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Identification of four unconventional
kinetoplastid kinetochore proteins
KKT22–25 in Trypanosoma brucei
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BA, 0000-0001-6010-394X

The kinetochore is a multi-protein complex that drives chromosome segre-
gation in eukaryotes. It assembles onto centromere DNA and interacts with
spindle microtubules during mitosis and meiosis. Although most eukaryotes
have canonical kinetochore proteins, kinetochores of evolutionarily divergent
kinetoplastid species consist of at least 20 unconventional kinetochore proteins
(KKT1–20). In addition, 12 proteins (KKT-interacting proteins 1–12, KKIP1–12)
are known to localize at kinetochore regions during mitosis. It remains unclear
whether KKIP proteins interact with KKT proteins. Here, we report the identi-
fication of four additional kinetochore proteins, KKT22–25, in Trypanosoma
brucei. KKT22 and KKT23 constitutively localize at kinetochores, while
KKT24 and KKT25 localize from S phase to anaphase. KKT23 has a Gcn5-
related N-acetyltransferase domain, which is not found in any kinetochore
protein known todate.We also show that KKIP1 co-purifieswithKKTproteins,
but not with KKIP proteins. Finally, our affinity purification of KKIP2/3/4/6
identifies a number of proteins as their potential interaction partners, many
of which are implicated in RNA binding or processing. These findings further
support the idea that kinetoplastid kinetochores are unconventional.
1. Introduction
Kinetoplastids are a group of unicellular flagellated eukaryotes found in diverse
environmental conditions [1]. It has been proposed that kinetoplastids may
represent one of the earliest-branching eukaryotes based on a number of
unique molecular features [2]. Understanding their biology could therefore pro-
vide insights into the extent of conservation or divergence among eukaryotes
and lead to a deeper understanding of biological systems. Importantly, three
neglected tropical diseases are caused by parasitic kinetoplastids: African trypa-
nosomiasis, Chagas disease and leishmaniasis, caused by Trypanosoma brucei,
Trypanosoma cruzi and Leishmania spp., respectively [3]. Although recent advances
in public health and combination therapy have decreased the effect of these dis-
eases, new drugs and druggable pathways are still very much needed against
these diseases [4]. To this end, a more thorough understanding of the unique
underlying biological mechanisms of kinetoplastids is critical.

One such fundamental process is the transmission of genetic material from
mother to daughter cells, which is crucial for the survival of all organisms.
Chromosome segregation in eukaryotes is driven by the kinetochore, amacromol-
ecular protein complex that assembles onto centromeric DNA and captures
spindle microtubules during mitosis [5]. Its structural core is typically composed
of DNA-binding and microtubule-binding modules [6]. At least a fraction of core
kinetochore proteins are present in nearly all sequenced eukaryotes, implying that
most eukaryotes use a largely conserved mechanism of DNA and microtubule
binding [7–9]. However, none of canonical kinetochore proteins have been ident-
ified in the genome of kinetoplastids [10,11]. To identify their kinetochore
components, we previously carried out a YFP-tagging screen and identified a
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protein that forms kinetochore-like dots [12]. Affinity purifi-
cation of this protein identified co-purifying proteins whose
localizations were subsequently examined by microscopy.
This process was repeated until saturation, leading to the
identification of 20 proteins that localize at kinetochores in
T. brucei. Chromatin immunoprecipitation followed by deep
sequencing confirmed that they are indeed kinetochore
proteins, and we therefore named them KKT1–20 (kineto-
plastid kinetochore proteins). Although these proteins are
highly conserved among kinetoplastids, their apparent ortho-
logues are absent in other eukaryotes, suggesting that
kinetoplastids have an unconventional type of kinetochore
proteins [12,13].

Recently, KKT-interacting protein 1 (KKIP1) was identified
as a protein distantly related to Ndc80/Nuf2 microtubule-
binding proteins based on weak similarity in the coiled-coil
regions [14]. However, KKIP1 apparently lacks the calponin
homology (CH) domain, a critical feature of Ndc80/Nuf2
proteins. KKIP1 therefore does not appear to be a genuine
Ndc80/Nuf2 orthologue. Nonetheless, KKIP1 localizes at
kinetochores and its depletion causes severe chromosome
segregation defects [14]. Immunoprecipitation of KKIP1 from
chemically cross-linked cells led to the identification of six
additional proteins (KKIP2–7) that localize to kinetochore
regions during mitosis [14]. Very recently, immunopreci-
pitation of KKIP2–7 from non-cross-linked cells identified a
nine-subunit protein complex called the KOK (kinetoplastid
outer kinetochore) complex that consists of KKIP2, 3, 4, 6, 8,
9, 10, 11 and 12 [15]. KKT proteins were not detected in the
immunoprecipitates of KKIP2–12 or KKIP1 without chemical
cross-linking [15]. It therefore remains unclear whether
KKIP1–12 interact with KKT proteins in native conditions.

Ahallmarkofkinetochores inmost eukaryotes is thepresence
of specialized nucleosomes containing the centromere-specific
histone H3 variant CENP-A, which epigenetically specifies the
position of kinetochore assembly, forms the primary anchorage
point to DNA and recruits other kinetochore proteins [16]. How-
ever, CENP-A is absent in kinetoplastids. It therefore remains
unknown how their kinetochores assemble specifically at centro-
meres. Trypanosoma brucei has 11 large chromosomes that have
regional centromeres of 20–120 kb in size, as well as approxi-
mately 100 small chromosomes that lack centromeres [17–19].
Although kinetochore assembly sites on large chromosomes
are apparently determined in a sequence-independent manner,
the underlying mechanism remains a mystery.

To understand how unconventional kinetoplastid kineto-
chores perform conserved functions such as kinetochore
specification, it is critical to have a complete constituent list.
In this study, we report the identification of four additional
kinetochore proteins in T. brucei.
2. Results
2.1. Identification of KKT22 and KKT23 in

Trypanosoma brucei
Our previous immunoprecipitation of KKT3 that was
N-terminally tagged with YFP (YFP-KKT3) did not result in
co-purification of other kinetochore proteins [12]. To verify this
result, we made a strain that had a C-terminally YFP-tagged
KKT3 (KKT3-YFP) as the sole copy of KKT3 and performed its
immunoprecipitation using the same protocol. We detected a
numberofkinetochoreproteinsbymass spectrometry (figure 1a;
electronic supplementary material, table S1), suggesting that
YFP-KKT3 was not fully functional. In addition to known kine-
tochore proteins, there were two uncharacterized proteins (ORF
Tb927.9.6420 and Tb927.10.6600) that co-purified with KKT3-
YFP in an apparently specific manner (figure 1a). We tagged
these proteins with an N-terminal YFP at the endogenous
locus and found that they localized at kinetochores throughout
the cell cycle (figure 1b,c). Immunoprecipitationof these proteins
showed that they specifically co-purified with other KKT
proteins (figure 1d,e). We therefore named them KKT22 and
KKT23. These proteinswere not detected in the immunoprecipi-
tates of anyother kinetochore protein [12], so it is likely that these
proteins are closely associated with KKT3.

Homology search of KKT22 identified apparent ortholo-
gues in several kinetoplastids (table 1), but not in Bodo saltans
(a free-living kinetoplastid) or other eukaryotes. A profile–
profile comparison using HHpred [20] did not reveal any
obvious domain, except for a possible zinc hook motif of
Rad50 (electronic supplementary material, figure S1). KKT23
has a Gcn5-related N-acetyltransferase (GNAT) domain
[21–23], which is not found in any known kinetochore protein
in other eukaryotes. In humans, TIP60 and KAT7/HBO1/
MYST2 acetyltransferases (both aremembers of theMYST sub-
family) are known to regulate kinetochore functions but are not
part of core kinetochores [24,25]. We found that KKT23 co-
purified with many KKT proteins (figure 1e), implying that it
is a core kinetochore protein in T. brucei. Interestingly,
our sequence analysis failed to identify an obvious ortholo-
gous relationship with known GNAT subfamily members,
suggesting that KKT23 forms a distinct subfamily. Our finding
that an apparent orthologue of KKT23 is found even in diver-
gent kinetoplastids (B. saltans and Perkinsela; table 1; electronic
supplementary material, figure S2) raises a possibility that it
plays a fundamental role at the kinetoplastid kinetochore,
which warrants further investigation.

2.2. Identification of KKT24
In our purification of YFP-KKT22, there was another kineto-
chore protein candidate (ORF Tb927.10.4200; figure 1d ). We
found that this protein, in fact, localized at kinetochores
from S phase to anaphase (figure 2a) and its immunoprecipi-
tation confirmed specific co-purification with other
kinetochore proteins (figure 2b). We therefore named it
KKT24. Interestingly, KKT24 and KKIP1 share several simi-
larities. Both proteins are predicted to consist mostly of
coiled coils (electronic supplementary material, figure S3) [14],
and their N-termini are located at the outer region of kineto-
chores, as judged by the formation of pairs of dots in
metaphase (figure 2a) [15,26]. However, our immunoprecipita-
tion data do not support a possibility that KKT24 and KKIP1
form a stable complex (figure 2b and see below). We also note
that obvious orthologues for KKT24 and KKIP1 are not found
in free-living B. saltans, an organism that has essentially all of
KKT1–20 proteins (table 1) [12,13].

2.3. Identification of KKT25
Our purification of KKT24 led to the identification of another
kinetochore protein candidate (ORF Tb927.8.2830) (figure 2b),
which indeed localized at kinetochores from S phase to ana-
phase (figure 3a). We confirmed that this protein co-purified
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Figure 1. Identification of KKT22 and KKT23. (a) KKT3-YFP co-purifies with a number of KKT proteins, including two kinetochore protein candidates, KKT22 and
KKT23. See electronic supplementary material, table S1 for all proteins identified by mass spectrometry. Cell line, BAP1123. (b) YFP-KKT22 and (c) YFP-KKT23 localize
at kinetochores throughout the cell cycle. K and N represent the kinetoplast (mitochondrial DNA) and nucleus, respectively. These organelles have distinct replication
and segregation timings and serve as good cell-cycle markers. K* is an elongated kinetoplast and indicates that the nucleus is in S phase. Fluorescent protein signals
were directly detected by microscopy. Similar results were obtained with KKT22-YFP and KKT23-YFP (data not shown). Bars, 5 µm. BAP1454 and BAP1593.
(d ) KKT22 co-purifies with KKT proteins and another kinetochore protein candidate, KKT24. BAP1490. (e) KKT23 co-purifies with KKT proteins. BAP1549.
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with various kinetochore proteins (figure 3b) and therefore
named it KKT25. Like KKT22 and KKT24, it is conserved in
many kinetoplastids, but not in B. saltans or other eukaryotes
(table 1; electronic supplementary material, figure S4).
We failed to identify any obvious domain or predicted
coiled coils in KKT25.
2.4. KKIP1 co-purifies with KKT proteins, not with KKIP
proteins

A previous study by D’Archivio & Wickstead [14] identified a
putative kinetochore protein KKIP1 that localized to kineto-
chores. Its immunoprecipitation from chemically cross-linked
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trypanosome cells led to co-purification of many nuclear pro-
teins including KKT proteins and KKIP2–7 [14]. However,
KKT proteins were not detected in the KKIP1 immunoprecipi-
tate without cross-linking [15], so the relationship between
KKIP1 andKKTproteins remained unclear.While re-searching
our previous mass spectrometry data [12] against a newer
version of the T. brucei proteome database, we found that
KKIP1 was actually present in the immunoprecipitate of
KKT2 (figure 4a). We had therefore named it KKT21 but
switched to use the name KKIP1 following the publication of
the D’Archivio & Wickstead paper. Immunoprecipitation of
KKIP1 using our protocol revealed co-purification with a
number of KKT proteins (figure 4b), showing that KKIP1 is
a genuine kinetochore protein. It is important to mention that
we did not detect KKIP2–7 in our KKIP1 immunoprecipitation
sample. This raises a possibility that previous identification of
KKIP2–7 in the immunoprecipitate of KKIP1 from cross-linked
cells was due to the artificial chemical cross-linking, which is
consistent with the identification of many nuclear proteins in
the same sample [14].
2.5. KOK subunits co-purify with a number of proteins
with RNA-related functions

Immunoprecipitation of KKIP2–7 from non-cross-linked cells
identified a complex called the KOK complex that consists of
nine KKIP proteins (KKIP2, 3, 4, 6, 8, 9, 10, 11 and 12) and loca-
lizes at the outer region of kinetochores during mitosis [15].
It has been proposed that KKIP1 provides a linkage between
inner kinetochores and the KOK complex, despite the fact that
KKIP1 was not detected in the immunoprecipitates of any
KOK components [15]. To reveal the relationship between the
KOK complex and KKT proteins, we performed immuno-
precipitation of KKIP2–7 using our purification protocol.
Immunoprecipitation of KKIP7 did not reveal any specific inter-
acting proteins (electronic supplementary material, table S1),
while that of KKIP5 was unsuccessful despite multiple
attempts (electronic supplementary material, table S1;
additional data not shown). By contrast, immunoprecipitation
of KKIP2, KKIP3, KKIP4 and KKIP6 revealed a number of
co-purifying proteins, including the KOK components
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Figure 4. KKIP1 co-purifies with KKT proteins, not with KKIP proteins. (a) Re-analysis of our previous mass spectrometry data [12] identifies KKIP1 in the KKT2
immunoprecipitate. (b) YFP-KKIP1 co-purifies with a number of KKT proteins but with none of other KKIP proteins. Cell line, BAP710.
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(figure 5a–d). Besides Tb927.3.3740 and Tb927.2.3160/Gar1,
which were detected in the previous report [15], 10 additional
proteins were identified as apparent interactors of KKIP2/3/
4/6, many of which have putative domains implicated in
RNA binding, transcription or splicing (figure 5e). Interestingly,
our HHpred analysis also revealed a similarity to a CTD kinase
subunit inKKIP6 aswell as a putative RNA recognitionmotif in
KKIP4, KKIP9 and KKIP10 (figure 5e). The functional signifi-
cance of these factors for kinetochore functions, if any, remains
to be determined. Although we did not detect significant
amounts of KOK components in our immunoprecipitates of
KKT proteins or KKIP1, several kinetochore proteins were
detected in the immunoprecipitates of KOK components,
especially KKIP3 (figure 5b). Because KKIP1 did not co-purify
with anyKOKcomponents using the samepurificationprotocol
(figure 4b), kinetochore localization of theKOK complexmay be
mediated by KKIP3, rather than KKIP1.
3. Discussion
In this study, we identified four additional kinetochore com-
ponents in T. brucei (KKT22–25). We also confirmed that
KKIP1 is a genuine kinetochore protein. It is possible that
KKIP5 is also a kinetochore protein based on its presence in
the immunoprecipitates of KKT24 and KKT25 (figures 2b and
3b) as well as observed chromosome segregation defects upon
depletion ofKKIP5 [27].Ouroriginal definition of genuine kine-
tochore proteins in T. brucei was that any such protein should
co-purify ‘only’ with other kinetochore proteins (except for
KKT4 and KKT20 that also co-purify with APC/C subunits)
[12,13]. According to this definition, components of the KOK
complex are not genuine kinetochore proteins because they
co-purify with a number of factors that are implicated in RNA
binding or processing. However, it has been clearly shown
that KOK components localize at outer kinetochore regions at
least during metaphase [14,15]. More importantly, our immu-
noprecipitation of KKIP3 revealed co-purification with several
KKT proteins, suggesting that the KOK complex indeed loca-
lizes at kinetochores. Defects in chromosome segregation have
not been reported after knockdown of KOK components or its
interaction partners [15]. We speculate that the KOK complex
might be involved in the segregation of small chromosomes,
rather than large chromosomes, in T. brucei.

The identification of a kinetochore protein that has a
GNAT domain reinforces the idea that kinetoplastid kineto-
chores are unconventional. It will be important to test
whether the GNAT domain of KKT23 is important for kineto-
chore functions. Acetylation of unknown substrates (possibly
histones or kinetochore proteins) at centromeres might mark
the position of kinetochore assembly sites in kinetoplastids
that lack CENP-A. It is noteworthy that the genome-wide
tagging project in T. brucei has come to an end, and did not
identify any additional kinetochore components [28,29]. It is
possible that we now have a complete list of kinetochore com-
ponents, which include KKT1–20, KKIP1 and KKT22–25
(figure 6). Characterization of their functions and structures
is not only important for our better understanding of eukary-
otic chromosome segregation machinery but also for the
development of new drugs against kinetoplastid diseases.
4. Material and methods
4.1. Cells
All cell lines, plasmids and primers/synthetic DNAused in this
study are listed in electronic supplementary material, tables S2,
S3 and S4, respectively. All cell lines used in this study were
derived from T. brucei SmOxP927 procyclic form cells (TREU
927/4 expressing T7 RNA polymerase and the tetracycline
repressor to allow inducible expression) [32]. Cells were
grown at 28°C in SDM-79 medium supplemented with 10%
(v/v) heat-inactivated fetal calf serum [33]. The cell line carrying
KKT3-YFP as the sole copy of KKT3 was made by deleting one
allele of KKT3 by a fusion PCR method [34] using a neomycin
gene cassette from pBA183, followed by tagging of the
remaining allele with a C-terminal YFP using a PCR-based
method with a blasticidin selection marker [35]. N-terminally
YFP-tagged KKT22 was made by a PCR-based method using
pPOTv7 (eYFP, blasticidin) [35]. Endogenous YFP tagging for
KKT23–25 and KKIP1–7 was performed using the pEnT5-Y
vector [36] with PCR products or synthesized DNA fragments
using XbaI/BamHI sites. Endogenous tdTomato tagging of
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KKT2was performed using pBA164 that has a blasticidin selec-
tion marker [13] or pBA809 that has a neomycin marker.
pBA809 was made by subcloning of the KKT2 targeting
fragment from pBA67 [12] into pEnT6-tdTomato [36] using
XbaI/BamHI sites. All constructs were sequence verified. Plas-
mids linearized by NotI were transfected to trypanosomes by



KKT2KKT4/20

G1 S G2 metaphase anaphase

KKT1, KKT6, KKT7

KKT14/15

KKT8 complex

KKT16 complex

KKT3, KKT22, KKT23

KKT5KKIP1

KKT10, KKT19

KKT24, KKT25

Figure 6. Localization patterns of kinetoplastid kinetochore proteins. Note that direct protein–protein interactions have not been established for many kinetochore
proteins, except for the KKT7–KKT10 interaction (indicated by two-headed arrow) and the KKT8 complex that consists of KKT8, KKT9, KKT11 and KKT12 [30]. The
putative KKT16 complex consists of KKT16, KKT17 and KKT18 [12]. S-phase-specific kinetochore protein KKT13 is not shown. Modified from [12,31] under the Creative
Commons Attribution License.
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electroporation into an endogenous locus. Transfected cells
were selected by the addition of 25 µg ml−1 hygromycin
(pEnT5-Y derivatives), 10 µg ml−1 blasticidin (pBA164 or
pPOTv7-based PCR products) or 30 µg ml−1 G418 (pBA809 or
pBA183-based PCR products).

4.2. Fluorescence microscopy
Cells were fixed with 4% paraformaldehyde for 5 min and
images were captured at room temperature on a DeltaVision
fluorescence microscope (Applied Precision) installed with
softWoRx v.5.5 housed in the Micron Oxford essentially as
described [13] using 100× objective lenses (1.42 NA). Images
were processed in ImageJ [37]. We confirmed that there was
no notable bleed-through signal from different channels in
our experiments. Typically, 12 optical slices spaced 0.25 µm
apart were collected, and single plane images are shown.
Figures were made using Inkscape (The Inkscape Team) and
converted to the EPS format.

4.3. Immunoprecipitation and mass spectrometry
Immunoprecipitation was performed as previously described
using mouse monoclonal anti-GFP antibodies (Roche,
11814460001) that had been pre-conjugated with Protein Gmag-
netic beads (Thermo Fisher Scientific, 10004D) with dimethyl
pimelimidate (Sigma, D8388) [12]. Mass spectrometry was also
performed essentially as previously describedusing aQExactive
(Thermo Scientific) at the Advanced Proteomics Facility, Univer-
sity of Oxford [12]. Peptides were identified by Mascot (Matrix
Science) using acustomT. bruceiproteomedatabase that contains
predicted proteins in TriTrypDB (v.4) [38] supplemented with
predicted small proteins [39,40]. Proteins identified with at
least two peptides were considered as significant and shown in
electronic supplementary material, table S1.
4.4. Bioinformatics
Search for homologous proteins were done using BLAST in
TriTrypDB [38,41], Jackhmmer on the UniProtKB proteome
database using a default setting (HmmerWeb v.2.39 [42]) or
hmmsearch on select proteomes using manually prepared
hmm profiles (HMMER v.3.0 [43]). A protein with the best
score in a given species was considered as a putative ortholo-
gue if a reciprocal search using BLAST or Jackhmmer
identified the starting query protein as the best hit in the orig-
inal species. HHpred was carried out using pfamA_v32.0 and
PDB_mmCIF70 databases [20]. The multiple sequence align-
ment was performed with MAFFT (L-INS-i method, v.7) [44]
and visualized with the Clustalx colouring scheme in Jalview
(v.2.10) [45]. Coiled coils were predicted using COILS [46].
Accession numbers for protein sequences were retrieved
from TriTrypDB [11,38,47–51] or UniProt [52].
Data accessibility. All data are available upon request.
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