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A B S T R A C T   

Background and purpose: Radiomic features from MRI and PET are an emerging tool with potential to improve 
prostate cancer outcomes. However, feature robustness due to image segmentation variations is currently un-
known. Therefore, this study aimed to evaluate the robustness of radiomic features with segmentation variations 
and their impact on predicting biochemical recurrence (BCR). 
Materials and methods: Multi-scanner, pre-radiation therapy imaging from 142 patients with localised prostate 
cancer was used. Imaging included T2-weighted (T2), apparent diffusion coefficient (ADC) MRI, and prostate- 
specific membrane antigen (PSMA)-PET. The prostate gland and intraprostatic tumours were manually and 
automatically segmented, and differences were quantified using Dice Coefficient (DC). Radiomic features 
including shape, first-order, and texture features were extracted for each segmentation from original and filtered 
images. Intraclass Correlation Coefficient (ICC) and Mean Absolute Percentage Difference (MAPD) were used to 
assess feature robustness. Random forest (RF) models were developed for each segmentation using robust fea-
tures to predict BCR. 
Results: Prostate gland segmentations were more consistent (mean DC = 0.78) than tumour segmentations (mean 
DC = 0.46). 112 (3.6 %) radiomic features demonstrated ‘excellent’ robustness (ICC > 0.9 and MAPD < 1 %), 
and 480 features (15.4 %) demonstrated ‘good’ robustness (ICC > 0.75 and MAPD < 5 %). PET imaging provided 
more features with excellent robustness than T2 and ADC. RF models showed strong predictive power for BCR 
with a mean area under the receiver-operator-characteristics curve (AUC) of 0.89 (range 0.85–0.93). 
Conclusion: When using radiomic features for predictive modelling, segmentation variability should be consid-
ered. To develop BCR predictive models, radiomic features from the entire prostate gland are preferable over 
tumour segmentation-based features.   

1. Introduction 

Radiomics and artificial intelligence (AI) are emerging tools for 
implementing precision medicine in prostate cancer [1–3]. Previous 
studies have demonstrated the potential of pre-treatment MRI or PET- 
based radiomic features to predict biochemical recurrence (BCR) 
[4–8], which can affect up to 50 % of patients within ten years of ra-
diation therapy (RT) [3]. Radiomic features also hold promise to assess 

early post-RT treatment response accurately, complementing the stan-
dard blood-based prostate-specific-antigen (PSA) test [1,3]. To be clin-
ically relevant and generalisable, radiomic feature-based predictive 
models must be robust. Robustness implies stability and reliability, 
being insensitive to variations in image acquisition, processing, or 
analysis. 

Radiomic features are usually extracted from a segmented region-of- 
interest (ROI), encompassing the entire prostate gland or the 
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intraprostatic tumour. In RT, generally, radiation oncologists or radi-
ologists manually segment ROIs using information from multiple im-
aging modalities (CT, MRI, or PET). However, this is susceptible to inter- 
and intra-observer variability due to differences in expertise, experience 
and image contrast. Even with standard PI-RADS guidelines, inter- 
institutional differences in tumour contouring on MRI cause discrep-
ancies in MRI parameter values from those segmentations [9,10]. In this 
AI era, the accuracy of automatic segmentation methods depends upon 
the training data’s quality and diversity. Therefore, it is crucial to un-
derstand how ROI segmentation variations affect radiomic features and 
their predictive models. 

Previous studies have shown that inter-observer segmentation vari-
ations of the prostate or tumour impact feature robustness [11–14]. 
Most of these studies used single-centre data and didn’t explore multi- 
modality imaging. In real-life, patients often undergo scans at various 
centres, using different software versions due to upgrades over time. It is 
known that images acquired from different centres and scanners intro-
duce differences in signal, image reconstruction, and voxel size, leading 
to feature variations [15,16]. Therefore, this study aimed to investigate 
the robustness of MRI and prostate-specific membrane antigen (PSMA)- 
PET radiomic features from manual and automatic segmentations of the 
prostate and intraprostatic tumours in a heterogeneous pre-RT imaging 
dataset. Additionally, it examined the impact of segmentation variations 
on the ability of radiomic features to predict BCR post-RT. 

2. Materials and methods 

2.1. Data selection 

This human research ethics committee (2020/ETH02569) approved 
study screened a research database from Royal North Shore Hospital 
(Sydney, Australia) that included prostate cancer patients undergoing 
definitive RT between January 2010 and December 2019. Inclusion 
criteria were (1) availability of PSMA-PET/CT and MRI (both T2 and 
apparent diffusion coefficient (ADC)), (2) curative treatment intent, and 
(3) biopsy-confirmed adenocarcinoma. Patients with a history of radical 
prostatectomy (RP) or transurethral resection of the prostate (TURP), or 
with distant metastatic disease, were excluded. Table 1 summarises the 
142 patients’ demographic and clinical details, and Fig. 1 shows the 
study workflow. 

2.2. Image acquisition 

Multiparametric MRI, including T2-weighted (T2), Diffusion- 
Weighted Imaging (DWI) and T1-weighted images, were acquired for 
each patient before RT using various scanners across multiple institutes. 
MRI scans of 137 patients were acquired using a 1.5 Tesla (T) scanner, 
and the remaining five patients had MRIs acquired with a 3 T scanner. 
T2 MRI had an in-plane resolution from 0.3 to 0.6 mm, with a slice 
thickness from 3.0 to 4.0 mm. DWI images were acquired using at least 
three b-values (range 50–1400 s/mm2), in-plane resolution between 0.7 
and 1.8 mm and slice thickness from 3.0 to 4.0 mm. Apparent Diffusion 
Coefficient (ADC) maps were generated on the scanners using the DWI 
data. 

All patients had whole body 68Ga-PSMA-PET/CT scans pre-RT, with 
33 scans reconstructed using 3D ordered-subset expectation max-
imisation, and one using QCFX. The point spread function and time of 
flight (PSF + TOF) techniques with different iterations (2i21s, 3i21s, 
4i10s, 4i21s and 6i10s) were used to reconstruct the remaining scans. A 
Gaussian filter was applied to all images with a kernel size of 5 mm, 
except one patient whose kernel size was 4 mm. The PET in-plane res-
olution varied from 2.2 to 5.5 mm and inter-slice thickness from 2 to 4 
mm. PET standardised uptake (SUV) values were computed using the 
DICOM PET extension in 3D slicer software [17]. 

2.3. Radiation therapy planning 

Patients received various types of RT, including dose-escalated, 
hypo-fractioned and Stereotactic Body Radiation Therapy (Supplemen-
tary Table 1). To reduce the radiation effect on neighbouring organs-at- 
risk, 61 patients had SpaceOAR Hydrogel inserted between the prostate 
and rectum before RT. 

Planning CT was rigidly co-registered with MRI and whole-body 
PET/CT using Eclipse treatment planning system (TPS, v16.0; Varian 
Medical Systems, Paolo Alto, CA, USA). A radiation oncologist with 20 
+ years’ experience manually delineated the prostate gland, excluding 
the seminal vesicles, as the clinical target volume (CTV) and the tumour 
as the gross tumour volume (GTV) on planning CT. CTV boundaries were 
primarily determined using MRI (T1 and T2) due to its superior soft 
tissue contrast to CT. The GTV was delineated using information from 
the standard biopsy report, MRI (T2 and ADC) and PET. The GTV and 
CTV were confirmed by consensus from two other experienced 
oncologists. 

2.4. Automated segmentation 

2.4.1. Organ segmentation 
The prostate gland was automatically segmented on T2 MRI using a 

publicly available nnU-Net model, trained using the multi-centre 
PROMISE12 grand challenge dataset [18,19]. The 2D version of the 
nnU-Net, which performs slice-by-slice segmentation, was used to 
generate binary masks of the prostate gland as output. 

Table 1 
Patients’ demographic and clinical information. BCR – biochemical recurrence. 
*For BCR prediction, a subset of the cohort with ≥5-year follow-up or BCR were 
included.   

Robustness Study BCR Prediction* 

BCR Non-BCR 

Patients (n) 142 13 36 
Age (years)    
Mean ± SD 72.7 ± 7.1 74.5 ± 5.3 71.6 ± 7.1 
Range 54–87 66–81 56–87 
Initial PSA (ng/mL) n (%) n (%) n (%) 
≤ 10 85 (59.9%) 5 (38%) 25 (69%) 
>10 & ≤20 38 (26.8%) 4 (31%) 7 (19%) 
>20 19 (13.4%) 4 (31%) 4 (11%) 
Gleason Grade n (%) n (%) n (%) 
3 + 3 1 (0.7%)   
3 + 4 41 (28.9%)  11 (31%) 
4 + 3 31 (21.8%) 2 (15%) 11 (31%) 
4 + 4 25 (17.6%) 3 (23%) 5 (14%) 
4 + 5 38 (26.8%) 7 (54%) 8 (22%) 
5 + 4 5 (3.5%) 1 (8%) 1 (3%) 
5 + 5 1 (0.7%)   
Pathological T-stage n (%) n (%) n (%) 
T1c 31 (21.8%)  12 (33%) 
T2 3 (2.1%)   
T2a 12 (8.5%) 3 (23%) 3 (8%) 
T2b 21 (14.8%) 1 (8%) 6 (17%) 
T2c 15 (10.6%)  3 (8%) 
T3 3 (2.1%) 3 (23%)  
T3a 21 (14.8%) 1 (8%) 7 (19%) 
T3b 31 (21.8%) 4(31%) 4 (11%) 
T4 4 (2.8%) 1 (8%) 1 (3%) 
Unknown 1 (0.7%)   
Pathological N-stage n (%) n (%) n (%) 
N0 113 (79.6%) 9 (69.2%) 28 (77.8%) 
N1 23 (16.2 %) 4 (30.7 %) 5 (13.9 %) 
Nx 6 (4.2%)  3 (0.1%) 
Hormone treatment n (%) n (%) n (%) 
Prior 3 (2.1%)   
Concurrent 72 (50.7%) 8 (61.5%) 22 (61%) 
No 67(47.1%) 5(38.5%) 14(38.9%)  
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2.4.2. Tumour segmentation 
Tumours were segmented using two automated methods. First, with 

an in-house voxel-wise radiomics model, previously developed using 
data from 19 prostate cancer patients [20–22]. This model used T2, 
ADC, Dynamic Contrast-Enhanced (DCE) parameters, PSMA-PET im-
ages, and clinical features such as age, PSA-level and PET-based fea-
tures. Since DCE parameters were unavailable in this 142-patient cohort, 
the model was re-trained on the same 19-patient dataset without them. 
This re-trained model was used for tumour segmentation. 

The second method applied a threshold to the PET standardised 
uptake (SUV) values. Previous studies have reported various SUV cut- 
offs with high sensitivity for detecting prostate cancer in 68Ga-PSMA- 
PET [23,24]. This study conducted a receiver operating characteristic 
curve and sensitivity–specificity analysis using GTVs as the reference 
standard to determine the optimal SUV cut-off which was identified as 
4.0 (Supplementary Table 2). Automated tumour segmentations were 
post-processed to remove voxels outside the prostate border and single- 
voxel predictions. 

2.5. Radiomic feature extraction 

Radiomic features were extracted from each prostate gland and 
tumour segmentation using ‘PyRadiomics’ software [25]. Before feature 
extraction, N4 bias correction was applied to T2 MRI [26], and all im-
ages were resampled to modality-specific isotropic voxels (0.3 mm 
isotropic voxels for T2, 1.25 mm isotropic voxels for ADC maps and 2 
mm isotropic voxels for PET). A total of 107 features, including 14 
shape-based, 18 first-order statistical features and 75 texture features, 
were extracted from T2, ADC and PET. Additionally, first-order and 
texture features were extracted after applying wavelet and Laplacian of 
Gaussian (LoG) filters, resulting in 930 features from filtered images: 
186 from LoG with sigma 3 and 5; 744 from wavelet filtered images. 
Overall, 1037 features were extracted from each image per patient. 
Supplementary Table 4 details feature extraction parameters. 

2.6. Statistical analysis 

The Dice coefficient (DC) and mean distance to agreement (MDA) 
were calculated to assess the agreement between manual (CTV and GTV) 
and automated segmentations. Radiomic feature robustness was evalu-
ated using the two-way mixed effect model of interclass correlation 
coefficient (ICC) [27] and mean absolute percent difference (MAPD). 
ICC calculates the reliability by quantifying the agreement between two 
feature sets derived from two different segmentations. An ICC value <
0.5 represents poor reliability, between 0.5 and 0.75 indicates moderate 
reliability, between 0.75 and 0.9 indicates good reliability and > 0.9 

represents excellent reliability [28]. MAPD measures the stability of a 
feature by calculating the average percentage difference between both 
feature sets, with features having MAPD < 5 % classified as stable [29]. 

2.7. Recurrence prediction 

Models were developed to predict BCR after RT using robust radio-
mic features from pre-RT imaging. BCR was defined as an increase in 
PSA of 2 ng/mL or more above the nadir PSA post-RT, according to the 
Phoenix criteria [30]. The non-BCR control group consisted of patients 
with 5-year BCR-free survival. Out of 142 patients, a subset of 49 pa-
tients were included, where 13 (27 %) experienced BCR, and the 
remaining 36 (73 %) did not (Table 1). 

Robust radiomic features with ICC > 0.75 and MAPD < 5 % were 
used to develop the models. Pearson correlation and minimum Redun-
dancy Maximum Relevance (mRMR) were applied to reduce features, 
and the top 20 features were selected [31]. The optimal number of 
features was determined by evaluating ROC-AUC and accuracy metrics 
for the CTV-based model by differing numbers of features. The feature 
set was standardised using min–max normalisation. The synthetic mi-
nority oversampling technique (SMOTE) method was applied to address 
the data imbalance caused by the larger number of non-BCR patients 
[32]. Finally, random forest (RF) models were constructed [33] for each 
segmentation resulting in five models. The feature selection and model 
training were performed using 80 % patients’ data (n = 39). The model 
performances were evaluated using sensitivity, specificity, accuracy and 
area under the receiver-operator-characteristics (ROC) curve (AUC). 
Due to the small dataset, performance metrics were reported using a 
stratified 10-fold-cross-validation approach to obtain reliable estimates 
using the entire dataset. 

3. Results 

3.1. Segmentation agreement 

The mean DC between the CTV and the nnU-Net segmentation was 
0.78 ± 0.1 (range 0.02 to 0.92), with only seven patients having DC 
values below 0.6 (Fig. 2D) and mean MDA was 2.45 ± 1.8 (Supple-
mentary Table 3). The mean DC between the GTV and PET thresholding 
segmentation was 0.46 ± 0.2 (range 0 to 0.96), and mean MDA was 5.6 
± 7.4. The mean DC between the GTV and radiomics model-based 
tumour segmentations was 0.45 ± 0.2 (range 0 to 0.85), and mean 
MDA was 4.71 ± 4.7. The radiomics model failed to identify any voxels 
within the GTV of eight patients, and the PET thresholding failed to 
identify any voxels within the GTV of twelve patients. 

Fig. 2A–C shows the prostate segmentations of three patients. The 

Fig. 1. Workflow used to analyse radiomic feature robustness with different segmentations.  
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patient in Fig. 2A achieved the best segmentation agreement with a DC 
of 0.92, closely matching at the prostate base, mid-gland, and apex. In 
Fig. 2B, the segmentation exhibited intermediate agreement (DC = 0.6), 
while Fig. 2C shows the worst agreement (DC = 0.2) across all patients. 

Notably, most segmentation mismatches occurred at the apex and base. 
Fig. 2E–I display tumour segmentations obtained using the radiomics 

model (top row) and the PET thresholding method (bottom row) 
compared to the GTV. The patient in Fig. 2E had the best segmentation 

Fig. 2. (A–C) Prostate segmentations of three patients showing the apex (top row), mid gland (middle row), and base (bottom row); (D) boxplots showing the DC for 
each automated segmentation compared to the manual segmentations; (E–I) tumour segmentations for five patients showing the GTV and the radiomics model-based 
segmentations (top row), and the GTV and PET thresholding segmentation (bottom row). The corresponding pair-wise DC is provided in the top right corner for (A–C) 
and (E–I). 
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agreement, with both DCs > 0.8. In contrast, the worst-performing 
segmentation was in the patient in Fig. 2I, as the radiomics model 
failed to detect the tumour (DC = 0), while PET thresholding over- 
predicted the tumour (DC = 0.08), identifying the entire prostate due 
to high tracer uptake (SUV > 4). In Fig. 2G and H, only one of the two 
automated segmentation methods successfully identified the GTV. 

3.2. Radiomic feature robustness 

Due to the low agreement between tumour segmentations, the 
prostate segmentations alone (CTV and nnU-Net) were used to assess 
radiomic feature robustness. To ensure significant spatial overlap, pa-
tients with a DC of 0.6 or higher were considered, giving data from 135 
patients. These patients had a mean MDA of 2.16 ± 0.88 which was 
considered appropriate. Fig. 3 illustrates the distribution of ICC and 
MAPD values and the mean and 95 % confidence interval for each 
feature class. Features that exhibited a statistically significant ICC value 
(p < 0.05) were considered for the analysis. The confidence interval 
brackets tended to be narrower for filtered image features than original 
image features, indicating increased robustness to variations in 
segmentations. 

Radiomic features were categorised into having excellent, good, 
moderate or poor robustness based on their ICC and MAPD values 
(Table 2). A total of 112 (3.6 %) features had excellent robustness, 

including 51 from PET, 29 from ADC, and 32 from T2 imaging (Sup-
plementary Fig. 1). Approximately 88 % of these features were from 
wavelet-filtered images, 6 % from log-sigma-filtered images, and 6 % 
from original images. The excellent features mainly consisted of grey- 
level texture features, including GLRLM, GLCM, and GLDM. Only the 
Root Mean Squared features were classified as excellent among the first- 
order features across all three imaging modalities. In total, 592 (19 %) 
radiomic features were considered robust as they fell into the excellent 
or good categories (reported in Supplementary spreadsheet). 

Fig. 3. The ICC and Mean absolute percentage difference (MAPD) along with 95% confidence intervals for every radiomic feature class for T2, ADC and PET.  

Table 2 
The number of radiomic features from each imaging modality classified into four 
categories (excellent, good, moderate and poor) based on ICC and MAPD values.  

Robustness Criteria Number of radiomic features 
N (%) 

PET ADC T2 

Excellent ICC > 0.9 and MAPD < 1 % 51 
(4.9 %) 

29 
(2.8 %) 

32 
(3.1 %) 

Good ICC > 0.75 and MAPD < 5 % 148 
(14.3 %) 

172 
(16.6 %) 

160 
(15.4 %) 

Moderate ICC > 0.5 and MAPD < 10 % 205 
(19.8 %) 

214 
(20.6 %) 

197 
(19 %) 

Poor ICC ≤ 0.5 and/or MAPD ≥ 10 % 614 
(59.2 %) 

601 
(57.9 %) 

625 
(60.3 %)  
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No shape features were robust (MAPD range 5.5–20.0 %; ICC range 
0.23–0.9). Except for the Root Mean Squared features, most first-order 
features had strong reliability (ICC > 0.9) but low stability (MAPD >
5 %). Kurtosis and skewness were the least robust first-order features 
with the lowest ICC values (range 0.004–0.88) and MAPD > 10 %. The 
GLCM feature group contained the most robust features, excluding 
cluster shade and cluster prominence. Among the GLSZM features, small 
area emphasis and zone entropy demonstrated robustness, while small 
area low grey level emphasis did not. Most NGTDM features were not 
considered robust because their MAPD > 10 %. 

3.3. Recurrence prediction 

Recurrence prediction models were developed using radiomic fea-
tures with excellent or good robustness. Patients included had a median 
follow-up of 4.1 years. The median time for detecting BCR post-RT was 
3.2 years (ranging 1.1–5.3 years). The median follow-up period for BCR 
patients was 5.3 years, while 5.7 years for non-BCR patients. 

Table 3 presents the performance metrics for each model. The 
prostate segmentation models achieved the best performances (AUC 
0.91–0.93), outperforming tumour segmentation models (AUC 
0.85–0.90). In almost all models, specificity exceeded sensitivity 
because of the larger sample size of the non-BCR control group. 

The most important feature for each model was a texture feature 
(GLCM or GLDM) derived from PET, and most of the selected twenty 
features were grey-level textures obtained from filtered images (Sup-
plementary Fig. 2). On average, in each model, 9 were derived from PET 
scans, 5 from ADC maps, and 6 from T2 MRI. 

4. Discussion 

This study assessed the robustness of radiomic features with different 
prostate segmentations and the ability of robust features to predict BCR 
after RT. To our knowledge, this is the first study evaluating the 
robustness of prostate radiomic features in both MRI and PET using a 
real-world multi-scanner dataset, which enhances the generalisability of 
this study’s findings compared to previous studies [11,14,34]. 

This study’s purpose was not to evaluate segmentation performance. 
Instead, it examined multiple segmentations to understand how their 
contour variations affect radiomic feature robustness. Prostate seg-
mentations are generally more consistent than tumour segmentations 
due to prostate cancer’s heterogeneous nature. Automated and manual 
prostate segmentations exhibited good agreement as both were based on 
T2 MRI, which adequately visualises the prostate boundaries. Auto-
mated segmentations performed better in the mid-gland compared to 
the base or apex regions, consistent with previous studies [19]. One 

patient with low DC (<0.6) had rectal gas and SpaceOAR, leading to 
poor segmentation performance, while the other six patients with low 
DC underwent hormonal therapy, which may have impacted the 
appearance of the gland on T2 MRI [35]. Poor agreement between some 
GTVs and PET thresholding or radiomics model segmentations could 
also be due to patients receiving hormonal therapy (53 % of the cohort), 
as it influences ADC and PSMA expression [36,37]. Notably, the 
radiomics-based segmentation model was not trained on post-hormone 
therapy or multi-scanner images and no publicly available model exists. 

Ensuring radiomic feature robustness is crucial to building predictive 
models, encompassing image acquisition, pre-processing, segmentation, 
and feature extraction. This study follows the guidelines from Image 
Biomarker Standardization Initiative (IBSI) standards [38,39]. All im-
ages were resampled to isotropic voxels before feature extraction to 
ensure texture features were rotationally invariant. Resampling to 
modality-specific voxel sizes was done to mitigate up- and down- 
sampling effects. Additionally, original imaging features were extrac-
ted using a modality-specific fixed bin size, while filtered imaging 
feature extraction employed a fixed bin number. However, Schwier et al. 
found that bin width doesn’t have a strong influence on repeatability of 
prostate MRI (T2 & ADC)-based radiomic features [15]. Nevertheless, 
the use of Pyradiomics software [25] deviates slightly from IBSI guide-
lines due its implementation of image discretization and resampling 
techniques. Despite identical feature extraction and pre-processing steps 
used for the source images, the segmentation differences in this study 
affected the feature robustness. Consistent with our findings, Xue et al. 
and Urraro et al. reported a small proportion of MRI-based features were 
reliable [11,13]. Cairone et al. compared T2 MRI features extracted from 
a 3D prostate volume model using one manual and six semi-automated 
segmentations, revealing high reliability of grey-level texture features 
[34]. Similarly, our study found grey-level texture features were more 
robust than first-order and shape features. While shape features were 
sensitive to segmentation methods, volume-based and axis length- 
related shape features had high ICC values, aligned with Cairone et al. 
[34]. NGTDM features derived from the multi-scanner dataset lacked 
robustness due to scanner dependency, as did cluster shade and cluster 
prominence GLCM features. 

Currently, the robustness of PET radiomic features has been under-
explored. Preliminary findings from the BIOPSTAGE trial indicate that 
more ADC radiomic features are reliable compared to 68Ga-PSMA-PET 
radiomic features, though their focus was primarily ISUP grade predic-
tion [14]. Conversely, our study finds that the robustness of PET, ADC, 
and T2 radiomic features is comparable, with 19.2 %, 19.4 %, and 18.5 
% of robust features, respectively. Recent MRI-based studies reported 
that ADC features are more robust than T2 features against inter- 
observer segmentations [11,12]. However, we didn’t observe a major 
difference in robustness between T2 and ADC features, potentially due 
to multi-scanner image use and different b-values for ADC generation. 
Moreover, bias correction applied to T2 images may have reduced the 
intensity variations and improved the reliability of T2 features. 

Recent evidence suggests that radiomic features extracted from pre- 
treatment imaging can potentially predict BCR [7,8]. Fernandes et al. 
developed a BCR prediction model using whole prostate pre-treatment 
T2 MRI radiomic features and found that this model outperformed 
standard clinical features or combined models [7]. Gnep et al. found a 
strong association between T2 texture features and post-RT BCR [8], 
with all the selected T2 features in these models being grey-level texture 
features. In our study, the most important feature in all five BCR models 
was from PET imaging. This may be due to PET SUV’s correlation with 
Gleason grade [24], where higher SUVmax values indicate more 
aggressive and high-grade tumours with a greater risk of recurrence. 
Papp et al. investigated 68Ga-PSMA-PET-derived radiomic features to 
predict high versus low-risk prostate tumours and BCR [5]. Similar to 
our results, they found 68Ga-PSMA-PET features were superior to ADC 
and T2 for model prediction. Considering the promising performance of 
the BCR models in this study, prospective trials with long term follow up 

Table 3 
Performances of recurrence prediction models (average ± SD).   

Segmentation 
Methods 

Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

AUC 

Prostate CTV 82.0 ± 0.35 94.2 ± 0.12 90.0 ±
0.17 

0.93 
±

0.18 
nnU-Net 80.0 ± 0.26 92.0 ± 0.19 86.7 ±

0.17 
0.91 
±

0.22  

Tumour GTV 75.0 ± 0.42 97.5 ± 0.08 92.0 ±
0.10 

0.88 
±

0.31 
PET 
thresholding 

80.0 ± 0.19 81.8 ± 0.28 80.5 ±
0.19 

0.90 
±

0.05 
Radiomics 
model 

70.0 ± 0.48 91.7 ± 0.14 87.0 ±
0.18 

0.85 
±

0.32  
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data will be needed for clinical validation. Predicting BCR from pre-RT 
imaging offers an early treatment response indicator, aiding personal-
ized plans and enhanced risk stratification, potentially improving pa-
tient outcomes. 

This study has several limitations. Firstly, it is constrained by the 
limitations of automatic tumour segmentations, and a more generalised 
and robust tumour segmentation approach is necessary to overcome 
this. Thus, we aim to carry out future research with a larger patient 
cohort to investigate robustness of radiomic features with varying 
tumour segmentations. Additionally, manual GTV segmentations based 
on MRI and biopsy reports are limited because MRI cannot accurately 
detect tumours smaller than 0.5 cm3, and these lesions could be missed 
during biopsy [40]. Secondly, ADC maps were inconsistently generated 
and with variable b values. Lastly, the cohort size for predicting BCR was 
small and unbalanced, and didn’t incorporate clinical information such 
as patient demographics, PSA, pathology and comorbities. Therefore, 
future research will involve a larger patient cohort and consider clinical 
information in the models. 

In conclusion, this study confirmed that variations in prostate gland 
segmentations on MRI and PET affect the robustness of radiomic fea-
tures. Due to the high variability between the tumour segmentation 
methods, radiomic features from the whole prostate offer greater reli-
ability for developing prediction models. Radiomic feature-based 
models using pre-treatment MRI and PET provide the potential to pre-
dict the likelihood of BCR after RT, but further investigation with larger 
cohorts is needed. 
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