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Abstract

Several studies in the past have reported positive correlations between circulating Serum

amyloid A (SAA) levels and obesity. However, based on limited number of studies involving

appropriate mouse models, the role of SAA in the development of obesity and obesity-

related metabolic consequences has not been established. Accordingly, herein, we have

examined the role of SAA in the development of obesity and its associated metabolic com-

plications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1

and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high

sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet.

Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid

metabolism or adipose tissue inflammation. However, there was a modest effect on glucose

metabolism. The results of this study confirm previous findings that SAA levels are elevated

in adipose tissues as well as in the circulation in diet-induced obese mice. However, the

three acute phase SAAs do not play a causative role in the development of obesity or obe-

sity-associated adipose tissue inflammation and dyslipidemia.

Introduction

Obesity is associated with a wide variety of pathologies, collectively known as metabolic dis-

eases resulting in significant morbidity and mortality. Chronic and low-grade inflammation is

a hallmark of obesity and key factor for the development of obesity comorbidities [1]. Obesity-

driven adipose tissue inflammation has been extensively characterized and its role in the
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development of insulin resistance and impaired glucose metabolism leading to the develop-

ment of type 2 diabetes have been established [2, 3]. However, the obesity-induced factors

responsible for the inflammatory state in adipose tissue and the relationship of dysregulated

adipose tissue to systemic inflammation still remain unclear.

Serum amyloid A (SAA) is a family of acute phase proteins whose circulating levels rise (up

to 1,000-fold or more) in an acute phase response. There are three inducible SAA subtypes

that likely arose through gene duplication [4]. Humans express two acute-phase SAA proteins,

SAA1 and SAA2 which are 96% homologous over their entire length, and correspond to

mouse SAA1.1 and SAA2.1. In addition, mice encode a third conserved acute-phase SAA

gene, Saa3. Saa3 is considered to be a pseudogene in humans due to an early stop codon [5–7].

The liver is believed to be the predominant source of circulating SAA during an acute inflam-

matory state and in chronic inflammatory diseases such as rheumatoid arthritis and lupus,

although we [8] and others [9, 10] have shown that all three SAA isoforms are also significantly

induced in adipose tissue in endotoxemic mice. Yet another isoform of SAA, SAA4, is

expressed in humans and mice and is synthesized constitutively [11]. Unlike the three acute-

phase isoforms, SAA4 does not show massive induction during acute inflammation [7, 11].

Chronic and modest elevations in SAA concentrations have been demonstrated in obesity,

metabolic syndrome or diabetes [12–14], and circulating concentrations of SAA correlate with

body fat [15]. Weight loss tends to decrease these levels [15–18]. In a prospective population-

based study, a statistically significant association between systemic SAA levels and the develop-

ment of type 2 diabetes was observed in an elderly western European population that was inde-

pendent of various other established type 2 diabetes risk factors [19]. However, though SAA

levels are positively correlated with both obesity and diabetes, whether there is any physiologi-

cal relevance to this association is not clear. Several in vitro and selected in vivo studies demon-

strated SAA to invoke inflammatory properties and functions that would be expected to

promote the development of obesity, inflammation and insulin resistance. Studies with recom-

binant SAA have indicated that SAA acts as a chemoattractant for both monocytes and poly-

morphonuclear cells [20]. When not associated with high density lipoprotein (HDL), SAA is

known to increase the production of cytokines, reactive oxygen species and nitric oxide [21–

24]. The results from in vitro studies using recombinant SAA are questionable now as differ-

ences between recombinant SAA and endogenous SAA purified from acute-phase plasma

have been found [25]. Our studies using SAA purified from mouse plasma shows activation of

NLRP3 inflammasome activation in mouse macrophage cells [26]. A previous report indicated

that SAA induced hypoxia, a common event associated with fat expansion [27].

Earlier studies in mice indicated that deficiency of SAA3 blunts weight gain induced by

obesogenic diet, hyperlipidemia and adipose tissue specific inflammation and macrophage

accumulation are attenuated in female but not in male mice [28]. Ahlin et al. studied the role

of human SAA1 overexpression in adipose tissues of mice, and observed no significant impact

on diet-induced obesity, adipose tissue inflammation and insulin resistance [29]. A study by

de Oliveira et al. [30] showed that suppression of SAA in male Swiss Webster mice by SAA-1

and 2 -targeted antisense oligonucleotides caused a significant reduction in adipose tissue

expansion, expression of inflammatory markers, macrophage infiltration into the adipose tis-

sues and remarkable improvement in glucose and insulin tolerance in mice fed a high fat diet.

It is not yet clear whether the SAA isoforms compensate for the deficiency of each other and

whether deficiency of all SAA subtypes impacts obesity-associated inflammation and meta-

bolic dysfunction. Although it is now widely accepted that increased adiposity leads to elevated

SAA in adipose tissue and serum in both humans and mice, evidence that SAA plays a key role

in obesity-associated metabolic dysfunction is somewhat lacking. Whether SAA plays a func-

tional role in the development of obesity and/or obesity-induced adipose tissue inflammation,
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insulin resistance and other metabolic complications, or is merely a consequence of adipose

tissue inflammation and thus a marker of obesity remains an unresolved question. SAA is

involved in the development of several chronic inflammatory diseases, including atherosclero-

sis [31, 32] and angiotensin II-induced abdominal aortic aneurysm formation [33]. Here, we

investigated whether SAA plays a causal role in the development of diet-induced obesity and

associated metabolic changes in mice.

Materials and methods

Animals

C57BL/6 mice deficient in SAA1.1, SAA2.1 and SAA3 (TKO) mice were generously provided

by Drs. June-Yong Lee and Dan Littman, New York University. The TKO mice were generated

by inserting a premature stop codon into exon 2 of saa3 in the SAA1.1/2.1-deficient (SAAKO)

mouse [33, 34] using CRISPR-Cas9 technology as described previously [35, 36]. The details of

the genomic organization of the SAA1.1 and SAA2.1 genes and the construction of SAAKO

mice were described earlier [32]. Genotyping to identify SAA TKO mice is performed using a

multi-step approach. The first step confirmed targeting of the SAA1.1 and SAA2.1 loci utilizing

a 3-primer PCR reaction as described earlier [37]). The second step to validate SAA3 targeting

is performed by two sets of PCRs as described in S1A Fig. All mice were provided food and

water ad libitum. Animals were housed in micro-isolator cages and maintained on a 14-hr

light/10-hr dark cycle. All studies were performed in accordance with the Public Health Ser-

vice Policy on Humane Care and Use of Laboratory Animals with the approval of the Univer-

sity of Kentucky Institutional Animal Care and Use Committees.

Diet and study design

The study design is depicted in Fig 1. Briefly, 17-weeks old male and female C57BL/6 (WT)

and TKO mice were fed either normal chow (18% calories from fat, 58% from carbohydrate

and 24% from protein) or a high fat, high-sucrose diet with 0.15% added cholesterol (HFHSC,

F4997, Bioserv, Flemington, NJ) ad libitum for 16 weeks. The diet regimen was selected based

on previous studies, where it significantly induced SAA expression in adipose tissues and

plasma, and increased macrophage accumulation in adipose tissues [28, 38]. The HFHSC diet

Fig 1. Study design.

https://doi.org/10.1371/journal.pone.0266688.g001
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provides 20.5% of calories as protein, 36% as fat and 36% as carbohydrate. Body weight was

measured weekly and body composition was measured by NMR spectroscopy (Echo MRI).

Intraperitoneal glucose tolerance test (GTT)

Mice were fasted for 4 h and then given intraperitoneal (i.p.) injection of D-(+)-glucose

(Sigma-Aldrich, St. Louis, MO) at 1.5 g/kg body weight. Blood glucose was measured in tail

vein blood (Contour Blood glucose monitoring system) just prior to injection of glucose (time

0) and at 30, 60, 90, 120, 150 and 180 min after glucose administration.

Intraperitoneal insulin tolerance test (ITT)

Mice were fasted for 4 h, and then given human insulin (Novolin R) i.p. at 1.0 IU/kg body wt.

Blood glucose was measured at 0, 30, 60, 90, 120, and 150 min post injection from tail vein

prick. None of the mice developed hypoglycemic shock (glucose levels below 20 mg/dL) and

unresponsive to touch as a result of hypoglycemia.

Glucose-stimulated insulin secretion

Glucose-stimulated insulin secretion (GSIS) was performed as described earlier [39]. Briefly,

mice were fasted for 16 h, anesthetized, and then blood samples were collected from the retro-

orbital sinus before and 15 min after intraperitoneal glucose injection (3 g/kg). Insulin levels

in the plasma samples were determined.

Plasma SAA measurements

Plasma SAA concentrations were determined using a mouse SAA ELISA kit (Tridelta Devel-

opment Ltd, Maynooth, County Kildare, Ireland). Plasma SAA3 concentrations were deter-

mined using a mouse SAA3 ELISA kit (Millipore Sigma, Burlington, MA).

Plasma lipid analyses

Plasma total cholesterol, free fatty acid, triglyceride and HDL concentrations were measured

using enzymatic kits (Wako Chemicals, Richmond VA.).

Liver triglyceride and cholesterol quantitation

Triglycerides from liver samples were measured according to a previously published method

[40]. Briefly, ~50 mg of liver tissue was homogenized in 1 ml of chloroform-methanol (2:1 v/

v). The homogenate was then diluted 1:10 with chloroform-methanol (2:1 v/v) and 10 μl of the

diluted homogenate was evaporated. The evaporated sample was resuspended directly in

200 μl of Triglycerides Reagent (Pointe Scientific, Canton, MI) and the assay was performed

following the manufacture’s description. Cholesterol assay was performed following Folch

method [41] with modifications. Briefly, similar to triglyceride assay, ~50 mg of liver tissue

was homogenized in 1 ml of chloroform-methanol (2:1 v/v). The homogenate (50 μl) was

evaporated and resuspended in 1% Triton X-100 in water. Aliquots were assayed for choles-

terol content using a colorimetric kit (Wako Chemicals, Richmond VA).

RNA isolation and quantitative RT-PCR

Total RNA was isolated from mouse adipose tissues according to the manufacturer’s instruc-

tions (Qiagen, Valencia, CA). RNA samples were incubated with DNase I (Qiagen, Valencia,

CA) for 15 min at RT prior to reverse transcription. Adipose tissue RNA (0.25–0.5 μg) was
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reverse transcribed into cDNA using the Reverse Transcription System (Applied Biosystems,

Waltham, MA). After 4-fold dilution, 5 μl was used as a template for real-time RT-PCR.

Amplification was done for 40 cycles using Power SYBR Green PCR master Mix Kit (Applied

Biosystems, Waltham, MA). Quantification of mRNA was performed using the ΔΔCT method

and normalized to GAPDH. The primers used for the quantification of SAA mRNA were

designed to recognize all three inducible isoforms of mouse SAA, SAA1.1, SAA2.1 and SAA3

(Forward: GACATGTGGCGAGCCTAC and reverse: TTGGGGTCTTTGCCACT). In some studies,

SAA3 mRNA abundance was specifically quantified using primers specific for SAA3 mRNA

(Forward: TTTCTCTTCCTGTTGTTCCAGTC and reverse: TCCCAATGTGCTGAATAAATAC
TTGTGA). Other primer sequences will be provided on request.

Western blotting

Adipose tissues from the experimental mice were homogenized in RIPA buffer (Sigma-

Aldrich, St. Louis, MO) containing a protease inhibitor cocktail (Sigma-Aldrich, St. Louis,

MO). The homogenate (50 μg protein) was electrophoresed on a 4–50% polyacrylamide gradi-

ent gel (Bio-Rad, Hercules, CA) and immunoblotted with a mixture of two antibodies (rabbit

anti-mouse SAA1 + SAA2 antibody, 1: 1000 dilution, Cat number ab199030; abcam, Cam-

bridge, UK) and rabbit anti-mouse SAA3 (a gift from Dr. Phillip Scherer, University of Texas

Southwestern) to identify all three acute-phase SAA isoforms, SAA1.1, SAA2.1 and SAA3. The

specificity of each of these antibodies has been validated in a previous study [8].

Histology

Gonadal fat tissues were collected from the experimental mice and fixed in 10% formaldehyde,

paraffin embedded, cut into 5-μm sections, and stained with hematoxylin (Vector laboratories,

Burlingame, CA). Adipocyte area was quantified for 3 randomly selected sections from 3 mice

from each group of experimental mice using Nikon NIS-elements software.

Statistics

Data are expressed as mean ±SEM. Results were analyzed by Student’s t test or one-way analy-

sis of variance followed by Sidak’s multiple comparison test. Values of p<0.05 were considered

statistically significant.

Results

SAA expression is induced with HFHSC diet feeding

To investigate whether SAA plays a role in the development of diet-induced obesity and

insulin resistance, male and female wild type (WT) and SAA-deficient (TKO) mice were

fed either normal rodent diet or a high fat, high sucrose diet with added cholesterol

(HFHSC) ad libitum for 16 weeks (study design in Fig 1). At study termination, total SAA

mRNA abundance in gonadal adipose tissue was significantly increased in both male

(9-fold increase) and female (1.6-fold increase) WT mice fed HFHSC diet compared to

the chow fed mice of the same sex (Fig 2A). SAA protein was detected by immunoblotting

in adipose tissue of WT mice fed HFHSC, but not chow diet (Fig 2B). As expected, SAA

protein was not detected in the adipose tissues of SAA-TKO mice fed either chow or

HFHSC diets. There was a trend for increased SAA mRNA expression in the livers of WT

mice fed HFHSC diet compared to chow, however the difference was not significant in

either male or female mice (Fig 2C). As expected, SAA mRNA was undetectable in livers

of TKO mice (Fig 2C).
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SAA was detected by western blot in the plasmas of WT male mice fed either chow or

HFHSC diet, however in WT female mice, SAA was barely detectable only in the HFHSC

fed mice (Fig 2D). As expected, SAA was undetectable in both chow or HFHSC diet fed

male or female TKO mice (Fig 2D). Consistent with the western blot analysis, analysis of

plasma SAA (SAA1.1 and SAA2.1, the predominant forms of acute-phase SAA in circula-

tion, [8]) by elisa indicated significant increase after HFHSC diet feeding compared to chow

in both male (3.2-fold increase) and female (1.4-fold increase) WT mice (Fig 2E), consistent

with increased systemic SAA in response to obesogenic diet. It was of interest to assess the

specific induction of SAA3 after HFHSC feeding, since we [8] and others [42] previously

reported that SAA3 is a major SAA isoform expressed in mouse adipose tissue during

inflammation. Compared to plasma SAA1.1 and SAA2.1levels (Fig 2E; up to 200 μg/ml),

SAA3 levels in the plasma were modest (Fig 2F; ~0.2–4.0 μg/ml), consistent with our earlier

observation in mice injected with lipopolysaccharide [8]. There was no diet-induced

increase in SAA3 in both male and female WT mice, as expected, SAA3 was undetectable in

the plasma of all the TKO mice used in the experiment (Fig 2F). Consistently, SAA3 mRNA

Fig 2. SAA expression is significantly induced in the adipose tissues of obese mice. A) SAA mRNA abundance in gonadal adipose tissue from chow and HFHSC fed

WT male (left panel) and female (right panel) mice after 16 weeks of diet feeding (n = 5 mice/group) B) Adipose tissue lysates (50 μg protein/lane) obtained from WT and

TKO mice at the end of the study were immunoblotted for SAA (top panel) and β-actin as loading control (bottom panel). SAA proteins were undetectable in the adipose

tissues of chow fed WT mice and all TKO mice. C) SAA mRNA abundance in liver tissue from chow and HFHSC fed WT and TKO male (left panel) and female (right

panel) mice after 16 weeks of diet feeding (n = 4–5 mice/group). D) Plasma SAA in WT and TKO mice at the end of the study by western blot. 1 μl plasma was used/lane.

E) SAA levels by elisa in chow and HFHSC fed WT male and female mice after 16 weeks of diet feeding. F) plasma SAA3 levels by elisa in chow and HFHSC fed WT male

and female mice after 16 weeks of diet feeding. Data are mean ±SEM; � = P� 0.05, �� = P� 0.01 and ��� = P� 0.001.

https://doi.org/10.1371/journal.pone.0266688.g002
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abundance was significantly increased in the adipose tissues of male and female WT mice

fed HFHSC diet compared to the chow-fed mice of the same sex, whereas SAA3 mRNA was

at or below the level of detection in adipose tissues of all TKO mice (S1B Fig). The expres-

sion of the constitutively expressed SAA, SAA4 [43] was not significantly different in adi-

pose tissues among the different groups of experimental mice (S1C Fig). SAA3 mRNA

expression was also not significantly altered in the livers of WT mice after HFHSC diet feed-

ing compared to chow (S1D Fig).

Deficiency of SAA does not affect the development of diet-induced obesity

Compared with chow-fed mice, both male and female mice fed the HFHSC diet gained sig-

nificantly more weight over the course of the study (Fig 3A and 3B), predominantly due to

an increase in fat mass as measured by EchoMRI (Fig 3C). There was no significant differ-

ence in body weight or fat gain between the genotypes for either males or females after

HFHSC diet feeding, indicating that the loss of SAA did not impact the development of obe-

sity (Fig 3A–3C).

Deficiency of SAA in HFHSC-fed mice has modest effects on glucose

homeostasis

HFHSC diet caused a significant increase in fasting glucose levels in both WT and TKO male

mice compared to chow diet (Fig 4A). HFHSC diet-fed male TKO mice had significantly

increased fasting glucose levels than WT male mice fed the same diet (Fig 4A, left panel). In

female mice, HFHSC diet feeding significantly increased fasting glucose levels only in TKO

mice and not in WT mice compared to chow fed mice of the same genotype (Fig 4A, right

panel). To investigate whether SAA deficiency impacts diet-induced glucose intolerance in the

absence of alterations in adiposity, intraperitoneal glucose tolerance tests (GTT) were per-

formed in male and female WT and TKO mice 12 weeks after initiation of diet feeding. For

mice fed the normal rodent diet there was no impact of genotype on glucose excursions in

either male or female mice (Fig 4B and 4C). As expected, mice fed HFHSC diet showed signifi-

cantly impaired glucose tolerance compared to the corresponding chow fed mice, irrespective

of their strain or sex (Fig 4B and 4C). Compared to WT mice, there was a modest but signifi-

cantly increased impairment in glucose tolerance in both male (Fig 4B) and female (Fig 4C)

TKO mice after HFHSC diet feeding.

To assess insulin sensitivity, the ability of insulin to decrease blood glucose concentration

was determined by performing insulin tolerance tests (ITT) after 13 weeks of HFHSC feeding.

There was no significant difference in insulin sensitivity with HFHSC diet in both male and

female WT and TKO of the same sex (Fig 5A and 5B). There was also no difference in insulin

tolerance between WT and TKO male (S2 Fig left panel) or female (S2 Fig right panel) mice

fed chow diet (S2 Fig). Fasting insulin levels were significantly higher in HFHSC diet-fed WT

and TKO male mice than that of chow-fed mice of the same strain and gender (Fig 5C, left

panel). However, in female mice, HFHSC diet feeding for 14 weeks significantly increased fast-

ing insulin levels only in TKO and not in WT mice compared to the chow-fed mice of the

same strain (Fig 5C, right panel).

Glucose stimulated insulin secretion (GSIS) was assessed in WT and TKO mice fed HFHSC

diet for 14 weeks by determining blood insulin levels before and 15 minutes after glucose injec-

tion in mice fasted for 16 h. There was no significant GSIS in male WT and TKO mice fed the

HFHSC diet indicating diet-induced β-cell dysfunction (Fig 6, left panel). Both WT and TKO

female mice showed significant increase in insulin secretion in response to glucose stimulation

and there was no significant difference between the two strains (Fig 6, right panel).
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Fig 3. Deficiency of SAA does not affect the development of diet-induced obesity. A) body weight changes in male mice

during the course of diet feeding B) body weight changes in female mice during the course of diet feeding C) percentage body

fat gained in 15 weeks of chow and HFHSC diet feeding in male (left panel) and female mice (right panel). n = 5–15 mice/

group; Data are mean ±SEM; A and B: � and # = P� 0.05 between WT (C) and WT (HFHSC) and between TKO (C) and

TKO (HFHSC) respectively. In C, groups that are not significantly different (p� 0.05) are indicated with the same letter.

https://doi.org/10.1371/journal.pone.0266688.g003
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Fig 4. Loss of SAA has a significant but modest effect on diet-induced glucose tolerance. A) Basal glucose levels in male

and female WT and TKO mice after 12 weeks of chow and HFHSC diet feeding (n = 5–15). Data are mean ±SEM; � =

P� 0.05; �� = P� 0.01 and ��� = p� 0.001. B) intraperitoneal glucose tolerance test (IPGTT) was performed in male mice

after 12 weeks of chow and HFHSC diet feeding (n = 10/group). The area under the curve (AUC) is shown in the right panel.

Data are mean ±SEM; �� = P� 0.01 between WT HFHSC and TKO HFHSC group of mice. � = P� 0.05 and ��� = P� 0.001.

C) IPGTT was performed in female mice after 12 weeks of chow and HFHSC diet feeding (n = 5-15/group). The area under

the curve (AUC) is shown in the right panel. Data are mean ±SEM; ��� = P� 0.001 between WT HFHSC and TKO HFHSC

group of mice. � = P� 0.05 and �� = P� 0.01.

https://doi.org/10.1371/journal.pone.0266688.g004
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Fig 5. Loss of SAA does not affect insulin tolerance or plasma fasting insulin levels. A) insulin tolerance test (ITT) was

performed in male WT and TKO mice after 13 weeks HFHSC diet (n = 10/group). AUC shown in the right panel B) insulin

tolerance test (ITT) was performed in female WT and TKO mice after 13 weeks HFHSC diet (n = 10-15/group). AUC
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Deficiency of SAA does not impact diet-induced dyslipidemia or hepatic

lipogenic gene expression

Earlier studies by Ather and Poynter [44] demonstrated that lack of SAA3 in mice promoted

adult onset weight gain, hepatosteatosis and dyslipidemia in addition to significant weight

gain with high-fat diet compared to WT litter controls. However, den Hartigh et al. [28]

demonstrated that SAA3-deficient mice lost weight in response to an obesogenic diet and

female SAA3-deficient mice but not male mice developed improved lipoprotein profiles

and plasma lipid levels compared to WT litter controls. We investigated whether deficiency

of SAA impacts plasma or liver lipid levels or hepatic lipogenic gene expression with or

without HFHSC diet challenge. Fasting plasma triglyceride (TG) and plasma non-esterified

fatty acids (NEFA) levels were similar for all groups of mice (S3A and S3B Fig). Plasma total

cholesterol (TC) increased significantly with HFHSC diet in both WT and TKO mice, how-

ever there were no significant difference in TC between the two strains of mice (S3C Fig).

Plasma HDL levels increased significantly with HFHSC diet in WT and TKO female but not

male mice (S3D Fig). However, there were no significant differences in HDL between the

two strains of male or female mice with either HFHSC or chow diet (S3D Fig). Liver TG

increased significantly following HFHSC diet in both the strains of mice (S4A Fig), but

there were no significant strain-dependent differences in liver TG with either chow or

HFHSC diet (S4A Fig). Liver TC increased significantly with HFHSC diet only in male WT

mice (S4B Fig); there were no significant changes in liver TC between any other groups of

mice compared (S4B Fig). Hepatic lipogenic gene expression was analyzed in WT and TKO

mice fed either chow or HFHSC diet for 16 weeks. There were no significant strain-specific

shown in the right panel. C) basal plasma insulin levels in male (left panel) and female (right panel) mice fed either a chow

or HFHSC diet for 14 weeks. Data are mean ±SEM; � = P� 0.05 and �� = P� 0.01.

https://doi.org/10.1371/journal.pone.0266688.g005

Fig 6. Deficiency of SAA does not affect glucose stimulated insulin secretion. Plasma insulin levels in male (left

panel) and female (right panel) mice before and 15 minutes after intraperitoneal glucose injection, the mice were fed

HFHSC diet for 14 weeks and fasted for 16 h prior to the study. Data are mean ±SEM;. � and # = P� 0.05 between �

WT chow and HFHSC diet and # between TKO chow and HFHSC diet.

https://doi.org/10.1371/journal.pone.0266688.g006
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differences in SREBP-1c, SCD-1, HMGCoAR or FAS mRNA abundance in livers of mice

fed either chow or HFHSC diet (S5A–S5D Fig).

Deletion of SAA does not affect adipose tissue inflammation in mice fed

HFHSC diet

Adipose tissue inflammation and immune cell recruitment are hallmarks of obesity and play crit-

ical roles in the development of insulin resistance and glucose intolerance. Histological staining

of gonadal fat sections from chow and HFHSC diet-fed WT and TKO mice showed no apparent

differences in morphology between the two strains of mice. While there was a significant increase

in adipocyte size with HFHSC diet feeding in both male and female mice. No significant strain-

dependent differences were observed in female mice with either diet (Fig 7A and 7B).

Male and female mice displayed increased amounts of F4/80 mRNA in gonadal adipose tis-

sue in response to HFHSC diet feeding (Fig 8A), indicating increased macrophage content in

the obese mice. MCP-1, a chemokine implicated in the recruitment of inflammatory cells in

obesity [45], was also increased in adipose tissue of mice fed HFHSC diet (Fig 8B). Moreover,

F4/80 and MCP-1 mRNA abundance was similar in adipose tissue of WT and TKO mice fed

the obesogenic diet indicating a lack of effect of SAA on obesity-associated adipose tissue

inflammation (Fig 8A and 8B). Other indices of adipose tissue inflammation, including TNF-α
(Fig 8C), PAI-1 (Fig 8D) were not significantly altered by SAA deficiency in either male or

female mice after obesogenic diet. IL-6 or IL-1β mRNA levels did not change significantly irre-

spective of diet, gender or strain (S6A and S6B Fig). Plasma endotoxin levels were comparable

among the different groups of mice (S6C Fig).

Discussion

In this study, using male and female SAA-deficient mouse model (deficient in all three inducible

SAA isoforms), we investigated if SAA has any role in the development of diet-induced obesity,

adipose tissue inflammation, and impairment in glucose or lipid metabolism. The major finding

from the study is that while SAA levels in adipose tissue, liver and in circulation are markedly

increased with obesity, deficiency of SAA does not impact the development of obesity or obeso-

genic diet-induced adipose tissue inflammation. Contrary to the thought that SAA may promote

obesity related impairment in glucose homeostasis, the present study shows a modest worsening

of glucose tolerance in SAA-deficient mice (TKO) compared to the WT mice on HFHSC diet.

However, there was no significant effects on insulin tolerance or GSIS. SAA does not contribute

to diet-induced dyslipidemia or altered liver lipid homeostasis. Thus, taken together, our study

confirms that in mice, the expression of inducible SAA isoforms is significantly increased in liver

and adipose tissues after obesogenic diet feeding. However, this induction appears to be a conse-

quence, not a cause, of diet-induced obesity and adipose tissue inflammation.

A number of studies in the past have shown altered SAA levels in circulation and in adipose tis-

sues with changes in diet and body weight, raising the possibility that SAA plays a role in the

development of obesity and/or obesity-related complications [15–18]. Studies by Sjoholm and col-

leagues suggest a sexual dimorphic role of SAA in obesity and obesity-associated inflammation

[46]. In vivo studies have provided contradictory reports on the roles of SAA in obesity and associ-

ated metabolic complications. For example, some authors have reported that SAA3 suppresses

adult onset and diet-induced weight gain. However, contrary to this conclusion, other authors

have reported that SAA3 exacerbates weight gain induced by an obesogenic diet in a sexually

dimorphic manner [28]. Vercalsteren et al. reported that SAA3 gene silencing impaired adipogen-

esis by studies in vitro in murine preadipocyte cell lines (3T3-F442A), when SAA3-silenced prea-

dipocytes were implanted into BALB/c Nude mice, the mice developed smaller fat pads than their
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control counterparts [47]. Silencing SAA1.1 and SAA2.1 expression in Swiss Webster mice by

antisense oligonucleotides was reported to reduce adipose tissue expansion significantly in these

mice along with suppressed adipose tissue inflammation and improved glucose and insulin toler-

ance in mice fed high fat diet [30]. Differences in body weight or body fat gain between WT and

TKO mice fed either chow or HFHSC diet were not observed in the current study (Fig 3A–3C).

Phenotypic differences observed between this study and the earlier studies [28, 44, 47] could be

either due the differences in mouse strains used, mice with deficiency of all three SAA isoforms vs

Fig 7. Deficiency of SAA does not affect diet-induced changes in adipose tissue structure. A) Representative images of HE staining in gonadal white

adipose tissues in male and female WT and TKO mice fed either chow or HFHSC diet for 16 weeks. Scale bar 50 μm. B) adipocyte area was determined

for 3 randomly chosen sections for 3 mice/strain; male (left) and female (right) mice; data are mean ±SEM;. � and �� = P� 0.05 and� 0.01 respectively.

https://doi.org/10.1371/journal.pone.0266688.g007
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Fig 8. Deficiency of SAA does not affect diet-induced changes in adipose tissue inflammatory status. A-D)

Expression of F480, MCP-1, TNFα and PAI-1genes respectively in the gonadal adipose tissues of male and female WT

and TKO mice fed either chow or HFHSC diet for 16 weeks (n = 4-10/group). Data are mean ±SEM; data that are not

significantly different (P>0.05) are indicated with the same letter.

https://doi.org/10.1371/journal.pone.0266688.g008
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mice with SAA3 or SAA1.1/2.1 deficiency or the diet used. SAA3 is considered a pseudogene in

humans [7] hence the results from the studies on SAA3 have no relevance to humans. However,

the presence of SAA3 cannot be ignored in animal studies due its possible biological effects that

may or may not overlap with SAA1.1 and SAA2.1 [25]. To our knowledge this is the only study

where mice deficient in all the three inducible isoforms of SAA were used to investigate the role of

SAA in obesity and associated metabolic complications.

In vitro studies have also implicated SAA in obesity and obesity-associated metabolic pertur-

bations. Incubating 3T3-L1 preadipocytes with recombinant hSAA1 was shown to result in

enhanced proliferation, decreased differentiation and altered insulin sensitivity [48]. Results

from several in vitro studies could not be reproduced when tested in vivo. For example, a number

of in vitro studies show SAA to have pro-inflammatory properties (reviewed in [7, 49]), however,

such activities were not observed with manipulation of SAA expression in vivo [21, 50]. Several

in vitro studies have used commercially available recombinant SAA which has two amino acid

substitutions (at positions 61 and 71) compared to native and thus may show activities different

from either mouse or human SAA [51, 52]. Discrepancies in properties between recombinant

SAA and endogenous SAA purified from acute-phase plasma have been shown in vitro [25]. Pos-

sible lipopolysaccharide contamination of E. coli-derived recombinant SAA could contribute to

some of the proinflammatory activities exhibited by this protein [53]. Hence results from all

papers published using recombinant SAA for in vitro studies should be reinterpreted with cau-

tion. Furthermore, it is now recognized that activities observed for lipid-free SAA in vitro are lost

when SAA is lipid-associated, the form SAA is believed to exist in vivo [21, 26, 54].

The existence of multiple isoforms also poses a challenge to SAA studies. Potential func-

tional differences between the three murine acute phase SAA isoforms have not be compre-

hensively examined. Though mouse SAA1.1 and 2.1 share 91% protein sequence identity [25],

differences in properties of the two isoforms have been observed in its amyloidogenic potential

[55]. Mouse SAA3 shares ~67% sequence identity to mouse SAA1.1 and SAA2.1 [25], yet dif-

fers from the other two with regard to its expression profile and HDL association [8]. Further,

there exists a less studied minor acute-phase [56] or a constitutive [11, 57] isoform of SAA,

SAA4, which contributes to more than 90% of total circulating SAAs in the absence of inflam-

mation [58]. Mouse models deficient in all four isoforms of SAA including SAA4 have been

developed recently and studied in the context of retinol-binding and adaptive immunity [59–

61]. The contributions of SAA4 if any, to obesity and glucose homeostasis need to be investi-

gated in future. Our data indicate that deletion of all inducible SAA isoforms, including SAA3,

does not impact weight gain, adipose tissue inflammation, or major metabolic consequences

that occur in mice with obesogenic diet feeding. Whether deletion of individual isoforms of

SAA produce different effects cannot be ruled out at this time and is a limitation of our study.

Based on human population studies, elevated levels of circulating SAA have been recognized

as a risk factor for certain chronic inflammatory diseases for many decades, including athero-

sclerotic cardiovascular disease [49] and cancer [62]. The development of mice with targeted

deletion of the inducible SAAs allowed us to identify a causative role for SAA in both atheroscle-

rosis [32, 36] and metastatic pancreatic cancer. Here we report that the loss of all three inducible

SAAs has no effect on the development of diet-induced obesity or adipose tissue inflammation,

with a modest but significant protective effect on glucose intolerance. Thus, increased SAA in

the setting of obesity appears to be a consequence, not a cause, of adipose tissue inflammation.

Supporting information

S1 Fig. A) Genotyping to identify SAA TKO mice are done by a multi-step process. The first

step is genotyping for SAA1/2 KO utilizing a 3 primer PCR reaction as described earlier (de
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Beer et al., J Lipid Res. 2010. 51:3117–3125). The genotype to determine SAA 3 deficiency is per-

formed by two sets of PCRs, using forward primer for the PCRs designed to detect WT

sequence or SAA3 KO (CRISPR-Cas9) sequences respectively. The primers for the two PCRs

are shown on the right panel. The generation of TKO mice from SAA1.1/SAA2.1-deficient

mice is described earlier [35]. B) Expression of SAA3 mRNA in the adipose tissues of male (left

panel) and female (right panel) WT and TKO mice fed either chow or HFHSC diet for 16

weeks. C) SAA4 mRNA expression in the adipose tissues of male (left panel) and female (right

panel) WT and TKO mice fed either chow or HFHSC diet for 16 weeks. D) Expression of SAA3

mRNA in the livers of male (left panel) and female (right panel) WT and TKO mice fed either

chow or HFHSC diet for 16 weeks. Data are mean ±SEM; �� = P� 0.01 and ��� = P� 0.001.

(PPTX)

S2 Fig. Deficiency of SAA does not affect basal insulin tolerance in mice. Insulin tolerance

test (ITT) was performed in male (left panel) and female (right panel) WT and TKO mice on

chow diet (n = 4–5 mice/group).

(PPTX)

S3 Fig. Deficiency of SAA does not significantly impact diet-induced dyslipidemia. Plasma

triglycerides A), non-esterified fatty acids B) and total cholesterol C) levels in male (left panel)

and female (right panel) WT and TKO mice (n = 4–15) fed either chow or HFHSC diet for 16

weeks. D) Plasma HDL levels in male (left panel) and female (right panel) WT and TKO mice

(n = 4–15) fed either chow or HFHSC diet for 16 weeks. Data are mean ±SEM; data that are

not significantly different (P>0.05) are indicated with the same letter.

(PPTX)

S4 Fig. Deficiency of SAA does not significantly impact diet-induced changes in hepatic

triglycerides or cholesterol levels. Liver triglycerides A) and total cholesterol B) levels in male

(left panel) and female (right panel) WT and TKO mice (n = 5–15) fed either chow or HFHSC

diet for 16 weeks. Data are mean ±SEM; data that are not significantly different (P>0.05) are

indicated with the same letter.

(PPTX)

S5 Fig. Deficiency of SAA does not significantly impact diet-induced changes in hepatic

lipogenic gene expression. Expression of SREBP1-c, SCD-1, HMGCoAR and FAS genes

(A-D) respectively in the livers of male (left panel) and female (right panel) WT and TKO

mice fed either chow or HFHSC diet for 16 weeks (n = 4-10/group). Data are mean ±SEM;

data that are not significantly different (P>0.05) are indicated with the same letter.

(PPTX)

S6 Fig. Deficiency of SAA does not significantly impact diet-induced changes in adipose

tissue IL-6 and IL-1β gene expression levels. Expression of IL-6 A) and IL-1β B) mRNA in

the adipose tissues of male (left panel) and female (right panel) WT and TKO mice fed either

chow or HFHSC diet for 16 weeks (n = 4-10/group). C) Plasma endotoxin levels at the study

termination in male (left panel) and female (right panel) WT and TKO mice fed either chow

or HFHSC diet for 16 weeks (n = 4-10/group). Data are mean ±SEM.

(PPTX)
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