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Genotype–phenotype maps link genetic changes to their fitness effect and
are thus an essential component of evolutionary models. The map between
RNA sequences and their secondary structures is a key example and
has applications in functional RNA evolution. For this map, the structural
effect of substitutions is well understood, but models usually assume a con-
stant sequence length and do not consider insertions or deletions. Here,
we expand the sequence–structure map to include single nucleotide inser-
tions and deletions by using the RNAshapes concept. To quantify the
structural effect of insertions and deletions, we generalize existing defi-
nitions for robustness and non-neutral mutation probabilities. We find
striking similarities between substitutions, deletions and insertions: robust-
ness to substitutions is correlated with robustness to insertions and, for
most structures, to deletions. In addition, frequent structural changes after
substitutions also tend to be common for insertions and deletions. This is
consistent with the connection between energetically suboptimal folds and
possible structural transitions. The similarities observed hold both for
genotypic and phenotypic robustness and mutation probabilities, i.e. for
individual sequences and for averages over sequences with the same
structure. Our results could have implications for the rate of neutral and
non-neutral evolution.
1. Introduction
The genotype–phenotype relationship is a ‘cornerstone’ [1] of molecular evolution
because it captures the structural and functional consequences ofmutations. These
mutations can include substitutions as well as insertions and deletions and are the
source of variation. Therefore, genotype–phenotype maps are needed in models
for the emergence of new structures and functions [2,3] aswell as inmodels of neu-
tral evolution, when the sequence accumulates mutations without any structural
and functional changes [4,5]. Sequence–structure maps are a specific case within
the more general framework of genotype–phenotype maps: here sequences are
treated as genotypes and structures as phenotypes.

In practice, a sequence–structure map is interesting if the molecular structure
is functionally important and its large-scale analysis is feasible if a fast compu-
tational prediction method exists. The secondary structure of RNA sequences
fulfils these two criteria [6] and has therefore become one of the best-studied
sequence–structure maps (recent examples are [7–12]). The secondary structure
is the pattern of base pairs between nucleotides, usually not including pseudo-
knots. This base pairing pattern can be described on different levels of detail
[13–15]. In sequence–structure map research, the ViennaRNA package [16] is
most commonly used [7,17,18]. This program returns structures at the most
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Figure 1. Schematic of robustness and mutation probabilities. Genotypic quantities (left): for a given sequence g (central circle) folding into shape p, this figure
shows the entire mutational neighbourhood, i.e. the outcomes of all possible substitutions (arrows). The genotype robustness is 3/8 since three out of eight
substitution are neutral (i.e. also fold into p). For non-neutral mutations, the genotype mutation probabilities efðgÞ

q are calculated from the number of times
each non-neutral shape q is found in the mutational neighbourhood. q can be any structure except the unfolded state. If a shape t does not exist in the mutational

neighbourhood, efðgÞ
t ¼ 0. Throughout the text, we use a tilde (∼) for these genotypic quantities. Phenotypic quantities (right): phenotype robustness and

mutation probabilities are calculated by taking the average of the corresponding genotypic quantities over all sequences in the neutral set of a given shape.
These definitions follow [3,6,18], but with a different notation.
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detailed level, where the predicted structure has a resolution of
individual base pairs and is based on a minimum-free-energy
(mfe) criterion.

Most studies of the RNA sequence–structure map have
focused on sets of sequences of fixed length [7,15,17,18]. For
these, results exist on both the global statistics of sequences
and structures [17,19,20] and the structural effects of mutations
on a local level [6,18,21], i.e. the mutational neighbourhood
(illustrated in figure 1). On a global level, it was found that
there is usually a number of sequences folding into the same
structure [17,19] and these sets are referred to as neutral sets
[22]. On the local level, previous research has focused on
single-nucleotide substitutions [6,7,18,21]. Their structural
effect can either be neutral if there is no structural change or
non-neutral otherwise. Neutral mutations are quantified by
robustness: genotype robustness, er ðgÞ, measures what fraction
of substitutions are neutral for a given sequence g [6]
(figure 1). Non-neutral mutations are summarized by geno-
type mutation probabilities, here referred to as efðgÞ

q , which
describe how frequently an alternative structure q appears
after substitutions on sequence g, as illustrated in figure 1
(defined as fðlocalÞ

qg [18]). In addition to these sequence-specific
definitions, which we denote by a tilde (∼) in this paper, the
quantities are often averaged over all sequences in a neutral
set, i.e. over sequences with the same structure. These struc-
ture-specific quantities are referred to as phenotype robustness
[6], ρp, and phenotypemutation probability ϕqp [3,18] (both defined
in figure 1). These phenotypic quantities describe the mean
effect of mutations for a population going through a period
of neutral evolution [3].

With these concepts, the properties of mutational neigh-
bourhoods have been quantified in detail [6,18]: for example,
Greenbury et al. [18] found that similar sequences are more
likely to have the same structure than random sequences,
described how this decreases the structural diversity in
mutational neighbourhoods and coined the term genetic
correlations. A deeper understanding of mutational neighbour-
hoods has been derived from thermodynamic considerations.
For non-neutral mutations, Ancel & Fontana [23] found that
it is common for structures that emerge after a non-neutral
mutation to have existed as an energetically suboptimal
structure with high Boltzmann frequency before the mutation.
They therefore conclude that the Boltzmann ensemble is
linked to the effect of substitutions and called this principle
plastogenetic congruence [23].

Thus substitutions have been well studied, but so far inser-
tions or deletions (indels) are missing from this picture even
though they occur frequently in biological databases [24].
Indels are important because neither neutral nor non-neutral
evolution takes place at fixed sequence length: different protein
folds or functional RNAs can have different sequence lengths.
Thus, the non-neutral evolution of new structuresmust include
sequence length variation. Furthermore sequence families, for
example in Pfam [25] and Rfam [26], often contain insertions,
deletions and sequence length changes and so sequence
length changes occur in structurally nearly-neutral evolution
as well. For proteins, short indels have been analysed in
some detail due to their frequent occurrence [27,28], even
though the effect can be more complex in proteins due to
potential reading frame shifts [28]. Among reading-frame-
preserving indels, neutral mutations are preferentially found
in specific structural contexts [27–29]. Together with additional
information about the proteins, this can be used to predict if a
short indel is likely to be neutral [28,30]. For RNA, the few
studies that have included indels either measure robustness
only for specific example structures [31], focus on insertion–
deletion pairs which do not change the sequence length [32],
or do not quantify the sequence–structure map properties,
but instead model specific evolutionary processes [33]. The
reason for this gap is a fundamental restriction in the
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Figure 2. Schematic of the shapes sequence–structure map: for the example input sequence CCGCAGUCACACCAGCG, the shapes framework [38] represents
the Boltzmann distribution of different folding possibilities in terms of coarse-grained shapes instead of full secondary structures, as illustrated in the central box.
Each shape represents one or more full secondary structures. Our sequence–structure map is defined from this framework as follows: we start with a sequence as an
input. Then we calculate the Boltzmann ensemble of shapes as described in §2.5 and illustrated in the central box. Finally, a single shape, the shape with the
highest Boltzmann frequency, is chosen as the output structure in the sequence–structure map. In this example, this is the stem-loop shape ‘[]’ with a Boltzmann
frequency of 71% (the shape notation uses square brackets, as described in [38]). Shapes other than the most frequent shape in the Boltzmann ensemble are only
considered in our analysis of plastogenetic congruence. Throughout the paper, we will refer to the abstract, coarse-grained structures defined by RNAshapes as
shapes or structures, and the detailed structures from minimum-free-energy (mfe) predictions as full secondary structures. Structures are drawn with forna
[39], the shape illustrations are inspired by Meyers et al. [40] and all structures with Boltzmann frequencies greater than 1% are included in the schematic.
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commonly used mfe structure representation: if structures are
defined on a single-base-pair resolution, then structures of
different lengths cannot be treated in a single framework.

To address this issue and to include indels in the estab-
lished framework, we use the RNAshapes concept [34,35],
which captures RNA secondary structure in a more abstract
and coarse-grained way than the commonly used detailed
full secondary structure descriptions. In addition, the concept
has further advantages: Dingle and co-workers [36] argue
that minor structural differences should not be included in
the model and are thus the first to use RNAshapes in a
sequence–structure map context. An additional advantage of
the coarse-grained structures, or shapes, is that they better cap-
ture the Boltzmann ensemble of suboptimal structures [35]:
secondary structures are reported in less detail when the Boltz-
mann states are abstract shapes rather than full secondary
structures, and so individual Boltzmann frequencies are
higher [37] (schematic in figure 2). This is important because
in a full secondary structure description, the Boltzmann fre-
quency of even the most frequent structure is often low [41].
In our analysis, we will refer to the abstract, coarse-grained
structures defined by RNAshapes as shapes or structures,
and the detailed structures from minimum-free-energy (mfe)
predictions as full secondary structures.

In this paper, we use the shapes framework to analyse
mutational neighbourhoods in which sequence lengths
change by single-nucleotide insertions and deletions. This
means we will study three mutational neighbourhoods per
sequence, one by insertion, one by deletion and one by substi-
tution and thus compare the structural effect of three types
of mutations. For this comparison, we extend the existing
definitions for genotype and phenotype robustness, and geno-
type and phenotype mutation probability to insertions and
deletions. The first part of the paper focuses on neutral
mutations: we start with the sequence-dependence of genotype
robustness within neutral sets. Next, we focus on differences in
phenotype robustness between neutral sets. In the second part
of the paper, we consider non-neutral mutations: we analyse
the sequence-dependence of genotype mutation probabilities
within neutral sets. Then, we compare phenotype mutation
probabilities for different target shapes.
2. Methods
2.1. Definition of mutational neighbourhoods
Genotype robustness and genotype mutation probabilities
for substitutions are based on the definition of a mutational
neighbourhood [6,18] (as illustrated in figure 1). Therefore,
these quantities can be extended to insertions and deletions if
we define the mutational neighbourhood by insertion and
deletion for a given sequence.

For substitutions, the mutational neighbourhood is defined
as follows: it contains all sequences which can be generated
from the start sequence by applying any single-nucleotide substi-
tution [21]. Because each substitution leads to a distinct new
sequence, each sequence in the mutational neighbourhood by sub-
stitution is unique. For deletions and insertions on the other hand,
there are cases where two distinct insertions/deletions effect the
same sequence change: for example, for sequence UAAC, deletions
at positions 2 or 3 would both result in the sequence UAC. In our
study, these two deletions will be considered separate mutational
neighbours since they were generated by distinct deletions. Thus
UAC would exist twice in the mutational neighbourhood. This
definition emulates a uniform insertion or deletion probability.

Since the purpose of this paper is to compare the effect of
substitutions, insertions and deletions, we will treat each of
these types of mutational neighbourhoods individually and
thus compute robustness and mutation probabilities for substi-
tutions, insertions and deletions separately. Substitutions will
be considered the baseline for all comparisons since they are
already well understood.

2.2. Robustness/mutation probability definitions
Once the mutational neighbourhood for each sequence is
defined, genotype robustness and mutation probabilities for a
specific sequence can be computed as illustrated in figure 1.
Phenotype robustness and mutation probabilities follow from
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these genotypic quantities once we define a neutral set: here, we
only study mutations applied to sequences of fixed sequence
length L = 30. Therefore, our neutral sets are sets of L = 30
sequences which share the same structure p, i.e. the established
definition of neutral sets [1]. Once the neutral set is defined,
we can compute phenotype robustness and mutation probabil-
ities as averages over the neutral set (as shown in figure 1). For
computational reasons, we approximate the averages over all
sequences in the neutral set by averages over 500 sequences in
the given neutral set, as detailed in §2.6. The sample size is
discussed in the electronic supplementary material.

2.3. Parameters
The shape abstraction level [35] was chosen based on thermodyn-
amic considerations: since single base pairs at the end of stacks
only contribute a single stacking term, a desirable property of
the shape abstraction would be that breaking base pairs at the
end of long stacks is considered a minor change and not a
change of coarse-grained structure. This requirement is not satis-
fied by level-1 abstractions, as defined in [38], because for
example breaking the outermost base pair in (((…))) would lead
to a change of coarse-grained structure. Therefore, we use level
2. In the level-2 shape abstraction, all paired and unpaired seg-
ments of the structure are recorded except the unpaired
segments in multiloops, exterior loops and hairpin loops [38].

We start with sequences of a single fixed sequence length in
this analysis and observe the effect of single-nucleotide substi-
tutions, deletions and insertions. This length was set to L = 30
nucleotides to strike a balance between structural complexity
and computational feasibility, similar to [6].

2.4. Sequence–structure map definition
A sequence–structure map translates each sequence to a single
structure. The shape framework also takes a sequence as an
input, but as an output it returns a list of shapes and their Boltz-
mann frequencies [35]. Therefore, we need to define how these
computed Boltzmann ensembles are used for the sequence–
structure map. Here we choose the shape with the highest
Boltzmann frequency. This definition mirrors the more com-
monly used [3,4,6–8,15,18–21,42–44] mfe sequence–structure
map: the mfe structure is always the most frequent structure in
the Boltzmann ensemble when the Boltzmann distribution is
expressed in terms of full secondary structures instead of shapes.

One additional constraint was used to ensure that the highest
shape frequency is not a close tie between two shapes: sequences
for which the Boltzmann frequency of the most frequent shape is
not more than 1.1 × the Boltzmann frequency of the second-most-
frequent shape are treated as non-folding. In addition, all
sequences for which the most frequent shape is the unfolded
structure with no base pairs are treated as non-folding.

2.5. Shapes computation
Instead of using the existing RNAshapes [35] program, we use
ViennaRNA [16,45–47] and compute shape probabilities by
adding up Boltzmann probabilities for the suboptimal structures
within a free energy range of Gmfe≤G <Gmfe + 15kBT, where Gmfe

is the free energy of the mfe structure. Thus, full secondary struc-
tures are included in the calculation if they have a Boltzmann
frequency of more than ≈3 × 10−7 times the Boltzmann frequency
of the mfe structure: exp (− (Gmfe + 15kBT )/kBT )≈ 3 × 10−7 × exp
(− (Gmfe)/kBT ). The high free energy range of 15kBT was
chosen for accuracy, but the exact value is arbitrary. Our calcu-
lation uses the same principles as figure 2, but includes full
secondary structures up to much lower frequencies.

Calculating shape frequencies in ViennaRNA is not as accu-
rate as the existing RNAshapes [35] program, but it is faster for
sequences of length L = 30 and the differences in computed
shape probabilities are small (data in electronic supplementary
material).

Defaults were used for all parameters with one exception:
lonely base pairs were not permitted, following the convention
in the RNAshapes framework [35].

2.6. Sequence sample
For a full systematic analysis, the two genotypic quantities—geno-
type robustness and genotype mutation probabilities—could be
computed for every possible sequence g. However, there are
430≈ 1018 sequences of length L = 30 and so this would be infeas-
ible. Variations in genotypic quantities will be partly due to
specific sequence-dependent effects and partly due tomore general
shape-dependent ones. We will focus on the first aspect and study
variations within neutral sets, i.e. for a single shape at a time, by
computing each genotypic quantity for 500 sequences per neutral
set and then making comparisons within each neutral set.

The phenotypic quantities are defined as average values over
neutral sets. However, individual neutral sets can contain large
numbers of sequences and therefore an exact calculation of the
average value is infeasible. Thus, we estimate the phenotypic
quantities based on the same fixed sample of 500 sequences per
neutral set (the effect of the sample size and sampling method
are discussed in the electronic supplementary material).

For these calculations, we need a list of shapes and a
sequence sample of 500 sequences for the neutral set of each
shape. These data were generated using the following methods:

1. Listing neutral sets: we listed all full secondary structures for
sequence length L = 30 and computed their shapes. This gives
a full list of possible shapes.

2. Initial sequences for each shape: to generate 10 start
sequences per shape for the site-scanning method [49], we
used ViennaRNA’s inverse folding on randomly selected
full secondary structures belonging to the specified shape.
This is repeated up to 5000 times until a valid start sequence
is found. Only shapes for which ten start sequences are
identified using this method are included in the further
analysis.

3. Full sequence sample for each shape: starting from each
initial sequence, a larger sequence sample of size 50 was
found using the site-scanning method [49] for a walk length
of 50 × L. The site-scanning method uses a specific random
walk to generate a diverse sequence sample [49]. We made
two modifications compared to the original method: first,
we used shapes instead of mfe structures. Second, in order
to sample from neutral sets and not only from connected neu-
tral components, we included base pair swaps in addition to
substitutions: if a site was paired with another site in the
lowest-energy full secondary structure per shape, base pair
swaps were used instead of simple substitutions. Base pair
swaps will remove one key reason for the fragmentation of
neutral sets [8].

With these methods, we obtain a sample of 227 shapes and 500
sequences from the neutral set of each of these shapes. In the
electronic supplementary material, we perform several tests to
check if these 500 sequences per neutral set are in some way a
biased sample from the neutral set and do not find any problems.
In addition, we analyse if the sample size influences the results
(also in the electronic supplementary material). All results in
this paper are based on this sequence sample, except our pheno-
type frequency estimates.

Phenotype frequencies are estimated following [19]: a random
sample of 107 sequences was generated and their shapes com-
puted. The shape frequencies in this sample were used as
estimates for their phenotype frequency, i.e. the fraction of
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sequences folding into the given shape, as defined in [18]. If fewer
than 10 instances of the shape are found, the phenotype frequency
cannot be estimated reliably and so no estimatewas computed. All
shapes in the random sequence sample are among the 227 shapes
included in this analysis. This confirms that no shape with high
phenotype frequency is missed in the construction of our sample.
3. Results
3.1. Genotype robustness
The genotype robustness of a sequence is the fraction of
mutations which do not lead to a structural change [6].
Differences in robustness will be partly due to specific
sequence-dependent effects and partly due to more general
shape-dependent ones. We will focus on the first aspect
and study genotype robustness within neutral sets, i.e. for a
single shape at a time. In figure 3a, the genotype robustness
to insertions and deletions is plotted against the genotype
robustness to substitutions for the 500 sequences we collected
from the neutral set of shape ‘[[[_[]]_]_]’. The three types of
robustness are correlated.

The analysis was repeated for all neutral sets and the
results are summarized as Pearson correlation coefficients
in figure 3b (full data for further shapes are shown in the elec-
tronic supplementary material). These values confirm that
the robustness to different mutations is correlated to some
extent for most neutral sets. The correlation is higher for sub-
stitutions/insertions than for substitutions/deletions. One
reason could be the fixed size of mutational neighbourhoods
and the resulting discreteness of genotype robustness: there
are only L deletions for each sequence, compared to 3 × L sub-
stitutions and 4 × (L + 1) insertions. This number is the
denominator of the genotype robustness value and therefore
robustness to deletions is measured on the most coarse-
grained scale. In addition, for 48 neutral sets the robustness
to deletions does not vary at all and is zero for all sequences
in our sample. It is clear that no correlation can be computed
in these neutral sets and these values are not included in the
plot. Nevertheless, we can conclude that sequences that are
robust to one type of mutation also tend to be robust to
other types of mutations.
3.2. Phenotype robustness
Having analysed sequence-specific robustness variations for a
fixed shape in the last section, we will now analyse shape-
dependent robustness differences, i.e. differences in phenotype
robustness. The data in figure 4a show that shapes with high
phenotype robustness to substitutions also tend to have high
phenotype robustness to insertions and deletions. Thus, neu-
tral sets that are more robust to one type of mutation also
tend to be more robust to another type of mutation.

Since phenotype robustness is measured as a fraction
between zero and one for all types of mutations, we can com-
pare the absolute robustness values for insertions and
deletions. We hypothesize that the differences between these
values could be linked to shape frequency changes: in principle,
the fraction of sequences that fold into a given shape, the pheno-
type frequency as defined in [18], depends on the sequence
length. It is possible that these changes in phenotypic frequency
with sequence length are reflected in the difference between the
robustness values to insertions and deletions. To test this, we
computed a ‘shape robustness ratio’ for robustness to insertions
compared to deletions. Figure 4b shows that this robustness
ratio is correlated with the relative change in phenotype fre-
quency from L + 1 to L− 1. Thus, comparing the absolute
values of the phenotype robustness for insertions to that for del-
etions can indicate howa shape’s phenotype frequency changes
with sequence length. Similar comparisons for substitutions
versus deletions and insertions give similar results (data in elec-
tronic supplementary material).

3.3. Genotype non-neutral mutation probabilities
Non-neutral mutations, i.e. mutations causing a structural
change, are quantified by the genotype mutation probability

[18], efðgÞ
q . efðgÞ

q quantifies the frequency of each non-neutral

shape q in the mutational neighbourhood of a specific sequence

g [18] (illustrated in figure 1). efðgÞ
q is therefore not a single value,

but one value per structure q for each sequence g. Thus, a simple

correlation analysis is not possible for efðgÞ
q variations. Instead,

we adapt a method from Greenbury et al. [18]: they computed

a similarity between efðgÞ
q and efðhÞ

q for fixed sequences g and h,
taking into account all structures q, and compared this to a
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baseline model, the effects of different types of mutations are correlated, which we will summarize as generalized genetic correlations. (b) Similarly for efðgÞ

q
(substitutions) and efðgÞ

q (deletions). Sequences from all neutral sets are used in the histograms, but only sequences with at least three non-neutral mutations
in each of the mutational neighbourhoods by substitution, insertion and deletion were included.
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baseline similarity [18]. Here, we choose the Pearson correlation
coefficient to quantify similarities because it is not affected by
normalization factors.

efðgÞ
q has so far been used only for substitutions. Here we

include substitutions, insertions and deletions, i.e. three muta-
tional neighbourhoods for each sequence. The approach
described above allows us to compare the sequence-depen-
dence of efðgÞ

q for different types of mutations. Specifically, we
investigate whether the substitution neighbourhood of
sequence A is more similar to the deletion neighbourhood of
the same sequence than it is to the deletion neighbourhood
of another sequence in the same neutral set. This analysis is
performed for each sequence g in our sample and the data indi-
cate that such similarities exist (figure 5a,b): mutational
neighbourhoods by substitutions, insertions and deletions are
more similar than expected from a baseline model that only
accounts for average statistics of non-neutral variation. To
ensure that results do not depend on using the Pearson corre-
lation to quantify similarity, the analysis was repeated with
alternative metrics with the same conclusions (data in elec-
tronic supplementary material). The observed similarities
mean that a shape that is frequent in the substitution neigh-
bourhood of a particular sequence is also likely to be
frequent in the deletion and insertion neighbourhoods of the
same sequence. This result extends the existing definition of
genetic correlations [18], and we will therefore refer to this
similarity as generalized genetic correlations.

Since the data in figure 5 summarized the data for
sequences from all shapes, the next step is to ask if general-
ized genetic correlations exist if we separate these data by
shape. For all shapes except one, we found that the corre-
lation in the sequence-specific comparison was higher than
in the baseline model for more than half the sequences in
the sample (data in electronic supplementary material), indi-
cating that generalized genetic correlations exist. The single
exception is the stem-loop shape []. An explanation for this
exception could be that highly robust sequences, like those
in the neutral set of [], have a high number of neutral
mutations and thus efðgÞ

q statistics are based on a small
number of non-neutral mutations and have a higher variabil-
ity. Alternatively, it is possible that the low number of stacks
in shape [] is a structural reason for this exception.
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To sum up, we found that shapes q that are frequent in the
efðgÞ
q by substitution also tend to be frequent in the same

sequence’s efðgÞ
q by deletion and insertion. Our baseline model

shows that these similarities cannot simply be accounted for
by arguing that certain shapes are frequent in all non-neutral
variation from a specific neutral set. Therefore, we conclude
that there are generalized genetic correlations.

3.4. Plastogenetic congruence for insertions and
deletions

To understand our observations from a thermodynamic
perspective, we build on Ancel and Fontana’s work on
plastogenetic congruence [23]. They analysed non-neutral
mutations in the special case of substitutions and found a
similarity between the Boltzmann ensemble of a sequence
and the frequent shapes obtained by mutations [23]. To
understand non-neutral variation in our more general analy-
sis, we test if the concept of plastogenetic congruence also
applies to insertions and deletions. In our notation, plastoge-
netic congruence is the similarity between Boltzmann
frequencies pðgÞq and efðgÞ

q for a specific sequence g. Therefore,
plastogenetic congruence can be measured with the same
approach as generalized genetic correlations in the previous
section. The data in figure 6a–d show that the Boltzmann
ensemble of a sequence is more similar to its mutational
neighbourhood than in the baseline model for all three
types of mutations. Again, the analysis was performed on a
per-shape basis (data in electronic supplementary material)
and plastogenetic congruence was found for all shapes
except one. Therefore, we conclude that the principle of plas-
togenetic congruence holds for deletions and insertions as
well as for substitutions for most shapes.

With this, we can build a consistent picture of mutual cor-
relations between the Boltzmann ensemble and structural
changes after mutations: the Boltzmann ensemble is a
sequence-intrinsic property that does not depend on the
type of mutation. This Boltzmann ensemble is linked to fre-
quencies in all mutational neighbourhoods. In addition,
there are correlations between these different mutational
neighbourhoods, i.e. generalized genetic correlations.
3.5. Phenotype non-neutral mutation probabilities
In this final part, we will focus on non-neutral mutations
averaged over neutral sets. These are quantified by the phe-
notype mutation probability ϕqp [3], as defined in figure 1:
ϕqp is obtained by averaging the genotype mutation prob-
ability efðgÞ

q over all sequences g in the neutral set of shape p
[18]. ϕqp is therefore a neutral-set average, just like phenotype
robustness. Unlike phenotype robustness, however, ϕqp is
not a single value: even for a fixed neutral set p there is one
value per structure q to quantify the transition probability
from p to q [3].

Here, we calculate this mutation probability for deletions
and insertions aswell as for substitutions: thesewill be referred
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to as ϕqp,D, ϕqp,I and ϕqp,S. Figure 7a shows these mutation prob-
abilities for all target shapes from a fixed initial neutral set of
shape p = [[[_[]]_]_]. These values differ by several orders of
magnitude and seem to be correlated linearly on the logarith-
mic scale. The analysis was repeated for the remaining
neutral sets and the correlation coefficients are summarized
in figure 7b. These correlation coefficients indicate that the cor-
relations between ϕqp for the different types of mutations exist
regardless of the chosen initial neutral set p.

Again the observed similarities can be placed in a larger
context if we extend the arguments from the previous
section: if plastogenetic congruence holds, shapes that tend
to have high Boltzmann frequencies for sequences in the
chosen neutral set are likely to have highest ϕqp. Whether
this neutral-set-wide plastogenetic congruence holds was
tested by comparing neutral-set-averages of Boltzmann fre-
quencies against the corresponding phenotypic mutation
probabilities in figure 7c. We find that these two quantities
are correlated for the example neutral set of shape
p = [[[_[]]_]_]. Again, the analysis was repeated for all remain-
ing neutral sets (figure 7d ) and correlation coefficients were
found to be high.
4. Discussion
4.1. Implications for evolutionary processes
First, wewill discuss possible implications of the observed cor-
relations for evolutionary processes. Existing research covers
similar questions for substitutions, so we hypothesize how
this would generalize. For substitutions, the genotype robust-
ness of two mutational neighbours is often similar [7]. Such
correlations can lead to differences in the rate of molecular
evolution [44,50] and result in increasing robustness over the
course of evolutionary processes [44]. We conjecture that the
similarities in genotypic robustness for substitutions, inser-
tions and deletions would enhance this overdispersion and
increasing robustness. For non-neutral evolution, on the
other hand, we would expect our generalized genetic corre-
lations to amplify the effects of standard genetic correlations,
which limit the diversity of accessible structural variation [18].

4.2. Implications for neutral set sizes
It has been shown for constant-length maps that inferences
about neutral set topologies and neutral set sizes can be
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made from local mutational neighbourhoods [49,51]. In
describing mutational neighbourhoods, we already touched
on a similar link between phenotype robustness values and
changes in phenotypic frequencies with sequence length.
Future work could investigate neutral set sizes and how
these change with sequence length in detail.

4.3. Establishing a more general sequence–structure
map

More broadly, this analysis establishes a computationally
feasible and biologically meaningful sequence–structure
map that integrates multiple sequence lengths. Just like the
RNA sequence–structure map became a model system, for
which quantities like genotype and phenotype robustness
and evolvability were established [6] before they were
applied to a wider class of genotype–phenotype maps
[52–54], this varying-length map could become a model
system for establishing definitions that can be applied more
broadly to varying-length genotype–phenotype maps.

In particular, one topic for further research is how neutral
set sizes should be measured when the sequence length
can vary. Neutral set size, or equivalently phenotype fre-
quency, has been shown to be important for evolutionary
outcomes in the constant-length case [3,55]. However, once
the sequence length can change, the normalization factor,
i.e. the number of all sequences of a given length, is
sequence-length-dependent and therefore phenotype fre-
quency and neutral set size are no longer interchangeable.
Tian & Best [56] suggested neutral set size and phenotype fre-
quency play two different roles, that of designability and that
of discoverability. This hypothesis could be tested with
simulations of evolutionary processes on this shapes map.

4.4. RNAshapes and the thermodynamic nature of
sequence–structure maps

A further extension to the sequence–structure map framework
could consider the full Boltzmann ensemble of each sequence.
While individual Boltzmann probabilities are higher when
the Boltzmann states are abstract shapes instead of detailed
full secondary structures, a single shape cannot fully capture
the folding space for a given sequence. Some previous work
has already included more than one structure per sequence
[9,12,23], but many of these studies consider evolutionary
dynamics for one specific scenario, rather than quantify-
ing sequence–structure map properties such as phenotypic
frequencies, robustness and evolvability systematically for
many structures. Establishing a general understanding of
the sequence–structure map for this more general case will
allow us to understand evolutionary processes for a variety
of fitness functions, ranging from a riboswitch, wheremultiple
shapes may be stabilized, to a single-fold molecule, where
all suboptimal shapes are selected against.
4.5. Computational model
Like previous large-scale analyses of the RNA sequence–
structure map, our analysis relies on computational
structure predictions. Thus a caveat for our results is that
secondary structure predictions are not perfect [48], like
any computational model. For minimum-free-energy struc-
tures, changes to the model parameters have a small impact
on general trends observed over large sequence samples [57].
If a similar argument holds in the shapes framework, our
qualitative conclusions ought to generalize beyond the specific
computational model.
5. Conclusion
In this analysis, we used the sequence–structure map of
coarse-grained shapes because it can include sequences of
different lengths within a single framework We extended
existing definitions to quantify neutral and non-neutral
mutations for insertions and deletions as well as for substi-
tutions. With these definitions, we found multiple
similarities between the structural effects of substitutions,
insertions and deletions.

First, within each neutral set, sequences with high geno-
type robustness to substitutions also tend to have high
genotype robustness to insertions and, for most shapes, to
deletions. Second, phenotype robustness to substitutions is
correlated with phenotype robustness to insertions and del-
etions. This means that some shapes are, on average, more
robust to mutations than others and shapes with high pheno-
type robustness to substitutions also tend to have high
phenotype robustness to insertions and deletions. Third, we
found a generalized version of genetic correlations: any
shape that is overrepresented in a sequence’s neighbourhood
by substitution is likely to also be overrepresented in the
neighbourhood by deletion and insertion. We showed that
the principle of plastogenetic congruence applies to insertions
and deletions as well as substitutions and forms a consistent
picture with these generalized genetic correlations. Finally,
we found correlations between insertions, deletions and sub-
stitutions for phenotype mutation probabilities ϕpq. This
means that if a transition from shape A to shape B is likely
to happen by substitution, it is also likely to happen by inser-
tion or deletion.
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