipid metabolites
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and acetate were changed in the serum sample. In the serum of lupus nephritis (LN) pa-
tients, lipid metabolites increased but acetate decreased after six months of treatment [176].
Decreased citrate levels in the urine of LN patients improved after six months of cyclophos-
phamide treatment, which has been proposed as a non-invasive biomarker for monitoring
treatment response in LN [177].

5. Conclusions

Metabolomics is a powerful tool that can discover biomarkers and provide new
insight into autoimmune diseases. Within a decade, in-depth research has become possible,
and much has been studied with the development of high-throughput technology. In
particular, the collaboration of molecular biology and metabolomics can reveal more
precise disease mechanisms. Autoimmune diseases can be studied at the cellular level with
the introduction of immunometabolism, enabling a deep understanding of pathogenesis
and new drug targets. Attempts are being made to alleviate diseases by blocking metabolic
mechanisms such as glycolysis and glutaminolysis, which have been revealed through
these studies.

Despite the advantages of the metabolomics approach, limitations remain. Many
studies have identified the biomarkers from metabolomics studies but lack disease-specific
properties. As autoimmune disease is a disorder related to inflammation, its characteristics
are difficult to distinguish from those of inflammation or cancer.

To make up for specificity, determination can be supplemented by multi-omics studies
with genes or proteins. Recently, combining different omics technologies (such as genomics,
and proteomics) has been suggested to overcome and compensate for the shortcomings of
metabolomics. Metabolomics has the potential to complement genomics studies, which of-
ten lack functional information on the biological process [184,185]. The genetic or proteomic
data can contribute to metabolomic studies reaching their full potential [186].

Combining -omics fields can address the interaction between environmental influences
and biological information and thus can provide a critical biomarker and pathological
understanding. Furthermore, multi-omics reinforces the reliability of metabolomics studies.
Xiaojing Chu et al. revealed that arachidonic acid pathways have a significant impact on
cytokine production, and the rs174584-FADS2 locus is related to arachidonic metabolism
by the integration of metabolomics and genomics study [187]. It was also reported that
combined proteome and metabolome data provide efficient and reliable discrimination
between healthy and diseased rats at the onset of EAE [188].

The integration of data from different ‘omics’ platforms can provide multidimensional
insight into this relationship. However, only a few studies have investigated combined
-omics approaches, and the right standard of -omics data for integration still needs to
be further improved. Moreover, we observed that fewer studies researched SLE and
MuS using metabolomics. Further metabolic study of precision medicine in these fields
should be carried out. Overall, we look forward to further developments in metabolomics
combined with other studies.
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