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Abstract: A sensor fusion methodology for the Gaussian mixtures model is proposed for
ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy,
a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple
model filters. During the fusion process, the duplicate information is removed by considering the
first order redundant information between the local tracks. With extensive simulations, we show
that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry
phase applications.
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1. Introduction

The problem of ballistic target tracking in the re-entry phase has attracted much attention due to
both of its theoretical and practical significance. Technically speaking we need to develop a stochastic
nonlinear filter for state estimation with respect to the ballistic target dynamics. Practical applications
are in the fields of surveillance for safety against the re-entry of space debris produced by old satellites
or spacecraft at the end of their lifetime [1–3]. Tracking a ballistic target has been identified as a stressful
filtering problem due to the strong nonlinearity exhibited by the forces acting on the target [2,4,5].
Besides, the nonlinearity also results from the bearing and range measurements which are given
with nonlinear measurement functions in relation to the target [6]. In the literature several nonlinear
filtering methods have been applied to this tracking problem under the assumption that the ballistic
coefficient is already known [7], including extended Kalman filter [8], unscented Kalman filter [9],
ensemble Kalman filter [10], cubature Kalman filter [11] and particle filter [3]. The tracking problem
becomes more difficult when the ballistic coefficient is known crudely or totally unknown. In such
a case, an approach which has been investigated to be effective is the multiple model approach [12–15].
The structure of multiple model filter consists of a bank of local filters, with each filter modelled with
a different value of ballistic coefficient. The output of the multiple model filter is in terms of Gaussian
mixtures obtained by weighted mixing of the estimate from each local filter.

The technology of track-to-track fusion (T2TF) makes it possible to achieve further improvement
of tracking accuracy than in the single sensor case. A basic T2TF system [16] consists of two sensors and
a fusion center. Each sensor generates a local track by observing the target of interest and estimating
with filtering. The fusion center fuses local tracks to obtain a fused track with improved accuracy.
There has been a great deal of work in developing T2TF algorithms [17–20], however, most of these
algorithms have been designed for systems with Gaussian density based filters (e.g., Kalman filter,
extended Kalman filter and unscented Kalman filter) and may not be applicable to systems with
multiple model filters. Demand for tracking ballistic targets with unknown ballistic coefficients poses
a new requirement on using multiple model filters, which makes it necessary to fuse local tracks in
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terms of the Gaussian mixtures model [21] for tracking accuracy improvement. In the case of Gaussian
mixtures, an empirical study into the use of Chernoff information has been investigated in [22],
and an approximate approach for Chernoff fusion of Gaussian mixtures has been proposed in [23].
One drawback of this approach is that an exhaustive search must be performed to find the optimal
weighting parameter [24], which makes it computationally intensive and difficult to implement in
practical systems.

In this study, we consider a distributed ballistic target tracking scenario where the estimates
of the local sensors are to be fused. We assume that the local sensors run IMM filters for handling
unknown ballistic coefficient and the output of the local estimators are Gaussian mixtures. As a result,
the track-to-track fusion problem we consider involves the fusion of Gaussian mixtures densities.
The main contribution of this paper is to obtain the common information between the local estimates
by considering the first order redundant information and derive the required fusion expressions to be
employed in the fusion center. The proposed fusion rule is computationally efficient since it yields
an analytical fused estimate for Gaussian mixtures. Simulation results show that the track-to-track
fusion with Gaussian mixtures provides estimation accuracy improvement over the single Gaussian
case. The remainder of the paper is organized as follows: the problem is formulated in Section 2.
The Gaussian mixtures fusion rule is presented in Section 3. The simulation results are given in
Section 4. The conclusions are presented in Section 5.

2. Problem Formulation

2.1. Target Dynamics

The kinematics of the ballistic target in the re-entry phase is derived under the following
assumptions [7]: the forces acting on the target include Earth’s gravity and the aerodynamic drag;
the effects of centrifugal acceleration, Coriolis acceleration, wind, lift force and spinning motion are
ignored due to their minor effect on the target trajectory. Thus the system dynamics of a ballistic
target [3,6] is given by:

xk = Ψ (xk−1) + G

[
0
−g

]
+ wk (1)

where xk−1 =
[

xp,k−1, xv,k−1, yp,k−1, yv,k−1

]T
is the target state vector at time step k − 1. xp,k−1 and

yp,k−1 represent positions, xv,k−1 and yv,k−1 represent velocities in Cartesian coordinates (x, y). wk is
a zero-mean white Gaussian process noise vector with covariance Q given by:

Q = q

[
Θ 0
0 Θ

]
with Θ =

[
T3/3 T2/2
T2/2 T

]
(2)

where q is a parameter related to the process noise intensity. The nonlinear function Ψ (·) in Equation (1)
is given by:

Ψ (xk−1) = Fxk−1 + G f (xk−1) (3)

where matrices F and G are given by:

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, G =


T2/2 0

T 0
0 T2/2
0 T

 (4)
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and f (·) is the aerodynamic drag given by

f (xk−1) = −
gρ
(

yp,k−1

)√
x2

v,k−1 + y2
v,k−1

[
xv,k−1
yv,k−1

]
2β

(5)

where β is the ballistic coefficient, g is the gravity acceleration, ρ (·) is the air density [25] which decays
exponentially with the altitude yp,k−1 as

ρ
(

yp,k−1

)
= c1e−c2yp,k−1 (6)

2.2. Sensor Configurations and Measurement Model

The sensor configuration involves two ground-radar sensors S1 and S2, which are located at(
xSl

R , ySl
R

)
for l = 1, 2 respectively. The measurement equation is given by:

zSl
k = h (xk) + vSl

k for l = 1, 2 (7)

where zSl
k =

[
rSl

k , θ
Sl
k

]T
is the measurement vector, vk =

[
vSl

r,k, vSl
θ,k

]T
is the measurement noise for

sensor Sl . The sensor measures the range rSl
k and the bearing θk in relation to the target. Thus the

measurement model can be written as

rSl
k =

√(
xSl

p,k − xSl
R

)2
+
(

ySl
p,k − ySl

R

)2
+ vSl

r,k

θ
Sl
k = tan−1

(
y

Sl
p,k−y

Sl
R

x
Sl
p,k−x

Sl
R

)
+ vSl

θ,k

for l = 1, 2 (8)

where
vSl

r,k ∼ N
(

0, RSl
r

)
vSl

θ,k ∼ N
(

0, RSl
θ

) (9)

2.3. Local Filter

Since the actual ballistic coefficient is unknown to the sensors, an interactive multiple model
(IMM) filter [26] with r = 2 models is applied at the single sensor level. The models are based on
the extended Kalman filter (EKF), but having different value of ballistic coefficient β

Sl
i , i = 1, · · · , r.

In general, the IMM filter merges state estimates computed under each possible model using local
filters, with each filter using a different combination of the previous model-conditioned estimates [27].
The recursion equations for sensor Sl consist of four major steps in each cycle as follows.

Step 1: Calculation of the mixing probabilities for i, j = 1, · · · , r

µ
Sl
i|j,k−1|k−1 =

1

cSl
j

pSl
ij µ

Sl
i,k−1 (10)

where cSl
j =

r
∑

i=1
pSl

ij µ
Sl
i,k−1.
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Step 2: Mixing for j = 1, · · · , r:

x̂Sl
0j,k−1|k−1 =

r
∑

i=1
x̂Sl

i,k−1|k−1uSl
i|j,k−1|k−1

PSl
0j,k−1|k−1 =

r
∑

i=1
µ

Sl
i|j,k−1|k−1

[
PSl

i,k−1|k−1 +
(

x̂Sl
i,k−1|k−1 − x̂Sl

0j,k−1|k−1

) (
x̂Sl

i,k−1|k−1 − x̂Sl
0j,k−1|k−1

)T
]

(11)
Step 3: Mode-matched filtering for j = 1, · · · , r

x̂Sl
j,k|k−1 = Ψ

(
x̂Sl

0j,k−1|k−1

)
+ G

[
0
−g

]
PSl

j,k|k−1 =
(

F + G f Sl
J,j,k

)
PSl

0j,k−1|k−1

(
F + G f Sl

J,j,k

)T
+ Q

(12)

x̂Sl
j,k|k = x̂Sl

j,k|k−1 + KSl
k

(
zSl

k − h
(

x̂Sl
j,k|k−1

))
PSl

j,k|k =
(

I − KSl
k hSl

J,j,k

)
PSl

j,k|k−1

(13)

where KSl
k = PSl

j,k|k−1hT
J,j,k

(
hJ,j,kPSl

j,k|k−1hT
J,j,k + RSl

)−1
and RSl =

[
RSl

r 0
0 RSl

θ,k

]
. f Sl

J,j,k is the Jacobian

of f Sl (·) calculated at the estimated state x̂Sl
0j,k−1|k−1, hSl

J,j,k is the Jacobian of hSl (·) calculated at the

estimated state x̂Sl
j,k|k−1. The detailed derivation of f Sl

J,j,k and hSl
J,j,k for models given in Equations (5)

and (8) are shown in Appendixes A and B respectively.
Step 4: Mode probability update for j = 1, · · · , r

ΛSl
j,k = N

(
zSl

k ; h
(

x̂Sl
j,k|k−1

)
, hJ,j,kPSl

j,k|k−1hT
J,j,k + RSl

)
µ

Sl
j,k = 1

cSl
ΛSl

j,kcSl
j

cSl =
r
∑

j=1
ΛSl

j,kcSl
j

(14)

A block diagram for one cycle of the IMM filter with two models (r = 2) for sensor Sl is given in
Figure 1.

2.4. Fusion Architecture

Among the various choices for multiple model filters, the IMM filter has been shown to be one
of the most effective schemes for hybrid systems [28]. In this study we assume that the local sensors
run IMM filters for handling unknown ballistic coefficient, therefore the output of each local sensor
is a Gaussian mixtures model. In this regard, the track-to-track fusion (T2TF) problem we consider
here involves the fusion of Gaussian mixtures densities. As shown in Figure 2, the fusion architecture
presented includes two ground-radar sensors S1 and S2 with local measurements obtained periodically
and local tracks updated synchronously. In addition, the fusion center may transmit the latest fused
track back to one local sensor. When the local sensor receives the fused track, it will be used to replace
the local one. In practice, this condition usually happens when the fusion center is collocated with
one local sensor [29]. In this study, we assume that after each fusion, the local track of sensor S1 is
replaced with the fused track from the fusion center, while sensor S2 operates independently without
information feedback from the fusion center.
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3. Gaussian Mixtures Fusion

3.1. Basic Fusion Process and Redundant Information

The basic fusion process [19] is formulated as:

p f (x) =
1
c

pS1 (x) pS2 (x)
pc (x)

(15)

where p f (x) is the fused estimate, pS1 (x) and pS2 (x) are the estimates from local sensors S1

and S2 respectively, c is a normalization constant. The common information between the local
estimates is given in the denominator by pc (x), which is to be subtracted out. While the removal of
duplicate information is straightforward in the theoretical formulation [30], identification of duplicate
information for distributed estimation system can be difficult in practical implementation. In this
paper, the first order redundant information [16,31] is considered. In this way, the fusion center only
needs to keep track of the previous data received from sensor S2 at the previous communication time
step and remove it when fusing the current estimates from sensor S1 and S2.
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Specifically, when both pS1 (x) and pS2 (x) are Gaussian mixtures, namely:

pSl (x) =
r

∑
i=1

µ
Sl
i,k N

(
x; x̂Sl

i,k|k, PSl
i,k|k

)
for l = 1, 2 (16)

where r = 2 since the IMM filter is with two models for each sensor. Then the common information at
time step k can be obtained as:

pc (x) =
2

∑
i=1

µc
i,k N

(
x; x̂c

i,k|k, Pc
i,k|k

)
(17)

where:
µc

i,k =
r
∑

j=1
µS2

j,k−1µS2
j|i,k−1|k−1

x̂c
i,k|k = Ψ

(
x̂S2

0i,k−1|k−1

)
+ G

[
0
−g

]
Pc

i,k|k =
(

F + G f S2
J,i,k

)
PS2

0i,k−1|k−1

(
F + G f S2

J,i,k

)T
+ Q

for i = 1, 2 (18)

and f S2
J,i,k (·) is the Jacobian calculated at the estimated state x̂S2

0i,k−1|k−1.

3.2. Fusion of Gaussian Mixtures

In a distributed fusion problem, assuming two Gaussian mixtures, pS1 (x) =
2
∑

i=1
µS1

i,k N
(

x; x̂S1
i,k|k, PS1

i,k|k

)
and pS2 (x) =

2
∑

i=1
µS2

i,k N
(

x; x̂S2
i,k|k, PS2

i,k|k

)
are to be fused with a common prior distribution pc (x).

With the standard Bayesian fusion formula, i.e., Equation (15), the fused probability density function
(PDF) can be obtained as:

p f (x) =
1
c

2

∑
i=1

2

∑
j=1

µS1
i,kµS2

j,k

N
(

x; x̂S1
i,k|k, PS1

i,k|k

)
N
(

x; x̂S2
j,k|k, PS2

j,k|k

)
pc (x)

(19)

To obtain an analytical fused result and avoid the potential complexity, one idea is to approximate
the denominator pc (x) with a single Gaussian PDF using moment matching [27], namely:

pc (x) =
2

∑
i=1

µc
i,k N

(
x; x̂c

i,k|k, Pc
i,k|k

)
≈ N

(
x; x̂c

k|k, Pc
k|k

)
(20)

where:

x̂c
k|k =

2
∑

i=1
µc

i,k x̂c
i,k|k

Pc
k|k =

2
∑

i=1
µc

i,k

[
Pc

i,k|k +
(

x̂c
i,k|k − x̂c

k|k

) (
x̂c

i,k|k − x̂c
k|k

)T
] (21)

With this approximation, the fusion expressions to be applied in IMM filter which is the major
contribution of the current work are derived as follows:

p f (x) ≈ 1
c

2
∑

i=1

2
∑

j=1
µS1

i,kµS2
j,k

N
(

x;x̂
S1
i,k|k ,P

S1
i,k|k

)
N
(

x;x̂S2
j,k|k ,PS2

j,k|k

)
N
(

x;x̂c
k|k ,Pc

k|k

)
= 1

c

2
∑

i=1

2
∑

j=1
µS1

i,kµS2
j,kcij,k|k N

(
x; x̂ij,k|k, Pij,k|k

) (22)
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where
P−1

ij,k|k =
(

PS1
i,k|k

)−1
+
(

PS2
j,k|k

)−1
−
(

Pc
k|k

)−1

P−1
ij,k|k x̂ij,k|k =

(
PS1

i,k|k

)−1
x̂S1

i,k|k +
(

PS2
j,k|k

)−1
x̂S2

j,k|k −
(

Pc
k|k

)−1
x̂c

k|k

(23)

and
cij,k|k = exp

(
ζS1

i,k|k + ζS2
j,k|k − ζc

k|k − ζij,k|k

)
(24)

with

ζS1
i,k|k = − 1

2

(
dlog2π − log

∣∣∣∣(PS1
i,k|k

)−1
∣∣∣∣+ (x̂S1

i,k|k

)T (
PS1

i,k|k

)−T
x̂S1

i,k|k

)
ζS2

j,k|k = − 1
2

(
dlog2π − log

∣∣∣∣(PS2
j,k|k

)−1
∣∣∣∣+ (x̂S2

j,k|k

)T (
PS2

j,k|k

)−T
x̂S2

j,k|k

)
ζc

k|k = − 1
2

(
dlog2π − log

∣∣∣∣(Pc
k|k

)−1
∣∣∣∣+ (x̂c

k|k

)T (
Pc

k|k

)−T
x̂c

k|k

)
ζij,k|k = − 1

2

(
dlog2π − log

∣∣∣P−1
ij,k|k

∣∣∣+ x̂T
ij,k|kP−T

ij,k|k x̂ij,k|k

)
(25)

The derivation of Equations (23)–(25) is presented in Appendix C.

3.3. Gaussian Mixtures Reduction

As one can see from Equation (22), the fused Gaussian mixtures PDF has an exponentially growing
number of components as more Gaussian mixtures are multiplied in the long run. Thus it is necessary
to manage the components growth with a method of Gaussian mixtures reduction. Suppose that
we are given a Gaussian mixtures model with n components, and we wish to approximate it with
a mixture of r components (r < n). In general, the Gaussian mixtures reduction algorithm can be
operated in the following manner.

While more than r components remain, choose two components that in a sense to be least
dissimilar and replace them by their moment matching merge as:

wm = wi + wj (26)

x̂m =
wi
wm

x̂i +
wj

wm
x̂j (27)

Pm =
2

∑
i=1

wi
wm

[
Pi + (x̂i − x̂m) (x̂i − x̂m)

T
]

(28)

where (wi, x̂i, Pi) and
(
wj, x̂j, Pj

)
are two weighted Gaussian components to be merged, and

(wm, x̂m, Pm) is their moment matching approximation.
For the dissimilarity measure between two components of a Gaussian mixtures model, we adopt

a metric that is proposed in Reference [32] as an upper bound on the discrimination of the Gaussian
mixtures after the merge from the Gaussian mixtures before the merge. The dissimilarity measure is
given as follows:

D
(
(wi, x̂i, Pi) ,

(
wj, x̂j, Pj

))
,

(
wi + wj

)
ln (det (Pm))− wiln (det (Pi))− wjln

(
det

(
Pj
))

2
(29)

Thus in each iteration, a Gaussian mixtures model with n components is constructed after the
Gaussian mixtures fusion, then we operate the procedure of Gaussian mixtures reduction in an iterative
manner until n = r, so as to meet the requirement that the IMM filter is set to be with r models. In our
case, the fused Gaussian mixtures consist of n = 4 components after fusion in Equation (22), namely:

p f (x) =
2

∑
i=1

2

∑
j=1

wijN
(
x; x̂ij, Pij

)
(30)
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where:

wij =
µS1

i µS2
j cij

c
(31)

Note that the subscript k|k is omitted for the sake of brevity. We set (w11, x̂11, P11) and
(w22, x̂22, P22) as major components, since they are consistent with model 1 and 2 in a straightforward
manner. For the rest two cross-components, namely (w12, x̂12, P12) and (w21, x̂21, P21), they are
supposed to be merged with one of the major components according to the dissimilarity measure
given in Equation (29). More specifically, for (w12, x̂12, P12), if D ((w12, x̂12, P12) , (w11, x̂11, P11)) <

D ((w12, x̂12, P12) , (w22, x̂22, P22)), then we merge (w12, x̂12, P12) with (w11, x̂11, P11), otherwise we
merge (w12, x̂12, P12) with (w22, x̂22, P22); for (w21, x̂21, P21), if D ((w21, x̂21, P21) , (w11, x̂11, P11)) <

D ((w21, x̂21, P21) , (w22, x̂22, P22)), then we merge (w21, x̂21, P21) with (w11, x̂11, P11), otherwise we
merge (w21, x̂21, P21) with (w22, x̂22, P22). In the end, a flow chart of the proposed fusion methodology
is given in Figure 3 as follows:
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2 2

1 1

ˆ; ,f
ij ij ij

i j

p x w N x x P
 

  (30) 

where: 

1 2S S
i j ij

ij

c
w

c

 
  (31) 

Note that the subscript |k k  is omitted for the sake of brevity. We set  11 11 11ˆ, ,w x P  and 
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4. Simulation Results

The proposed algorithm is applied in a re-entry ballistic target tracking scenario to verify the
performance through a series of simulation runs. To the best author’s knowledge, the Gaussian
mixtures fusion methodology has not been applied in a distributed ballistic target tracking scenario for
track-to-track fusion before. The system dynamic model is represented as Equation (1), where we use
T = 2 s, q = 1 m2·s−3 and g = 9.81 m·s2. The initial state x0 is:

x0 =


23200m

2290cos
(
190

◦)
m · s−1

88000m
2290sin

(
190

◦)
m · s−1

 (32)

with initial covariance:

P0 =


10002m2 0 0 0

0 202m2 · s−2 0 0
0 0 10002m2 0
0 0 0 202m2 · s−2

 (33)
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For the air density ρ (·), we have c1 = 1.227, c2 = 1.093 × 10−4 for yp < 9144 m and, and c1 = 1.754,
c2 = 1.49 × 10−4 for yp > 9144 m. The actual target ballistic coefficient is β = 40,000 kg·m−1·s−2.

Figure 4 shows the target trajectory in the X-Y plane. Figures 5 and 6 show the velocity of the
ballistic target, and the aerodynamic drag acceleration against time, respectively. It can be observed
that the velocity decreases with the increment of aerodynamic drag f (·).
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For the measurement model, we assume that the two sensors are homogeneous, in the sense that
RS1

r = RS2
r = 1002 m2 and RS1

θ = RS2
θ = 0.052 rad2. Besides, we consider that the sensors are located at(

xS1
R , yS1

R

)
= (0, 0) and

(
xS2

R , yS2
R

)
= (50, 000, 0), respectively.

For the local filters, it is assumed that the actual ballistic coefficient of the target is unknown to
both sensors, so that βS1

1 = βS2
1 = 60, 000 kg·m−1·s−2 and βS1

2 = βS2
2 = 10, 000 kg·m−1·s−2 are used as

the IMM models for both sensor S1 and S2. Besides, the Markov chain transition matrix was taken as:

[
pij
]
=

[
0.95 0.05
0.05 0.95

]
(34)
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The proposed Gaussian mixtures fusion method is verified by comparing the results between
sensors S1 and S2. Note that the estimate from sensor S1 is identical to the fused result, for the reason
that after each fusion the local track from sensor S1 is replaced with the fused track from the fusion
center. Unlike sensor S1, the estimate from sensor S2 is solely obtained from one singe IMM filter, since
sensor S2 operates by itself without information feedback from the fusion center.

Figures 7 and 8 show the estimated model probabilities for sensors S1 and S2, respectively. It can
be seen that during 0–50 s the probabilities for models 1 and 2 are equal to each other, for the reason that
the aerodynamic drag is zero which makes it not able to judge which model matches better. The ballistic
coefficient becomes observable from t = 50 s, at that time the aerodynamic drag begins to emerge. It can
be observed that the model probabilities for sensor S1 is more stable than that for sensor S2, namely
the proposed fusion method improves the stability of the estimated model probabilities.
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Figure 8. Model probabilities for sensor S2.

We further calculate the estimated ballistic coefficient with the total probability theorem [25] as:

β̂Sl =
2

∑
i=1

β
Sl
i µ

Sl
i for l = 1, 2 (35)

where µ
Sl
i is the estimated model probability for β

Sl
i . Figures 9 and 10 plot the estimated value of

ballistic coefficient from sensors S1 and S2, respectively. It can be seen that after the drag force emerges,
the estimated value of the ballistic coefficient for sensor S1F, namely the fused one, appears to be more
accurate and stable than that for sensor S2, in the sense that the first one ranges around [3.6,4.4] × 104,
and the latter one ranges around [1.5,6.0] × 104.

Sensors 2016, 16, 1289 12 of 18 

 

where lS
i  is the estimated model probability for lS

i . Figures 9 and 10 plot the estimated value of 
ballistic coefficient from sensors S1 and S2, respectively. It can be seen that after the drag force 
emerges, the estimated value of the ballistic coefficient for sensor S1F, namely the fused one, appears 
to be more accurate and stable than that for sensor S2, in the sense that the first one ranges around 
[3.6,4.4] × 104, and the latter one ranges around [1.5,6.0] × 104. 

 
Figure 9. Estimated value of the ballistic coefficient for sensor S1. 

 
Figure 10. Estimated value of the ballistic coefficient for sensor S2. 

In the following, we compare the position estimation accuracy in terms of root mean square error 
(RMSE) between the proposed Gaussian mixtures fusion method, the single IMM filter and the 
covariance intersection (CI) method. The CI method [18] is the most well-known fusion technique 
which yields consistent estimates by optimizing a nonlinear cost function associated with the fused 
covariance. For the reason that CI cannot be applied to Gaussian mixtures fusion directly, it requires 
one to approximate the output of IMM filter with the single Gaussian density using moment 
matching before track fusion. Figures 11 and 12 and Table 1 show the RMSE of the algorithms in X 
and Y axes, respectively, by performing 1000 runs of Monte Carlo simulation. It can be seen that both 
of the fusion methods, namely the proposed Gaussian mixtures fusion, and CI provide performance 

Figure 9. Estimated value of the ballistic coefficient for sensor S1.



Sensors 2016, 16, 1289 12 of 17

Sensors 2016, 16, 1289 12 of 18 

 

where lS
i  is the estimated model probability for lS

i . Figures 9 and 10 plot the estimated value of 
ballistic coefficient from sensors S1 and S2, respectively. It can be seen that after the drag force 
emerges, the estimated value of the ballistic coefficient for sensor S1F, namely the fused one, appears 
to be more accurate and stable than that for sensor S2, in the sense that the first one ranges around 
[3.6,4.4] × 104, and the latter one ranges around [1.5,6.0] × 104. 

 
Figure 9. Estimated value of the ballistic coefficient for sensor S1. 

 
Figure 10. Estimated value of the ballistic coefficient for sensor S2. 

In the following, we compare the position estimation accuracy in terms of root mean square error 
(RMSE) between the proposed Gaussian mixtures fusion method, the single IMM filter and the 
covariance intersection (CI) method. The CI method [18] is the most well-known fusion technique 
which yields consistent estimates by optimizing a nonlinear cost function associated with the fused 
covariance. For the reason that CI cannot be applied to Gaussian mixtures fusion directly, it requires 
one to approximate the output of IMM filter with the single Gaussian density using moment 
matching before track fusion. Figures 11 and 12 and Table 1 show the RMSE of the algorithms in X 
and Y axes, respectively, by performing 1000 runs of Monte Carlo simulation. It can be seen that both 
of the fusion methods, namely the proposed Gaussian mixtures fusion, and CI provide performance 
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In the following, we compare the position estimation accuracy in terms of root mean square
error (RMSE) between the proposed Gaussian mixtures fusion method, the single IMM filter and the
covariance intersection (CI) method. The CI method [18] is the most well-known fusion technique
which yields consistent estimates by optimizing a nonlinear cost function associated with the fused
covariance. For the reason that CI cannot be applied to Gaussian mixtures fusion directly, it requires
one to approximate the output of IMM filter with the single Gaussian density using moment matching
before track fusion. Figures 11 and 12 and Table 1 show the RMSE of the algorithms in X and Y axes,
respectively, by performing 1000 runs of Monte Carlo simulation. It can be seen that both of the fusion
methods, namely the proposed Gaussian mixtures fusion, and CI provide performance improvement
over the single IMM filter. Furthermore, the performance of the proposed Gaussian mixtures fusion is
better than CI. The first reason is that we remove the first order redundant information between the
local tracks during Gaussian mixtures fusion process, however, the CI only provides a conservative
estimate due to its ignorance of the cross correlations between the local tracks.
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Table 1. Comparison of RMSE (m) in X and Y axis (64 s–120 s).

S1 S2 CI

X Y X Y X Y

478.9 953.8 660.3 1163 578.2 1102
425.3 820.7 625.8 1081 537.1 1014
345.4 644.8 563.2 927.4 474.9 868.6
233.9 410 488.8 786.9 404.2 710.1
151.9 235.1 427.7 687 319 531.9
109.1 150.3 385.2 647.5 258.2 426.8
80.25 100.3 336.2 574.2 212.8 349
56.48 71.63 295.6 500.6 185 319.1
42.16 67.96 273.1 429.3 163.9 294.3
35.5 66.76 266.1 410.4 160.7 280.4

The second reason is that instead of fusing Gaussian mixtures directly as for the proposed
fusion method, for CI one needs to approximate the original local Gaussian mixtures estimate with
mean and covariance before track fusion, thus the resulting approximation error could degrade the
estimation performance.

5. Conclusions

A Gaussian mixtures fusion algorithm for the track-to-track fusion problem is proposed in this
study. The common information to be reduced during the fusion process is approximated with the first
order redundant information between the local tracks. The proposed fusion algorithm is applied to
tracking a ballistic target with unknown ballistic coefficient using IMM filters. A series of Monte Carlo
simulations are conducted to evaluate the sensor fusion performance. The results indicate that the
proposed algorithm improves the estimation accuracy in terms of the root mean square error. There are
two issues to be addressed in the future. First, a more detailed analysis of the effects of the first order
approximation must be carried out. Second, experiments should be conducted to explore the effect of
using higher order approximation to formulate the common information between the local estimates.
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Appendix A
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Appendix C

The multivariate Gaussian PDF N (x; x̂, P) can be written in canonical notation [33] as:

p (x) = N (x; x̂, P)
= exp
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ζ + yTx− 1

2 xTYx
) (C1)

where:
Y = P−1

y = P−1 x̂
ζ = − 1

2
(
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) (C2)

d is the dimensionality of x, |Y| , det(Y).
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j,k|k − ζc

k|k − ζij,k|k

)
· exp

(
ζij,k|k + yT

ij,k|kx− 1
2 xTYij,k|kx

)
(C6)



Sensors 2016, 16, 1289 16 of 17

Therefore
N
(

x;x̂
S1
i,k|k ,P

S1
i,k|k

)
N
(

x;x̂S2
j,k|k ,PS2

j,k|k

)
N
(

x;x̂c
k|k ,Pc

k|k

) is a scaled Gaussian PDF as

N
(

x; x̂S1
i,k|k, PS1

i,k|k

)
N
(

x; x̂S2
j,k|k, PS2

j,k|k

)
N
(

x; x̂c
k|k, Pc

k|k

) = cij,k|k N
(

x; x̂ij,k|k, Pij,k|k

)
(C7)

where:
P−1

ij,k|k =
(

PS1
i,k|k

)−1
+
(

PS2
j,k|k

)−1
−
(

Pc
k|k

)−1

P−1
ij,k|k x̂ij,k|k =

(
PS1

i,k|k

)−1
x̂S1

i,k|k +
(

PS2
j,k|k

)−1
x̂S2

j,k|k −
(

Pc
k|k

)−1
x̂c

k|k

(C8)

and the scaling factor is:
cij,k|k = exp

(
ζS1

i,k|k + ζS2
j,k|k − ζc

k|k − ζij,k|k

)
(C9)

with:

ζS1
i,k|k = − 1

2

(
dlog2π − log

∣∣∣∣(PS1
i,k|k

)−1
∣∣∣∣+ (x̂S1

i,k|k

)T (
PS1

i,k|k

)−T
x̂S1

i,k|k

)
ζS2

j,k|k = − 1
2

(
dlog2π − log

∣∣∣∣(PS2
j,k|k

)−1
∣∣∣∣+ (x̂S2

j,k|k

)T (
PS2

j,k|k

)−T
x̂S2

j,k|k

)
ζc

k|k = − 1
2

(
dlog2π − log

∣∣∣∣(Pc
k|k

)−1
∣∣∣∣+ (x̂c

k|k

)T (
Pc

k|k

)−T
x̂c

k|k

)
ζij,k|k = − 1

2

(
dlog2π − log

∣∣∣P−1
ij,k|k

∣∣∣+ x̂T
ij,k|kP−T

ij,k|k x̂ij,k|k

)
(C10)
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