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Genetic defects in recombination activating genes (RAG) 1 and 2 cause a broad spectrum
of severe immune defects ranging from early severe and repeated infections to
inflammation and autoimmune manifestations. A correlation between in vitro
recombination activity and immune phenotype has been described. Hematopoietic cell
transplantation is the treatment of care; however, the availability of next generation
sequencing and whole genome sequencing has allowed the identification of novel
genetic RAG variants in immunodeficient patients at various ages, raising therapeutic
questions. This review addresses the recent advances of novel therapeutic approaches
for RAG deficiency. As conventional myeloablative conditioning regimens are associated
with acute toxicities and transplanted-related mortality, innovative minimal conditioning
regimens based on the use of monoclonal antibodies are now emerging and show
promising results. To overcome shortage of compatible donors, gene therapy has been
developed in various RAG preclinical models. Overall, the transplantation of autologous
gene corrected hematopoietic precursors and the use of non-genotoxic conditioning will
open a new era, offering a cure to an increasing number of RAG patients regardless of
donor availability and severity of clinical conditions.

Keywords: RAG genes, gene therapy, non-genotoxic conditioning, severe combined immunodeficiency,
hematopoietic stem cell transplantation, Omenn syndrome, leaky SCID
INTRODUCTION

Effective adaptive immunity relies on the ability of T and B lymphocytes to express the vast majority
of antigen receptors. During differentiation, T and B cells assemble T cell antigen receptor (TCR)
and B cell receptor (BCR) respectively, by a complex process named V(D)J recombination that
recognizes each segment of V, D and J flanked by recombination signal sequences (RSSs) (1). The
recombination activating genes (RAG) 1 and 2, the first players of this molecular process, form a
complex and introduce a DNA double strand break (DSB) in the RSSs giving rise to a diverse
repertoire of antigen specific receptors. Null mutations in RAG genes cause an arrest at DN3 and
pre-B1 stage of T and B cell development respectively (2). The T- B- natural killer (NK)+ severe
combined immunodeficiency (SCID) phenotype is characterized by repeated severe infections
caused by common viral pathogens and opportunistic pathogens that lead to death in the absence of
hematopoietic stem cell transplantation (HSCT), which represents the treatment of choice (3).

Missense mutations impairing RAG functions while permitting occasional recombination
activity lead to the generation and expansion of oligoclonal T cell population. Extensive
org November 2020 | Volume 11 | Article 6079261
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molecular studies have defined the biochemical effect of amino
acid changes on the recombination activity, providing evidence
that residual activity sustained at least by one allele can lead
to a peculiar immune phenotype named Omenn syndrome
(OS) (4, 5). These patients present severe erythroderma,
lymphadenopathy with hepatosplenomegaly, colitis, repeated
infections and inflammatory pneumonitis. Activated oligoclonal
and autoreactive T cells circulate in the peripheral blood and tend
to migrate to the gut and skin mainly contributing to tissue
damage that correlates with the severity of the disease (6, 7).
IgM, IgA and IgG are usually absent or barely detectable in the
serum but elevated IgE levels are found despite lack of circulating
B cells (8, 9). Recently, next generation sequence identified new
forms of RAG-SCID presenting with a milder phenotype than the
classical signs of Omenn syndrome (10, 11). The description of
these cases has further broadened the spectrum of clinical
manifestations caused by RAG mutations, posing diagnostic and
therapeutic questions (12, 13).

Leaky or atypical SCID (AS) patients harbor missense
mutations and in the majority of these patients the diagnosis is
delayed, with RAG mutations identified in childhood (median 5
years) or even in adolescent or adult individuals (10, 13, 14). Of
note, while autoimmune manifestations are rare in null SCID,
cytopenia and autoimmune hemolytic anemia have been
frequently reported in AS patients (15) and in some cases
vasculitis resulting in digital necrosis have been reported (16).
Other RAG-associated phenotypes include autoimmune
cytopenia and oligoclonal expansion of TCR expressing gd T
cells in disseminated CMV infection (17, 18) or specific antibody
and autoantibody production (19). Furthermore, Schuetz et al.
reported granuloma formation in internal organs, skin, and
mucous membranes in three unrelated females with severe
viral infections and B cells lymphoma (20). Presence of the
rubella virus vaccine strain has been demonstrated in the
granulomas of some of these patients (21). This condition
referred as “combined immunodeficiency with granuloma and/
or autoimmunity” (CID-G/AI) may associate with autoimmune
cytopenia and other autoimmune manifestations including
myopathy and nephrotic syndrome (15). Finally, biallelic RAG
mutations have been found in patients with idiopathic CD4 T
cell lymphopenia (22), IgA deficiency (23, 24), hyper IgM
syndrome (25) and impaired antibody production against
polysaccharide antigens (24).

Extensive studies in mouse models have contributed to
understand the in vivo effect of amino acid changes and the impact
of RAG defects on the immune dysregulation (5, 11). Based on the
evolutionary conservation of amino acid change identified in various
clinical conditions, several groups have reproduced hypomorphic
mutations in mouse models [reviewed in (11)]: the Rag2R229Q/R229Q

mouse that fully recapitulates the clinical manifestations of OS (26);
the spontaneous mouse mutant carrying a homozygous point
mutation (R972Q) in the Rag1 gene (27); the Rag1S723C/S723C

showing profound B cell lymphopenia in the presence of
significant serum levels of immunoglobulins and activated
oligoclonal T cells (28). Novel mutants carrying mutations at C-
terminal domain of RAG1 and reproducing amino acid changes
Frontiers in Immunology | www.frontiersin.org 2
found inpatientswithCID-G/AIhavebeengeneratedbygeneediting
(F971L,R972QandR972W) corresponding to the humanmutations
(F974L, R975Q and R975W) (29). These models, associated with
analysis of RAG patients, have allowed to dissect the defective
mechanisms of central and peripheral tolerance and the
contributive role of environment to the disease severity (7, 30).
Parallel studies have identified the broad Th1/Th2/Th17
inflammatory signature, highlighting the complex scenario and its
clinical implication (7). Therefore, these models have been exploited
to assess the efficacy and safety of novel therapeutic strategies. Recent
advances in conditioning regimens and availability of donor cells
sourcehavedramatically improved theoutcomeofHSCT that in case
of null RAG forms was significantly worse than other forms of
SCID (31).

In RAG SCID, engraftment of donor cells requires myeloablative
regimen, that eliminates arrested precursors fully occupying bone
marrow and thymic niches. However, chemotherapy may cause
severe organ damage, worsening the infections and limiting access
to transplant. Conventional gene addition or gene editing of
autologous stem cells represent promising technologies that might
overcome the limited number of available donors and offer a cure to
all patients. Conditioning regimens based onmonoclonal antibodies
(mAb) specifically targeting hematopoietic stem and progenitor cells
(HSPCs) are an attractive alternative to conventional myeloablation,
in order to obtain depletion while preserving hematopoietic tissue
homeostasis (32) (Figure 1). Overall, the development of these novel
therapies will pave the way toward a new scenario of treatment to all
RAG patients offering a cure regardless of the severity of the disease
and age of treatment.
CONVENTIONAL STEM CELL
TRANSPLANTATION

Hematopoietic stem cell transplantation is the only curative
treatment available for RAG deficiencies up to date (Table 1).
Similarly to other SCIDs, highest survival is observed in patients
transplanted before onset of infection and early in life (3.5
months of age or younger), regardless of donor or
conditioning (43, 44). In this scenario, newborn screening is
fundamental to expedite early treatment (45, 46).

A study conducted in three main centers reported an 88%
survival without recurrent infections in HLA-identical grafts
without conditioning (39). Remarkably, half of the patients still
required intravenous immunoglobulin (IVIG) and had incomplete
T cell reconstitution, indicating that pre-transplant conditioning is
necessary to eliminate immature progenitors. Conversely, patients
receiving T-cell-depleted HLA-haploidentical family donors after
myeloablative conditioning (busulfan combined with
cyclophosphamide/fludarabine), had significant lower survival
(63%) but showed higher T-cell reconstitution without the need
for IVIG. Chronic GvHD and autoimmunity remained the most
frequent late effects, observed in 24% of patients (39). The
retrospective study from the Primary Immune Deficiency
Treatment Consortium (PIDTC) confirmed poorer immune
November 2020 | Volume 11 | Article 607926

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Villa et al. New Therapies for RAG
reconstitution in absence of conditioning, with ~80% overall
survival (42).

Recently, a smaller cohort of 11RAGpatients receivingmatched
or haploidentical graft after pre-HSCT chemotherapy, showed
similar overall survival (64.4%). Consistently, conditioning was
associated with poorer overall survival and higher long-term side
effects but better immune reconstitution (40). This observation has
been reported in other SCIDs, as described in a large multicenter
study on 240 SCID patients (including 17 RAG patients) (44).

Overall, myeloablative treatment can cause severe complications
and mortality, while absence of pre-transplant conditioning may
lead to poor immune reconstitution, due to competition with
immature progenitors in bone marrow and thymic niches of
RAG patients.
APPROACHING NON-GENOTOXIC
CONDITIONING FOR RAG DEFICIENCIES

Although current conditioning regimens may cause acute and
chronic toxicities, lymphoid progenitors limit proper
engraftment of donor cells (11, 47–49), highlighting the urgent
need for safe transplant protocols (Table 1). Biologic approaches
based on mAbs specifically targeting HSPC while sparing non-
hematopoietic cells are emerging as attractive conditionings for
safely improving HSCT outcome. HSPC-depleting mAb as the
anti-CD117 ACK2 (c-kit antagonist) allowed increased
chimerism in Rag2-/-gc-/- mice, but not in immunocompetent
mice (50) and X-linked chronic granulomatous disease (X-CGD)
mice (51). Conversely, ACK2 synergistically acted with low-dose
Frontiers in Immunology | www.frontiersin.org 3
irradiation or CD47 blockade to allow higher engraftment in X-
CGD (51) or immunocompetent mice (52), respectively. These
data paved the way for the clinical trial using anti-CD117 antibody
currently ongoing to treat SCID patients (NCT02963064) (33),
which provides the proof of concept that a humanized mAb can
safely clear human hematopoietic stem cells (HSC) niches
facilitating donor cell engraftment in two T-B-NK+ SCID patients
(with Artemis mutations) (53).

In the same direction, CD45mAbs have been tested in a RAG1-
deficient patient with immune dysregulation showing promising
results (38). Alternative reduced intensity conditioning, including
mAb combined with or without chemotherapy, has been tested in
few RAG patients. The outcome of this treatment was variable, and
some patients developed post-transplant severe complications (34–
37, 54).

Antibody-Drug Conjugates (ADCs), extensively applied in
cancer therapy, have recently proposed as non-myeloablative
agents. CD117-ADC was exploited to deplete host HSPCs while
preserving host immunity in immunocompetent mice (55), in
MHC-mismatched allotransplantation (56) and in hemophilia A
gene therapy (GT) mice (57). Encouraging results in non-human
primates (58, 59) support ADC applicability in the clinical setting.
In parallel, anti-CD45 mAb coupled with Saporin (CD45-SAP), a
ribosome inactivating protein lacking the cell-entry domain and
toxic only upon receptor-mediated internalization, has been
exploited to efficiently deplete HSPCs enabling multilineage
engraftment with minimal organ toxicity in immunocompetent
mice (60). Due to CD45 expression pattern, CD45-SAP can be a
good candidate in CID-G/AI patients to target autoreactive T cells,
improving HSCT outcome and immune recovery. To this end, the
efficacy of this compound was tested in null and hypomorhic Rag1
FIGURE 1 | The figure shows principles of stem cell based gene therapy for recombination activating genes (RAG) disorders. The yellow stars indicate proposed
innovative steps for the treatment of RAG-severe combined immunodeficiency (SCID). A preparative regimen as Reduced Intensity Conditioning (RIC) or
myeloablative conditioning (MAC) is required to deplete endogenous hematopoietic precursors in RAG-deficient niches. Non-genotoxic compounds (anti-cKit mAb,
anti-CD45 SAP) recently tested in preclinical models of RAG1 deficiencies represent a step forward toward new and safer form of conditioning. Patients carrying null
RAG defect (SCID) or hypomorphic RAG defects (AS, OS, CID-G/AI) undergo conventional allogeneic hematopoietic stem cell transplantation (HSCT) (left green
panel). Alternatively, autologous gene therapy (GT, right orange panel) CD34+ cells, isolated from bone marrow or mobilized peripheral blood, cultured and
transduced in GMP conditions, are reinfused in the patient. New methods and reagents aimed at expanding HSPCs, enhancing transduction levels and regulating
gene expression are being developed to boost GT efficiency. Limits of allogeneic HSCT and autologous GT are indicated at the bottom of the figure.
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TABLE 1 | Main hematopoietic stem cell transplantation (HSCT) approaches and outcomes in recombination activating genes (RAG) patients.

IVIG T cell
reconstitution

Ref.

NA NA (33)

NA NA (34)

Yes in 40% Yes (34)

No Yes (35)

No Yes (35)

Yes Poor T cell
counts

(36)

UD
Yes Yes

after 2
transplant

(37)

No Yes (38)

56% off IVIG Yes in 50% (39)
Data refer to 145 Artemis

and RAG ptsNo Yes
Yes Yes
77% off IVIG Yes in

93%
Yes Yes in

75%

54% off IVIG Yes in 50% (40)
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models, achieving multilineage engraftment and robust immune
reconstitution while preserving thymic epithelial cell homeostasis.
A synergistic effect on myeloid chimerism and immune recovery
was achieved when CD45-SAP was combined with low-dose of
irradiation (61). However, mild transient hepatotoxicity secondary
to CD45-SAP (60, 61) or upon single saporin injection (62) or
radiolabeled anti-CD45 antibody (63–65) have been observed
posing clinical concerns.

Overall, while these preclinical models indicate ADCs as safer
conditional regimens than conventional chemotherapy, further
investigation is needed before moving to the clinical setting. In
particular, future studies assessing the dosage, safety, and efficacy
of other HSC-depleting ADCs, alone or in combination with
other mAb-based conditioning agents, are needed to bring ADC
conditioning in the clinical arena.
GENE THERAPY OF RAG DEFECTS

The clinical spectrum of autoimmunity and hyper inflammation
due to RAGmutations highlights the clinical need to offer a cure to
patients without suitable donors or in critical clinical conditions.

Various groups have developed novel strategies, based on the
hypothesis that gene corrected cells should acquire a selective
advantage and overcome lymphocyte differentiation block.
However, RAG tight regulation during cell cycle and expression
level may constrain the clinical feasibility of GT. Ectopic or
dysregulated RAG expression may lead to genotoxicity or
immune dysregulation (66, 67). In the past, stable immune
reconstitution in Rag1-/- mice was achieved using retroviral gene
transfer of human RAG1 cDNA, but high transgene copy number
was associatedwith a risk of lymphoproliferation (66).Basedon this
evidence, preclinical Rag1-/-models have been generated using self-
inactivating (SIN) lentiviral vectors (LVs) carrying the human
codon-optimized RAG1 cDNA (67–69) (Table 2). Different
promoters have been tested to drive RAG expression: the human
elongation factor1a (EFS)promoter, the enhancer–promoterof the
spleen-focus-forming virus (SFFV) and the ubiquitously acting
chromatin opening element from the human HNRPA2B1-CBX3
locus (A2UCOE) (67, 73). Increased number and improved
function of T cells were observed in the cohort of Rag1-/- mice
transplanted with Lineage negative (Lin-) cells transduced with
SFFV.coRAG1 and A2UCOE.coRAG1, with respect to
EFS.coRAG1. However, poor B cell reconstitution was achieved
with all promoters (68, 73). Despite reduced B cell number, GT
mice showed increasedproductionof IgM, IgGand IgA in the serum,
antigen-specific antibodyproductionuponchallenges andpolyclonal
Vb TCR repertoire. A parallel study using the same vectors reported
contrasting results, showing inflammation, tissue cellular infiltrate
and circulating anti-double strandDNA, resemblingOmenn clinical
features (67). Various factors may account for these discrepancies,
including suboptimal transgene expression, partial immune
reconstitution and immune dysregulation (73, 74). To improve LV
titer and transduction efficiency, the Staal group switched to theCCL
backbone, widely used in the clinics (69). They compared small and
large scale production of the four SIN LVs carrying the following
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promoters: the phosphoglycerate kinase 1 promoter (PGK), the
MND myeloproliferative sarcoma virus enhancer, the ubiquitous
chromatin opening element (UCOE), Cbx3.MND (a tandem
combination of UCOE and the MND promoter). The comparison
identified the MND promoter as the optimal vector, able to reach a
sufficient expression of the RAG1 transgene (with a vector copy
number ~1) in order to obtain stable immune reconstitution of GT
Rag1-/- treatedmice. Despite low B cell number, gene therapy treated
mice had normal Ig levels in the serum and showed a normalization
of T cell specific antigen response. While polyclonal Vb repertoire
was restored,Tcell counts inperipheral blood reached30%ofnormal
levels (69). Remarkably, in case of low RAG1 expression (mainly
driven by PGK andUCOEpromoters) 4 out of 9GTmice developed
skin erythroderma and wasting syndrome leading to death
resembling observation previously reported in literature, further
confirming the importance of achieving sufficient transgene
expression. However, as previously discussed, irradiation and the
expression of human RAG1 in mouse system may contribute to
suboptimal immune reconstitution.

Different LVs were also tested in CD34+ cells from RAG1
patients to test their ability to induce the differentiation of
functional B and T cells in vivo in NSG mice. In a first report,
Rag1 expression driven by EF1a allowed the differentiation of
functional B cells in a minority of transplanted mice, while no
information on T cells are reported (75). Recently, LV carrying
MND promoter was used to transduce CD34+ cells from a
Frontiers in Immunology | www.frontiersin.org 6
hypomorphic RAG1 patient with residual B cells and no T cells,
transplanted in a single NSG mouse. CD34+ GT cells could
differentiate in polyclonal B cells and T cells, despite the low
vector copy number, in line with the stronger MND promoter
activity (69).

GT studies in hypomorphic Rag1models will be instrumental
to understand the efficacy of GT in atypical SCID or OS, which
represent the majority of RAG patients. Finally, safety tests and
long-term follow up of GT treated animals are required to
further validate the use of RAG1 GT in the clinical setting.

With regard to RAG2, preliminary studies using a retroviral
vector carrying human RAG2 cDNA showed stable immune
reconstitution in the absence of detectable toxicity (70). Because
of the genotoxicity of retroviral vectors (76, 77), a SIN LV
carrying human codon optimized RAG2 cDNA driven by
UCOE promoter has been developed showing promising data
in the preclinical model of Rag2-/- mice in terms of immune
reconstitution. GT Rag2-/- mice presented polyclonal Vb TCR
repertoire, increase of naïve T cells and redistribution of T cell
subpopulation. Reduced B cell counts were accompanied by
normal levels of IgM, IgG subclasses and antigen-specific
antibodies production upon T-dependent and independent
antigens (71).

Based on these promising results, the UCOE-RAG2co LV has
been tested in the mouse model of OS, the Rag2R229Q/R229Q

mutant (26). While GT OS mice showed decreased absolute T
TABLE 2 | Gene therapy preclinical studies in Rag1 and Rag2 mouse models.

Mouse
Model

Vector
(transgene)

T-cell Counts/
Function

B-cell Counts/
Function

Adverse events Main conclusions Ref.

Rag1-/- MLV\-RV
(RAG1)

Restored
/Restored

Low
/Restored

Undifferentiated acute leukemic proliferation
(1/30 GT mice)

-Long-term correction
-Immune reconstitution only with
high VCN

(66)

Rag1-/- EFS/SFFV
/UCOE-SIN LV
(RAG1 +/-co)

Improved
/Restored

Low
/Restored

Death due to BM failure in some GT mice -Feasibility of SIN-LV-based
correction
-Critical importance of codon
optimization

(68)

Rag1-/- EF1a/SFFV/
PGK/UCOE/CP
-SIN LV
(coRAG1)

Very low
/Reduced

Very low
/Not fully restored

Autoimmunity (OS-like) -Partial reconstitution and severe
risk of adverse reactions with low
VCN

(67)

Rag1-/- Cbx3.MND/
MND/PGK/
UCOE-SIN LV
(coRAG1)

Improved in MND
group
/Restored in MND
group

Low
/Restored in MND
group

Skin rashes and deaths in low co.RAG1
expressing mice (4/9)

-Crucial role of the promoter
strength and co.RAG1 level for
disease rescue
-GMP-grade MND-LV for clinical
testing

(69)

Rag2-/- MLV-RV
(RAG2)

Improved
/Restored

Improved
/Restored

Absent -Long-term correction
-Strong selective advantage

(70)

Rag2-/- SF/UCOE
/gcPr/RAG2p
-SIN LV
(coRAG2)

Improved in SF,
UCOE groups
/Restored in UCOE
group

Improved in SF,
UCOE groups

Undue death in 5/56 SF-treated mice (3/5
with leukemia)

-Immune function rescue with the
UCOE.coRAG2 LV

(71)

Rag2
R229Q

UCOE (2.6/
2.2Kb)-SIN LV
(coRAG2)

Improved
/Restored

Improved
/Restored

Lymphoprolifera-
tive thymic mass
(1/35 GT mice)

-Improved immunodeficiency and
autoimmunity in GT OS mice
-In vivo variability correlated to
transduction levels

(72)
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BM, bone marrow; CP, cell type-restricted promoter; co, codon optimized; EFS or EF1a, elongation factor 1 a; gcPr, g chain promoter; GT, gene therapy; LV, lentiviral vector; MLV,
Moloney leukemia virus; MND, myeloproliferative sarcoma virus enhancer, negative control region deleted, dl587rev primer-binding site substituted; OS, Omenn Syndrome; PGK,
phosphoglycerate kinase 1 promoter; RAG2p, RAG2 promoter; RV, retroviral vector; SIN, self-inactivating; SFFV or SF, spleen-focus-forming-virus; UCOE, ubiquitously acting chromatin
opening element; VCN, vector copy number.
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and B absolute counts as compared to wild-type mice, significant
change in T cell distribution with a dramatic increase in naïve T
cells and reduction in effector/memory T cells was obtained (72).
Treated thymic displayed improvement in the structure with
appearance of medullary compartment containing mature TEC
expressing AIRE. Consistently, spectratyping indicated a
polyclonal T cell repertoire. Finally, gene corrected mice
responded properly to in vivo challenges. Remarkably, treated
OS animals did not show cellular infiltration in the skin and gut
indicating a resolution of Omenn clinical signs. Taken together,
these data indicate the feasibility of lentiviral GT for RAG2
deficiencies, even in the context of residual recombination
activity and in inflammatory conditions.
CONCLUSIONS AND FUTURE
DIRECTIONS

Autologous gene corrected stem cell transplant represents the
next therapeutic step to treat RAG patients without suitable
donors. Preclinical RAG models have provided instrumental
data unrevealing advantages and drawbacks of novel cell-based
therapies and non-genotoxic conditioning posing the basis for
the future development of clinical GT trials.

HSPC expansion protocols assuring maintenance of stemness
potential are currently being tested when limited donor cells are
available, especially in case of cord blood donors (78, 79). Notably,
these protocols canbe exploited to decrease the burdenofCD34+ cell
harvest in very young patients in gene therapy and editing settings
(80). Conventional GT approach has shown promising results in
murine models, highlighting at the same time the need for
physiological level of RAG expression while maintaining low vector
copy number. Preclinical GT studies are now in progress to
implement transgene expression. To this end, the recent
Frontiers in Immunology | www.frontiersin.org 7
description of the effect of immunomodulatory compounds is
particularly relevant, leading to increased transduction levels in
long-term HSC while preserving engraftment potential (81–83).
Cyclosporines A and H have been recently demonstrated improve
transductionwithout alteringHSCP subpopulation composition nor
the cell-cycle status (81, 82). Prostaglandin E2 (PGE2) allows
enhanced transduction efficiency in one hit protocol thus limiting
HSPC manipulation (83, 84). Consistently, PGE2 has been recently
applied in aGTphase I/II clinical trial to treatmucopolysaccharidosis
type I, Hurler Syndrome (85).

Although currently still challenging, genome editing at a
specific locus is now emerging as a new potential technique
that allows to insert the corrective sequence downstream its
endogenous promoter thus maintaining the physiological
expression of the gene of interest (86–89). The development of
engineered nucleases, including Zinc Finger Nucleases (ZFNs),
transcription activator like effector nucleases (TALEN) and
clustered regularly interspaced short palindromic repeats
(CRISPR-Cas9), associated with improvement in the efficiency
of homology directed repair in HSCs (90) will allow to obtain
rapid advances for the future transfer of this technique to the
clinical setting.
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