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One of the most paradoxical aspects of human language is that it is so unlike any other
form of behavior in the animal world, yet at the same time, it has developed in a species
that is not far removed from ancestral species that do not possess language. While
aspects of non-human primate and avian interaction clearly constitute communication,
this communication appears distinct from the rich, combinatorial and abstract quality
of human language. So how does the human primate brain allow for language? In an
effort to answer this question, a line of research has been developed that attempts to
build a language processing capability based in part on the gross neuroanatomy of the
corticostriatal system of the human brain. This paper situates this research program in
its historical context, that begins with the primate oculomotor system and sensorimotor
sequencing, and passes, via recent advances in reservoir computing to provide insight
into the open questions, and possible approaches, for future research that attempts to
model language processing. One novel and useful idea from this research is that the
overlap of cortical projections onto common regions in the striatum allows for adaptive
binding of cortical signals from distinct circuits, under the control of dopamine, which
has a strong adaptive advantage. A second idea is that recurrent cortical networks with
fixed connections can represent arbitrary sequential and temporal structure, which is the
basis of the reservoir computing framework. Finally, bringing these notions together, a
relatively simple mechanism can be built for learning the grammatical constructions, as the
mappings from surface structure of sentences to their meaning. This research suggests
that the components of language that link conceptual structure to grammatical structure
may be much simpler that has been proposed in other research programs. It also suggests
that part of the residual complexity is in the conceptual system itself.
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INTRODUCTION
We begin with the neurophysiological basis of orienting behav-
ior, which provides the framework that leads to language. In a
dynamic and changing world, filled with predators and prey, the
ability to rapidly orient one’s spatial attention to the right place
is a question of survival. In mammals with mobile heads (e.g.,
cats) and primates with mobile eyes (monkeys and man), the
ability to orient allows these animals to control their attention to
the environment with high precision, and with a temporal reac-
tivity on the scale of hundreds of milliseconds—fractions of a
second. In the 1980’s research in the oculomotor system of the
cat and macaque monkey reached a certain height of comple-
tion, and the neural circuits that processed information from
visual input to motor response were specified at a fairly high level
of detail [reviewed in Dominey and Arbib (1992)]. This repre-
sented an important phase in cognitive neuroscience, because the
same circuits that specified motor control and spatial attention
in the oculomotor system were templates for parallel circuits that
would provide part of the basis for higher cognitive function and
language.

In this context, one of the major architectural properties of
the primate brain is the massive organized projection from cortex
to striatum (Selemon and Goldman-Rakic, 1985; Lehericy et al.,
2004). Essentially all of neocortex projects in a topographically
organized manner to the striatum, through the pallidum to the
thalamus and back to cortex (Ilinsky et al., 1985), thus yielding
what can be considered as a set of largely distinct and segre-
gated corticostriatal circuits or loops (see Figure 1), dedicated to
distinct functions, including control of different motor systems
such as the oculomotor system, and the limbic reward system
(Alexander et al., 1986). This paper will argue that this notion
can be extended to a cortico-striatal language circuit (Dominey
and Inui, 2009; Dominey et al., 2009).

The closed loop structure provides a feedback of the results
of the outcome of the system back into cortex. Such feedback
connections have been demonstrated to play an important role in
memory and sequence processing (Jaeger and Haas, 2004; Jaeger
et al., 2007).

At the same time that the functional neuroanatomy of the
oculomotor loop had been quite well characterized and modeled
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FIGURE 1 | Parallel organization of the cortico-striato-thalamo-cortical

loops. From Grahn et al. (2009), modified from Alexander et al. (1986).

in a neurophysiologically realistic manner (Dominey and Arbib,
1992), the mechanisms for dopamine modulated plasticity in the
corticostriatal synapse (Calabresi et al., 1992) that could lead to
adaptive behavior were also being characterized (Robbins et al.,
1990; Reading et al., 1991). For example, Reading and Robins
demonstrated how the lateral caudate-putamen is required for
the learning of arbitrary stimulus-response associations (Reading
et al., 1991), which were also impaired in the absence of cortico-
striatal dopamine (Robbins et al., 1990).

This inspired us to consider that the cortico-striatal junc-
tion could be used as a convergence point where informa-
tion from different modalities could be functionally linked by
dopamine-modulated cortico-striatal plasticity (Dominey et al.,
1995). Indeed, while the “central dogma” of the corticostriatal
system presents a parallel and segregated set of loops as illus-
trated in Figure 1, from the beginning this was known to be a
simplification (Selemon and Goldman-Rakic, 1985), as in fact,
the projections from cortex to striatum display a more complex
topography. While the main and most dense projections fol-
low the parallel circuit concept, more diffuse projections form
larger territories, leading to large overlap of the different circuits
(Selemon and Goldman-Rakic, 1985). These overlaps provide a
crucial function—they allow the adaptive binding together of
cortical signals from different functional circuits. Thus, for exam-
ple, visual features from infero-temporal (IT) cortex can become
linked to direction eye movements (saccades) to different loca-
tions in space. We modeled this framework by extending the
oculomotor model so that the oculomotor region of the caudate
received inputs from the oculomotor frontal eye fields, consistent
with the parallel circuits in Figure 1, and in addition it received
projections from the inferior temporal cortex, consistent with
known neuroanatomy (Selemon and Goldman-Rakic, 1985),
which code the features of visual stimuli. The resulting model
provided the first account of how reward-related dopamine could
strengthen corticostriatal synapses binding stimulus coding to
behavioral response coding (Dominey et al., 1995). The relevance
of this historical interlude into the functional neuroanatomy
of the corticostriatal system will soon become apparent, as we
make the link from associative learning, to sequence learning to
language.

SERIAL, TEMPORAL AND ABSTRACT STRUCTURE AND THE
INITIAL STATE
Twenty-five years ago, Barone and Joseph (1989) studied neural
activity in the prefrontal cortex (PFC) of monkeys that had been
trained to perform a simple task that involved watching the pre-
sentation of a visual sequence on a response button board, and
then after a short delay, reproducing the sequence by touching
the buttons on the board in the same order that they were pre-
sented. They observed that neurons in the dorsolateral prefrontal
cortex (DLPFC) displayed two characteristic responses to stimuli
in the sequence task. First, as had previously been observed, the
neurons were spatially selective, with preferences for stimuli in
particular locations in the retinal image. The second characteristic
was new, and revolutionary: many of these neurons also displayed
a “sequence rank” effect, that is, they had preferences for stim-
uli that had appeared first, second or last in the input sequence.
Thus, the spatial selectivity in many neurons was modulated by
the rank or order of the element in the sequence. This indicated
that DLPFC embodies a mechanism for discriminating the order
of items in a perceptual sequence.

In an effort to understand how this order-sensitive prop-
erty could result from principal characteristics of the PFC, we
recalled that a second major architectural property of the pri-
mate brain (the first being the massive cortico-striatal projection)
is the abundance of local connectivity in cortico-cortical connec-
tions, or recurrent connections, particularly in the frontal cortex
(Goldman-Rakic, 1987). Recurrent connections in neural net-
works provide known dynamical system properties, and indeed
in the context of Elman’s simple recurrent network (SRN) the
power of recurrent connections in language-related processing
was revealed (Elman, 1990, 1991). Intuitively, recurrent con-
nections allow information from past events to remain coded,
circulating through these connections, and thus allowing the past
to influence the coding of new inputs. This provides an intrinsic
sequence coding capability.

The use of recurrent connections in the context of synap-
tic adaptation also unveiled the immense technical challenge of
determining how a given recurrent connection contributed to
error in the network response, since over multiple time steps the
state of activation in the recurrent network changes dynamically
(Pearlmutter, 1995). The solution developed by Elman was to
limit the simulation of cycles through the recurrent net to one
or two time steps. This provided a dramatic simplification of
the learning algorithm while preserving the essential property of
recurrent connections. This introduced a significant limitation,
however, with respect to the processing of time.

A principal objective of computational neuroscience is to sim-
ulate and explain neural activity over the time course of the
behavioral experiment. Thus, in Barone and Joseph’s sequenceing
task, stimuli are presented for a certain duration, and the subse-
quent execution of the sequence by the animal unfolds in time,
including the reaction times for the individual responses. The
simplification in the SRN renders such realistic treatment of time
impossible, as the time between successive sequence elements is
fixed by the learning algorithm.

In order to circumvent the technical challenges of recurrent
learning in time, we chose an alternative approach. We decided
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to fix the connection strengths of the recurrent connections at
the outset so as to provide the simulated PFC network with a
dynamic structure that would retain a trace of previous inputs via
the recurrent connections. The resulting patterns of activity in the
cortical network could then be associated with the corresponding
behavioral outputs by reward-related (dopaminergic) plasticity
in the corticostriatal synapses (Dominey, 1995; Dominey et al.,
1995).

The resulting system is illustrated in Figure 2. The principal
characteristics are the presence of fixed recurrent connections
in the PFC network (corresponding to the DLPFC in Figure 1),
and modifiable connections between these PFC neurons and the
neurons in the striatum (caudate nucleus—CD), which form an
associative memory, associating dynamic states in the recurrent
network with the desired output response. It is noteworthy that
this combination of fixed recurrent connections, and modifiable
connections to “readout” neurons was the first characterization
of what has now come to be known as the reservoir principle in
reservoir computing (Maass et al., 2002; Lukosevicius and Jaeger,
2009). The resulting network displayed a number of interesting
properties.

First, it was able to explain the behavior of monkeys in the
Barone and Joseph sequence learning task, and more interest-
ingly, the neural activity in simulated PFC neurons displayed the
same combination of spatial and sequence rank coding proper-
ties as those recorded in the monkey PFC (Dominey et al., 1995).
In particular, the simulated PFC neurons were spatially selective,
and this spatial selectivity was modulated by the rank of the spa-
tial target in the sequence. This was a computational neuroscience
success.

Second, the model displayed a robust sequence learning capa-
bility. Figure 3 illustrates the dynamic activity within PFC neu-
rons during the presentation and replay of a 25 element sequence.
One can observe that the pattern of activation in PFC (recur-
rent network) neurons displays a rich dynamic behavior, and
that indeed, the states in PFC corresponding to the different
elements in the sequence are indeed separable, as revealed by
the observation that the cosines of the state vectors are never
equal to unity (i.e., the state vectors are never identical). In this
context, the model could account for (Dominey, 1998a) and pre-
dict (Dominey, 1998b) human sequence learning behavior in the
well studied serial reaction time (SRT) task. Because the connec-
tions from cortex to striatum are modified by learning, neurons
in the striatum become activated with reduced reaction times
in cases where learning is significant. That is, when responding
to visual inputs presented in a well-learned sequence, stronger
learned cortico-striatal connections lead to faster activation of the
striatal response neurons, leading to a reduced number of simu-
lation time steps for generating the model output. For elements
presented in a random sequence, there was no learning effect,
and significantly more time steps were required to generate the
response in the striatal neurons. Details can be found in Dominey
(1998a,b).

While the model thus provided a robust learning for serial
and temporal structure, it failed to learn what we called abstract
structure. Serial and abstract structure are defined such that the
two sequences ABCBAC and DEFEDF have different serial struc-
ture (i.e., the serial order of specific sequence elements), but
identical abstract structure (i.e., the relations between repeating
elements within the sequence), following an internal repetitive

FIGURE 2 | Model of cortico-striatal system for sensorimotor sequence

learning. Left—neuroanatomical structure of model. Visual input to
simulated retina projects to lateral interparietal cortex (LIP) and frontal
fields (FEF), and prefrontal cortex (PFC) (via mixed connections). PFC has
recurrent connections, rendering it a rich dynamical system, and projects
with modifiable connections to the caudate nucleus of the striatum (CD),

which serves to activate the motor superior colliculus (SC) via the
oculomotor circuit. Right—synthetic view. Recurrent PFC network encodes
internal state, and projects with modifiable connects to associative
memory. Feedback connections from associative memory to internal state
allow state to be influenced by the results of the learned associations.
From Dominey (1995).
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FIGURE 3 | Neural activity during complex sequence processing.

Left—time trace of activity in 25 PFC neurons during presentation and
subsequent replay of a complex sequence of order 4. Right—vector
cosines of PFC state vector activity during the response choice for each
of the 25 responses in the output sequence execution. Cosine

represented spatially with 0 as empty and 1 as fully filled case. Note
that the cases (and subsequent diagonals in the matrix) corresponding to
choices of D, E, F, G, and H have relatively high cosines, indicating that
the PFC states are similar, but not identical, for these elements. From
Dominey (1995).

pattern 123213 (Dominey et al., 1998). In order to account for
learning such abstract structure, a system would need additional
processing mechanisms in order to detect that the current ele-
ment in a sequence is a repetition of an earlier element, and then
to “recode” the sequence in terms of this pattern of repeating
elements (Dominey et al., 1998).

We introduced these modifications (Dominey et al., 1998),
and the resulting hybrid model, illustrated in Figure 4, could
thus learn serial, temporal, and abstract structure of perceptual-
motor sequences. To demonstrate the importance of this system
in helping to characterize the human initial state in language
learning, we chose three landmark papers that defined infants’
abilities to implicitly learn the serial (Saffran et al., 1996), tem-
poral (Nazzi et al., 1998), and abstract structure (Marcus et al.,
1999) of sound sequences. Saffran et al. demonstrated that in
minutes infants could learn the sequential structure of syllable
sequences, and detect new sequences of the same syllables that
violated the learned structure (Saffran et al., 1996). Nazzi et al.
similarly demonstrated that infants are sensitive to the rhyth-
mic structure (stress-timed, syllable-timed, and mora-timed) of
language stimuli, and can learn to discriminate between dis-
tinct classes in minutes (Nazzi et al., 1998). Finally, Marcus et al.
demonstrated that infants can just as quickly learn to discrimi-
nate abstract structures of syllable sequences like ABA vs. ABB,
where A and B represent variables that can be filled in by new syl-
lables (Marcus et al., 1999). That is, the children could recognize
a totally new sequence with syllables that they had never heard
(i.e., from a new domain) as fitting with the learned rule ABA
or ABB. This was an important finding as it indicates infants can
generalize over variables in these sequences. These authors argued
that the innate ability to discriminate serial, temporal and abstract
structure could contribute to the initial state in language learning.

In a series of simulation studies, we replicated these human
demonstrations of learning serial (Saffran et al., 1996), temporal
(Nazzi et al., 1998), and abstract structure (Marcus et al., 1999)

of sound sequences in the hybrid model. Serial and temporal
structure were learned by the simpler temporal recurrent network
(TRN), and the abstract structure was learned by the abstract
recurrent network (ARN) which required a working memory and
recognition capability to detect and represent the repetitive struc-
ture of the abstract sequences (Dominey and Ramus, 2000). This
was an important step in the developing argument about the
possible neural mechanisms of language learning.

Subsequent research has suggested that children in the Saffran
task may have been picking up on unintended cues related to
chunk strength (Perruchet and Pacton, 2006). The TRN has the
property that previous inputs influence the state of the recurrent
network and thus influence how subsequent input will be pro-
cessed. Any kind of sequential structure that can be expressed in
these terms should lead to learning effects in the TRN. Similarly,
Marcus et al.’s (1999) claim that SRN-like models cannot account
for their abstract sequence learning results has been challenged. In
the Dienes SRN-based model (Dienes et al., 1999), an additional
layer was added to allow the mapping of the new domain onto the
learned domain, and multiple presentations of the novel stimuli
(for adaptation) are required. Likewise, Chang (2002) demon-
strated that the standard SRN fails to generalize on an identity
construction (related to the ABA construction of Marcus), while
his dual path model successfully generalizes. From this perspec-
tive it appears that without additional task specific adaptations,
Marcus’s claim remains intact.

FROM SEQUENCE LEARNING TO
LANGUAGE—GRAMMATICAL CONSTRUCTION LEARNING
The notion of abstract rule-based structure suggested a possi-
ble link to language processing. In order to test the model in a
language processing task, we identified a task that had been devel-
oped by Caplan et al. (1985) in which aphasic subjects listened to
sentences and then had to indicate the corresponding meaning
by pointing to images depicting the agent, object and recipient
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FIGURE 4 | Combined Abstract Temporal Recurrent Network (ATRN)

model. Above: The temporal recurrent network (TRN) exploits recurrent
network dynamics in the recurrently connected neurons in State and
StateD layers, to encode serial and temporal structure. To encode the
abstract structure common to “isomorphic” sequences such as HBSBHS
and YPBPYB, the abstract recurrent network (ARN) stores the N previous
elements of the current sequence in a short term memory (STM). The
Recognition function compares the current sequence element response
generated in Output to the previous elements coded in STM to detect the
abstract repetitive structure. This abstracted coding is represented in the
recurrent State. In the learned expression of abstract structure knowledge,
the contents of STM are selectively provided to the output stream by the
activation of Modulation neurons by State neurons. From Dominey et al.
(2003). Below: Illustration of how the model accommodates language
input.

(i.e., who, gave what to whom), always in that “canonical” order.
Thus, in the formal task description the “input sequence” is the
sequence of words in the sentence, and the “output sequence” is
the sequence agent, object, and recipient, corresponding to the
meaning in terms of thematic role assignment. The only cues
available for determining “who did what to whom” were the word
order and grammatical marking, so this is considered a task of
syntactic comprehension.

This approach is consistent with the cue competition model
of language (Li and Macwhinney, 2013), which holds that
across languages, a limited set of cues including the configura-
tion of grammatical function words (closed class morphology
in general), word order and prosody are used to encode the

grammatical structure that allows thematic role assignment to
take place. We thus implement the cue competition hypothesis
(Bates et al., 1982, 1991) focusing on word order and grammati-
cal morphology. In our modeling, the notion is that the sequence
of closed class words forms a pattern of activity within the recur-
rent network, and that this pattern can be associated with the
corresponding thematic role specification.

In performing the Caplan task, when faced with an example
sentence: “The elephant was given to the monkey by the rab-
bit,” after hearing this sentence, the experimental subject was
required to indicate the meaning by pointing to images depict-
ing the rabbit, elephant, and monkey (corresponding to agent,
object, recipient) in that order. Thus, the Caplan task identifies
an excellent challenge for language modeling: Given an input sen-
tence, generate a standardized representation of the meaning (i.e.,
identify the agent, object, and recipient, always in that “canonical”
order). The question now is—how can we reformulate this task so
as to be processed by our abstract sequencing model. The general
notion is that sentence type should correspond to abstract struc-
ture. So the Caplan task involves learning nine different abstract
structures. Considering our example sentence, if we replace the
words with symbols then this becomes an abstract sequence task,
where the input is of the form: a E b c d a M e a R, and the
corresponding output is R E M (for rabbit, elephant monkey),
where upper case letters indicate nouns, and lower class elements
indicate all other lexical categories.

We imposed a lexical categorization process at the level of
the input processing, with open class words going to the ARN
and closed class words going to the TRN, illustrated in the lower
panel of Figure 4. Interestingly across languages, these lexical cat-
egories tend to have acoustic and distributional signatures that
can be used by infants to perform lexical categorization in a
process of prosodic bootstrapping (Morgan and Demuth, 1996).
Connectionist models have been shown to be able to learn to
distinguish open and closed class words from distributional reg-
ularities (e.g., Elman, 1990; Chang, 2002). We observed that for
French and English, the TRN could encode differences in the
prosodic structure of open vs. closed class words in order to per-
form the lexical categorization between these word classes (Blanc
et al., 2003). This provides a demonstration of self-coherence
of language in that the most crucial and basic information (i.e.,
lexical category) is coded at or near the perceptual level.

We thus performed this conversion of the nine sentence types
to these abstract sequences. Following the Caplan protocol, five
distinct sentences were generated for each sentence type, by
replacing the nouns with new nouns. During training, the input
sentence was presented to the model, and then in continuation the
correctly ordered nouns were presented (i.e., in the agent, object,
recipient order). As illustrated in Figure 4, the open class words
stored in the STM during the sentence input were then com-
pared with the “response” open class elements. This comparison
allowed the sequence of correctly ordered nouns to be “recoded”
in terms of their respective matching with the nouns stored in
the STM. This recoding became the abstract structure that was
learned. That is, for each of the nine sentence types, the model
learned the reordering of the nouns from their input order in the
sentence, to the output “canonical” order agent, object, recipient.
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Thus, after training the model could be exposed to a new sen-
tence (with new nouns) that was legal with respect to the learned
sentence forms, and it could correctly process the new sentence
(reordering the nouns in the agent, object, and recipient order).

NEURAL IMPLEMENTATION OF GRAMMATICAL
CONSTRUCTIONS
Looking at the model in Figure 4, there is nothing “language
specific” about it. Indeed, we proposed that this same model can
be used to process abstract sequences, and sentences. This lead
to the “audacious” proposition of an “equivalence hypothesis”
(Dominey et al., 2003; Dominey, 2005) stating that a common
neural system would participate in aspects of processing sentences
and abstract non-linguistic sequences. We found strong corre-
lational support for this hypothesis, observing that in agram-
matic aphasic patients with left peri-sylivan (Broca’s region)
lesions, there was a significant correlation between performance
in the nine sentence-type Caplan task of syntactic comprehen-
sion (described above and modeled), and a task of abstract
sequence processing (Dominey et al., 2003). In a further test of
this hypothesis we determined whether the left anterior negativity
(LAN), an ERP component related to morphosyntactic process-
ing that can reliably be elicited around 350–500 ms after gram-
matical functions words (Brown et al., 1999) could be elicited
by the grammatical “function symbols” in our non-linguistic
sequences. Subjects processed sequences with the abstract struc-
tures ABCxBAC and ABCyABC where x and y, respectively indi-
cated the non-canonical (complex) vs. canonical (simple) rule.
We observed a LAN effect for the function symbol which sig-
naled the more complex structure mapping (Hoen and Dominey,
2000), consistent with data from sentence processing. The link
between abstract structure and grammatical structure was further
revealed when we demonstrated that agrammatic aphasics trained
on an abstract structure that corresponds to the remapping of a
relativized structure to a canonical structure demonstrated post-
test improvement in sentence processing that was specific to the
relativized sentences (Hoen et al., 2003). Continuing to test the
equivalence hypothesis, we subsequently examined brain activity
during sentence and abstract sequence processing with fMRI, and
revealed a common network including the dorsal pars opercularis
territory of Broca’s area for sentence and abstract sequence pro-
cessing, with additional activation of the ventral pars triangularis
region of Broca’s area only for sentence processing (Hoen et al.,
2006). Thus, the fMRI results confirmed the model’s prediction
that a common brain system would account for the structural
remapping processing aspects of sentence and abstract sequence
processing.

Interestingly, this neural computational mechanism appeared
capable of providing a neurophysiological grounding of the
notion of grammatical construction processing. In this frame-
work, language is considered as a structured inventory of map-
pings between sentence surface structure and meanings, referred
to as grammatical constructions (Goldberg, 1995; Tomasello,
2003). If grammatical constructions are mappings from sentence
structure to meaning, then the language system must be able to
(a) identify the construction type for a given sentence, and (b) use
this information to extract the meaning from the sentence, based

on the identified construction. Our thematic role assignment
model implements this notion of grammatical constructions.
Word order and closed class structure are integrated in the recur-
rent network, satisfying (a) and this integrated representation is
associated, by learning, with the appropriate mapping of open
class elements onto their roles in the sentence, satisfying (b).
This integration of word order and closed class structure cor-
responds to an implementation of the cue competition model.
We demonstrated the robustness of this model, and provided
further support for the cue competition model by testing the
neural model with three distinct languages—English, French and
Japanese, each with a distinct set of relevant cues. In each of these
languages, a universal property holds—the mapping of sentence
to meaning is fully specified by the pattern of open and closed
class words unique to each grammatical construction type. The
model was thus able to learn 38 distinct English constructions, 26
Japanese constructions, and nine French constructions based on
the Caplan task. The model thus integrated results from human
neurophysiology and behavior into a coherent framework, with a
cross-linguistic validation.

Consistent with human neurophysiology, a central premise
in our modeling is that the pattern of grammatical function
words is represented in a recurrent cortical network, and that
via plasticity in the corticostriatal synapses, the system can learn
specific constructions, including constructions in different lan-
guages. Figure 5 illustrates a mapping of the neural computations
onto human brain anatomy.

We (Dominey and Inui, 2009; Dominey et al., 2009) attempted
to reconcile the corticostriatal model with mainstream neuro-
physiological models of language processing (Friederici, 2002;
Hagoort, 2005) in more detail. Lexical categorization takes
place in the temporal cortex, allowing for distinct processing
of grammatical function words and semantic content words.
Closed class elements are processed in a recurrent frontal net-
work (Inui et al., 2007) corresponding to BA47. The pattern
of closed class words forms a characteristic representation in
the recurrent network, which can become associated with the
appropriate mapping of open class elements onto their respec-
tive thematic roles through corticostriatal plasticity. The resulting
activity then implements this mapping via the thalamo-cortical
projection to the dorsal-prefrontal area BA44/6. Thus, in the
inferior frontal gyrus, we consider a transition from syntactic
integration in BA47, word level semantics in BA45, and sen-
tence level integration in BA44/6, which is to a certain extent
consistent with a similar gradient of processing in the model
proposed by Hagoort (2005). This allocation of brain functions
to the neuroanatomical regions in Figure 5 should be consid-
ered as tentative, and potentially could be replaced by different
allocation of functions. The more solid proposal and contribu-
tion of this work is the demonstration that a recurrent cortical
network, likely in Broca’s region, can integrate multiple cues
(here word order and closed class structure) consistent with
the cue-competition model, and through corticostriatal plastic-
ity this representation can implement grammatical constructions
as mappings from sentence structure to meaning, consistent
with the emerging role of the corticostriatal system in language
processing.
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FIGURE 5 | Neurophysiologically based model of sentence and artificial grammar processing.

This perspective is consistent with an emerging view of a
dorsal-ventral distinction in language processing. While there is
indeed significant variability in the details of the functional sig-
nificance of the dorsal vs. ventral streams in language, there is
an emerging consensus that these streams indeed have distinct
roles, with the ventral stream related to semantic and con-
ceptual content, and the dorsal stream related to more struc-
tural aspects of language (Hickok and Poeppel, 2004; Friederici,
2012; Bornkessel-Schlesewsky and Schlesewsky, 2013). Hickok
and Poeppel (2004) thus suggested that the ventral stream
would account for the sound-meaning interface, and the dor-
sal stream would accommodate the auditory-motor interface.
In Bornkessel-Schlesewsky and Schlesewsky’s model, the ventral
stream is more associated with conceptual representations, and
the dorsal stream is related to syntactic structuring and the link-
age to action. Friederici (2012) proposes a dorsal-ventral model
with the ventral stream subserving semantic integration and dor-
sal stream subserving structural processing. Interaction in ventral
circuits linking BA45 and STG/MTG mediates semantic process-
ing, whereas assignment of grammatical relations is mediated by
dorsal connections between BA44 and STG/STS. This is consis-
tent with the dorsal-ventral distinction in our model illustrated
in Figure 5. Indeed, we noted (Dominey and Hoen, 2006) that
BA44/46 can be considered to represent the frontal terminus
of the dorsal visual pathway, and BA45 the frontal terminus of
the ventral pathway (Ungerleider et al., 1998). In this neuro-
physiological context, Friederici (2012) points out the need to
better understand the role of subcortical structures, including the
striatum, in language processing. We suggest that corticostriatal
plasticity plays a role in implementing the structural mapping
processes required for assignment of open-class elements to their

appropriate thematic roles. Ullman notes that this is consistent
with his declarative-procedural model of language processing, in
which the cortico-striatal system contributes to the procedural
learning of grammatical rules (Ullman, 2004).

LARGER CORPORA AND GENERALIZATION IN THE
RESERVOIR COMPUTING FRAMEWORK
One of the major limitations with the neural implementation of
our model of corticostriatal function is related to the performance
of the learning algorithm. A simple form of reward based learn-
ing is used to associate states of activity in the recurrent network
with neurons in the striatum that correspond to the appropri-
ate thematic role assignment. This requires repetitive training on
the corpus with progressive adjustment of learning rates which
is prohibitive for the investigation of large corpora. In order to
resolve this problem, we apply more robust machine learning
methods to our corticostriatal model, in the context of reser-
voir computing. In reservoir computing, a reservoir of neurons
with fixed recurrent connections is stimulated by external inputs,
and the desired output is produced by training connections from
the excited reservoir units and readout neurons. As noted in
Pascanu and Jaeger (2011) this reservoir principle was indepen-
dently discovered in our own work in cognitive neuroscience with
the TRN (Dominey et al., 1995), in computational neuroscience
(Maass et al., 2002) with the liquid state machine of Maass, and
in machine learning (Jaeger, 2001) with the echo state machine of
Jaeger. In the machine learning domain, fast and efficient mech-
anisms for learning the reservoir-to-readout connections have
been developed, and this provides a significant improvement
in performance for sentence processing. Using these methods,
rather than repeated training with multiple iterations through the
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FIGURE 6 | Reservoir computing implementation of the cortico-striatal

sentence processing model. (A) Semantic and grammatical words (i.e.,
open and closed class words, respectively) are separated on input. Semantic
words (SW) are stored in a memory stack. Grammatical words and a single
input for all SWs are inputs to the reservoir (analogous to prefrontal cortex).
During training, input sentences are presented word-by-word, and readout
units (corresponding to striatum) are forced to the corresponding coded
meaning (i.e., SW1-Object, SW2-Predicate, SW3-Agent). In testing, readout

units code the predicted role(s) of each semantic word, forming the coded
meaning. The meaning [i.e., hit(Mary, John, _)] can be reconstructed from
the coded meaning, as SWs in memory stack are reassigned to the thematic
roles (predicate, agent, object, recipient) identified in the read-outs. (B) Active
and passive grammatical constructions (i.e., mapping from sentence form to
meaning), and their shared meaning. Coded meaning (indicated by the arrows)
corresponds to specific mapping from open class words to meaning, which
defines the grammatical construction. From Hinaut and Dominey (2013).

corpus, we could present the corpus to the reservoir only once,
collect the reservoir activation and then use linear regression to
learn the connections between reservoir units and readout units
coding the meaning of the sentences.

Using the model in Figure 6, we provided input sentences one
word at time, with grammatical words feeding into the recur-
rent reservoir. Starting at the outset of the sentence presentation,
the corresponding readout neurons that coded the correct role
for each semantic word, were activated. The model was trained
to generate these activations starting at the outset of the sen-
tence, thus providing for a potential predictive capability. This
training protocol corresponds to the infant seeing and interpret-
ing the scene before hearing the sentence. Figure 7 illustrates the
activation of a set of readout neurons during the presentation
of four different sentence types. The individual traces represent

activation of illustrative readout neurons coding for the role of
the second noun. We observe that from the outset of the sen-
tence presentation, the system predicts that Noun 2 is the object
of verb 11. This remains true in three of the four illustrated con-
structions, with the exception of the passive in panel (D). Note
that when the word “was” arrives, the system reconfigures its pre-
diction. Later in these constructions (at the point indicated by the
labeled arrow b) note the distinct responses respectively to “to,”
and “that,” and then finally at the point indicated by the labeled
arrow c, the responses to the arrival of “Verb” vs. “was.” What we
observe is that time locked with words that designate the possible

1Hinaut and Dominey also perform a more general treatment where verbs are
included in the processing of semantic (or open class words) in constructions
as illustrated in Figure 6.
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FIGURE 7 | Neurons coding thematic roles indicated by colored traces

(see embedded legend). For all four sentences [see period before arrow
(a)], the model initially predicts that Noun 2 is the Object of Action 1 (green
trace). In (B) and (C) this remains true, but Noun 2 is also the Agent and
Object of Action 2 in (B) and (C) respectively. At point (b), arrival of “to”
confirms the correct prediction of N2-O1 (green trace) in (A), and the

arrival of “that” induces a change in activity in (B) and (C), with increased
prediction of both Agent and Object roles for V2, respectively. Note that
this is resolved at the arrival of the “V” and “was” in (B) and (C)

respectively [arrow (c)]. In (D) the arrival of “was” provokes a new analysis
with Noun 2 as the Agent of Action 1. Embedded legend: N2-A1 – Noun 2
is the agent of Action 1. A, Agent; O, Object; R, Recipient.

licensing of a construction, the model neurons react. If we dissect
in panels (B,C) what happens between the events labeled b and c,
we can consider that the system is maintaining parallel parses, and
the decision between these parses is determined when the appro-
priate disambiguating words arrive at point c. This graphically
illustrates the ranked parallel parses. That is, each of the neu-
rons in these panels corresponds to a possible role for Noun 2.
Activation of these neurons corresponds to the choice, and the
level of activation corresponds to the rank. Thus, multiple parses
can be entertained in parallel. In panels (B,C), between marked
locations b and c, two possible parses are equally active, and at
the arrival of the next word at c, the choice is made.

The changes in neural activation as observed at point c can
be interpreted in the context of human brain activity, revealed by
event related potentials (ERPs) recorded during sentence process-
ing. We can consider that the summed relative changes in activity
of the model neurons represent a form of ERP signal. In this
context, a larger ERP response was observed for subject-object
vs. subject subject relative sentences time locked with the dis-
ambiguating word in the sentence (Hinaut and Dominey, 2013),
similar to the effect observed in human subjects (Friederici et al.,

2001). In our corpus, similar to human language (Roland et al.,
2007), constructions with subject-object structure are less fre-
quent than subject-subject, and canonical types where the head
noun is the agent. Thus, this change in neural activity is in
a sense due to a form of expectation violation, based on the
corpus statistics. MacDonald and Christiansen (2002) have pro-
vided detailed simulation evidence for such phenomena involving
an interaction between complexity, frequency, and experience.
They demonstrated that with an equal distribution of subject-
and object-relatives, their recurrent network gave superior per-
formance on the subject relatives due to the networks’ abilities
to generalize to rare structures as a function of experience with
similar, more common simple sentences.

The performance of the model, as revealed by these readout
activation profiles can potentially be linked to reading times, such
that the time required for a neuron to reach a threshold could be
plausibly interpreted as a reading time.

The model thus provides an implementation of a form of
ranked parallel processing model, where the parallel maintenance
of possible parses is an inherent aspect of the model (Gibson and
Pearlmutter, 2000; Lewis, 2000). This behavior is a reflection of
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the statistical structure of the training corpus. In effect, the activ-
ity of the readout neurons reflects the probability of their being
activated in the training corpus.

Indeed, the behavior of the trained system is clearly influenced
by the nature of the grammatical structure inherent in the train-
ing corpus. Working in the machine learning context of reservoir
computing allowed us to perform experiments with corpora up
to 9 × 104 different constructions. The advantage of performing
these large corpora experiments is that it allows for a systematic
analysis of the influence of the training corpus on the ability to
generalize. Here we speak of compositional generalization, where
the system is actually able to handle new constructions that were
not used in the training corpus (as opposed to using learned con-
structions with new open class words). We performed a series of
experiments with a small corpus of 45 constructions in which we
examined very specific timing effects of the parallel processing,
and two larger corpora of 462 and 90,582 distinct construc-
tions, respectively. Training with the larger corpora revealed quite
promising generalization in cross-validation studies, where differ-
ent proportions of a corpus are removed from training, and then
used in testing to evaluate generalization. We observed general-
ization of up to 90% for the 462 corpus, and over 95% in the 90 K
corpus. Interestingly, when we scrambled the 462 corpus, general-
ization was reduced to 30%, indicating that the system learned the
underlying grammatical structure encoded in the training cor-
pus. Most interestingly, this generalization in the largest corpus
could be achieved with exposure to only 12.5% of the corpus.
Thus we see that the grammatical structure of language can be
learned and generalized by such recurrent networks. The clear
distinction in this work is that the learning is revealed by extract-
ing thematic roles, rather than predicting the next word or lexical
category (Tong et al., 2007). Indeed, the power of such recurrent
models in now employed in concrete natural language processing
applications of semantic role labeling (Barnickel et al., 2009).

DISCUSSION
The study of recurrent networks for language processing has a
rich history. A vast and productive line of research has character-
ized language processing in terms of predicting the next word in a
sentence, initiated by the ground-breaking work of Elman (1990,
1991, 1993), and fruitfully pursued by others (e.g., Christiansen
and Chater, 1999). Characterizing language in terms of thematic
role assignment also has a rich history in connectionist modeling
(e.g., McClelland et al., 1989; Miikkulainen, 1996). Miikkulainen
provides an extensive review of this literature. His novel contribu-
tion is a modular distributed architecture based on the separation
of parsing (an SRN), segmentation (a RAAM model), and a
stack (for handling depth recursion). Communication between
the modules includes the transfer of activation patterns, and con-
trol. The resulting system can learn case role mapping, as well
as phrasal embedding structure, and then generalize these to
sentences with new relative phrase embedding structure.

The research reviewed here presents a coherent framework
in which a recurrent network encodes grammatical structure
in the input, and modifiable connections from the recurrent
network learn the mappings from that grammatical structure to
the corresponding meaning representations for large corpora of
grammatical constructions. With sufficiently large corpora the

system displays a significant capability to generalize to new con-
structions, exploiting the regularities that define grammatical well
formedness (Hinaut and Dominey, 2013). This argues that a sys-
tem can display the ability to learn the grammatical structure
implicit in a corpus without explicitly representing the grammar
(Elman, 1991), and that it can generalize to accommodate new
constructions that are consistent with that grammar (Voegtlin
and Dominey, 2005). Part of the novelty in the position sug-
gested here is that this recurrent network and readout system is
implemented in the primate brain in the cortico-striatal system.

The computational properties of such recurrent systems is
remarkable. Our initial work with recurrent networks with
fixed connections and modifiable readouts demonstrated signif-
icant sequence learning capabilities (Dominey, 1995, 1998a,b),
and accounted for neural coding of sequential structure in the
PFC (Dominey et al., 1995; Dominey and Boussaoud, 1997).
Subsequent work with such systems demonstrated their vast com-
putational power (Maass et al., 2002; Jaeger and Haas, 2004).
Projecting inputs into such reservoirs allows a mapping into a
high dimensional space. This provides a dynamic compositional-
ity that can represent an arbitrary class of non-linear functions.
Recent studies of primate electrophysiology provide evidence
that indeed, the PFC operates based on reservoir-like properties
(Rigotti et al., 2010, 2013). The key point—the use of random
connection weights in a structured network—is echoed in the
principal property of cortex—the high predominance of local
recurrent connectivity (Douglas et al., 1995; Binzegger et al.,
2009), particularly in PFC (Goldman-Rakic, 1987). The use of
fixed recurrent connections within these reservoirs means elim-
inates the need to artificially constrain the processing of time and
temporal structure in these networks, thus allowing a realistic
processing of temporal structure that is much more difficult in
networks with learning in the recurrent connections. Of course,
there is plasticity in the cortex, but simplifying this with fixed con-
nections, the dynamic compositionality of reservoir computing
yields significant processing capabilities. The reservoir framework
is thus highly appropriate for the study of complex cognitive
function including establishing structure-meaning relations in
language, and it has already been successfully employed in the
context of predicting the next word in the context of language
processing (Tong et al., 2007).

It should be noted that dynamic does not correspond to “out
of control.” That is, while a recurrent network will evolve in a
dynamic pattern of activity, this dynamic activity can be associ-
ated with a stable representation of the meaning. In the human,
this dynamic activity is observed in EEG responses (e.g., the
ELAN, LAN, N400, P600 cascade of responses, modulated by lex-
ical category and sentence context) that are dynamic in time,
yet reflect the coherent processing of the successive words in
sentences.

We have postulated that recurrent cortical networks pro-
vide the mechanism for representing grammatical structure, and
that plastic corticostriatal connections participate in learning
this structure in the acquisition of a language (Dominey and
Inui, 2009; Dominey et al., 2009). We thus take a strong stance
on the role of the human corticostriatal system in language
processing. This would predict that patients with dysfunction
in the corticostriatal system should have deficits in syntactic
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processing, and should show neurophysiological anomalies dur-
ing language processing. Significant data from a number of
sources are consistent with this stance. Several studies from
Friederici and Kotz (2003; Friederici et al., 2003; Frisch et al.,
2003; Kotz et al., 2003) in patients with striatal dysfunction due
to lesion or Parkinson’s disease demonstrate that the P600 ERP
evoked by syntactic anomalies or complexity in normal con-
trols subjects is reduced or eliminated in these patients, while
other language related responses (including the early left ante-
rior negativity or ELAN and N400) remain intact. Similarly, these
patients are impaired in the processing of grammatical com-
plexity (Hochstadt et al., 2006; Hochstadt, 2009). This suggests
that the intact corticostriatal system is required in generating
this normal brain response to grammatical complexity process-
ing. Ullman argues that the corticostriatal system implements
procedural rules for word level grammatical processing (Ullman,
2001). We take this suggestion even further, arguing that the
corticostriatal system participates in the implementation of gram-
matical constructions at the sentence level, in the mapping of the
structure of the surface form of the construction to the mean-
ing representation (Dominey and Inui, 2009; Dominey et al.,
2009).

It is now relatively accepted that meaning is encoded in dis-
tributed embodied representations that have an analogical com-
ponent that is not symbolic (Bergen and Chang, 2005; Barsalou,
2009; Lallée et al., 2010b; Madden et al., 2010). Interestingly, such
representations are difficult to manipulate, when compared with
symbolic representations. In this context, there is an emerging
perspective that the complete language system likely involves both
symbolic and distributed-embodied representations (Bergen and
Chang, 2005; Barsalou, 2009; Lallée et al., 2010b; Madden et al.,
2010).

This poses the question of how the link is made between lan-
guage and embodied simulations. A promising area where these
issues can be investigated is in the development of cognitive sys-
tems for robots. This link between language and meaning in
cognitive science is not new. At the height of the cognitive rev-
olution, Feldman and colleagues proposed the problem of minia-
ture language acquisition as a “touchstone” for cognitive science
(Feldman et al., 1990). A machine should be trained on a set of
<sentence, picture> pairs, and then in testing should be able to
say whether a given novel sentence correctly described a novel
picture. In order to address this we modified the problem such
that the training data were <sentence, video-scene> pairs. Based
on the notion that infants can parse visual scenes by detecting
sequences of perceptual primitives [inspired by Mandler (1999)]
we developed an event parser that could detect actions includ-
ing take, take-from, give, push and touch (Dominey, 2003b).
Naïve subjects performed actions that were parsed by this system,
and simultaneously narrated their actions, thus providing a set
of <sentence, meaning> data on which to train the neural net-
work grammatical construction model (Dominey and Boucher,
2005). The model learned a set of simple constructions and could
generalize to new <sentence, meaning> pairs. We subsequently
demonstrated how the system could learn to recognize such
actions (Lallée et al., 2010a), similar to Siskind (2001; Fern et al.,
2002). Such language—action mappings are becoming increas-
ingly powerful in the domain of human—robot cooperation

(Petit et al., 2013). What we will find, is that as the cognitive
systems of robots become increasingly sophisticated, they will
naturally afford richer language. For example, as mental simu-
lation capabilities develop, the need for verb aspect to control
the flow of time in these simulations will naturally arise (Madden
et al., 2010).

Arguments on the learnability of language have held that
because the compositional generative complexity of language is so
vast, and the input to the child so impoverished, the underlying
language learning capability must rely on a form of pre-specified
universal grammar so that language learning consists in setting
the parameters of this system (Chomsky, 1995). Usage-based
approaches to acquisition argue, in contrast, that the input is
actually guided by joint attention mechanisms and specialized
mechanisms for human socialization which focus the learn-
ers attention on the intended meaning (Tomasello, 2000, 2003;
Dominey and Dodane, 2004). This suggests that language acqui-
sition should be characterized not formally as a problem of gram-
mar induction, but rather socially, as a problem of expressing
and extracting meaning. This perspective emphasizes the poten-
tial contribution that the structure of meaning can contribute to
the learning process.

In this context, Chang (2002) has demonstrated that under
equivalent conditions, providing a language processing model
with a message that contained semantic content provided addi-
tional structuring information, and increased the learning perfor-
mance. It is likely that this contributes to generalization. We have
demonstrated that with corpora of moderate size (between 450
and 90,000 constructions) the recurrent network model demon-
strates quite robust generalization (Hinaut and Dominey, 2013).
We believe that this is because the structural regularities that allow
the system to generalize are inherent within the training data.
Interestingly, the training data include both the surface forms of
the constructions, and the corresponding meaning structure. This
suggests that part of what allows the system to generalize is this
additional source of learnable structural regularities—not only
those present in the surface structure, but also those present in
the mapping of that structure to the meaning structure. Thus the
meaning structure can contribute to learnability and generaliza-
tion (Dominey, 2000; Chang, 2002). In response to Dominey’s
commentary (Dominey, 2003a) on the précis of “Foundations
of Language,” Jackendoff (2003) states “In the parallel architec-
ture it is natural to suppose that the hierarchical complexity of
syntax is but a pale reflection of that in meaning, and it exists
only insofar as it helps express thought more precisely. Moreover,
Dominey says, access to the compositionality of meaning pro-
vides a scaffolding for the child’s discovery of syntactic structure.
I concur.” Thus, in the study and modeling of language acquisi-
tion, significant work remains in characterizing the structure of
the conceptual system.
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