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Abstract: MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda
coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3%
inhibition with 1 µM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition,
the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the
outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current
by 55± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels
over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by
MiDCA1 underlies the toxin’s action on acetylcholine release at mammalian neuromuscular junctions.

Keywords: Micrurus dumerilii carinicauda venom; phospholipase A2 neurotoxin; mouse dorsal root
ganglion neurons; Kv2 selective inhibition

Key Contribution: The primary contribution of this work is the demonstration that a presynaptically
active PLA2 neurotoxin from the venom of the New World coral snake Micrurus dumerilli carinicauda
selectively inhibits Kv2.1 potassium channels.

1. Introduction

Voltage-gated potassium (Kv) channels play an important role in controlling neuronal
excitability [1,2]. Inhibition of these channels leads to membrane depolarization and may result
in increased neurotransmitter release at nerve terminals [3–5]. In the peripheral nervous system, Kv
channel inhibition is associated with hyperexcitability, tissue paralysis, and potential neuronal cell
death. Many venomous animals, such as marine cone snails, spiders, scorpions, sea anemones and
snakes produce toxins that act on Kv channels to facilitate the capture of prey [6–8]. Snake venom
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phospholipases A2 (sPLA2) constitute a toxin subfamily with dual activity. On the one hand, sPLA2-type
toxins exhibit hydrolytic activity towards lipids, while on the other hand some of these toxins block
neuronal Kv channels in a tissue-specific manner [9–12]. MiDCA1 is an Asp49 PLA2 β-neurotoxin
present in the venom of the coral snake Micrurus dumerilii carinicauda [13,14]. Experiments with mouse
hemidiaphragm preparations have shown that, like other neurotoxic PLA2s [15,16], MiDCA1 affects
neurotransmitter release and the corresponding muscle twitch tension [13].

The precise mechanism of action of MiDCA1 is still unknown, although MiCDA1-induced
hydrolysis of phosphatidylcholine to lysophosphatidylcholine and fatty acid could potentially underlie
the toxin´s effect on neurotransmitter release [16,17]. MiDCA1 may also affect tissue excitability through
direct interaction with Kv channels. In this study, we examined this hypothesis by investigating the
effect of MiDCA1 on Kv channels in primary cultures of mouse dorsal root ganglion (DRG) neurons
and in a Xenopus oocyte heterologous expression system. Our results show that MiDCA1 inhibits
Kv2.1 potassium channels.

2. Results

In agreement with a previous report [18], the stepwise depolarization of cultured mouse DRG
neurons evoked a series of outward currents that activated slowly, rapidly reached a plateau phase,
and then inactivated (Figure 1A). A plot of the normalized peak outward current (Inorm) against test
voltages showed a nonlinear current increase between –30 mV and 0 mV followed by an almost linear
current increase at test voltages ≥ 0 mV (Figure 1D).

To examine the effect of MiDCA1 on outward current at +60 mV (Figure 1), the preparations
were perfused with 1 µM MiDCA1 prior to applying a depolarization pulse. At this concentration,
MiDCA1 inhibited outward current (Figure 1B). Since no further inhibition was observed with the
application of a higher concentration (2.4 µM) of MiDCA1 in DRG neurons (data not shown), we chose
to use a concentration of 1 µM to economize on the limited amount of toxin available. Of the 16 DRG
neurons from four preparations, the outward currents from nine neurons showed marked inhibition
(41 ± 3%, p < 0.005) upon MiDCA1 application. These DRG neurons were arbitrarily classified
as MiDCA1-sensitive since, in the remaining seven DRG neurons, the initial current decrease after
MiDCA1 application was marginal (10 ± 3% inhibition; p > 0.05); the latter neurons were classified
as MiDCA1-insensitive.

To obtain the MiDCA1-sensitive current, we subtracted the current recorded three min after
the application of MiDCA1 from the control current (Figure 1C) in MiDCA1-sensitive neurons.
The MiDCA1-sensitive current corresponded to a slowly inactivating outward current. Fitting a
single exponential to the activation time course yielded a time constant of τact = 2.3 ± 0.2 ms (n = 5)
at +60 mV. The current-voltage (I-V) relation for MiDCA1-sensitive and -insensitive currents was
similar (Figure 1D). The I-V relation and kinetics of MiDCA1-sensitive current were reminiscent
of those described for the K+ current mediated by Kv2 channels in DRG [18,19], suggesting that
MiDCA1 targets Kv2 channels. To examine this possibility, we compared the MiDCA1-sensitive current
with guangxitoxin (GxTx)-sensitive currents since GxTx is a well-established Kv2-specific channel
gating modifier from the venom of the tarantula spider Plesiophrictus guangxiensis [7,20] (Figure 2).
MiDCA1-sensitive DRG neurons (9 out of 16) responded to subsequent GxTx application with a small
additional decrease in plateau current amplitude that was not significant (41 ± 3% vs. 51 ± 3%, p > 0.05)
(Figure 2A,C,D). MiDCA1-insensitive DRG neurons also responded to subsequent GxTx applications
with a small decrease in current (7 ± 8%; p > 0.5) (Figure 2C,D). We subsequently reversed the order
of toxin application by applying GxTx first and then MiDCA1 (Figure 2B). GxTx application blocked
DRG Kv currents to a similar degree (36 ± 4% inhibition; n = 5; p < 0.01) as MiCDA1 (Figure 2C).
Subsequent application of MiDCA1 evoked a non-significant increase in current inhibition (17 ± 9%;
p > 0.05) (Figure 2B–D). The extent of Kv2 blockade by GxTx was not altered by a four-fold increase in
the concentration of this toxin (Figure 2E), suggesting that the residual current was probably mediated
by other Kv subtypes not blocked by GxTx. In summary, the MiDCA1-sensitive subpopulation of DRG
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neurons was also sensitive to GxTx and vice versa. Based on these findings, we hypothesized that
MiDCA1, like GxTx, targets Kv2 channels in DRG neurons.
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Figure 1. The sensitivity of whole-cell dorsal root ganglion (DRG) potassium currents to MiDCA1. 
(A) Representative control and (B) MiDCA1 (1 μM)-treated current traces of DRG potassium currents 

Figure 1. The sensitivity of whole-cell dorsal root ganglion (DRG) potassium currents to MiDCA1.
(A) Representative control and (B) MiDCA1 (1 µM)-treated current traces of DRG potassium currents
evoked by 1 s voltage steps to test potentials between−30 mV and +60 mV in 15 mV increments using an
EPC9 patch-clamp amplifier combined with PULSE software (HEKA Elektronik, Lambrecht, Germany).
DRG neurons were superfused at a flow rate of 1 mL/min with an external solution containing (in mM):
NaCl 150, KCl 5, CaCl2 2.5, MgCl2 2, HEPES 10, and D-glucose 10, adjusted to pH 7.4 with NaOH.
The pipette solution was (in mM): KCl 140, CaCl2 1, MgCl2 2, EGTA 9, HEPES 10, Mg-ATP 4, and GTP
(Tris salt) 0.3, adjusted to pH 7.4 with KOH. Signals were filtered at 0.2–4 kHz with low pass Bessel
characteristics, amplified as required and digitized at sampling intervals between one ms and 40 ms.
The program PULSEFIT (HEKA Elektronik) was used to analyze the current traces. (C) Representative
DRG outward currents showing their sensitivity to MiDCA1. The toxin was applied three min prior to
the recordings. The gray horizontal bar in (C) indicates the duration of MiDCA1 application during
the current recording. (D) Normalized outward current amplitudes (Inorm) measured before (white
diamonds—w/o) and after (black circles) the application of 1 µM MiDCA1 were plotted against test
voltages. Current amplitudes recorded from MiDCA1-sensitive neurons before and three min after
MiDCA1 application as shown in (C) were subtracted from each other to obtain information about
the MiDCA1-sensitive current. The points represent the mean ± SEM (n = 19). All measurements
were done at 37 ◦C. Vertical and horizontal scale bars in (A–C) indicate current amplitude and pulse
duration, respectively.
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Figure 2. Comparison of the inhibitory activity of MiDCA1 and guangxitoxin (GxTx) on DRG
potassium currents. (A) Representative recordings of DRG potassium currents after application of
1 µM MiDCA1 (gray horizontal bar) and subsequent application of 30 nM GxTx (black horizontal
bar). (B) Representative recordings of DRG potassium currents after application of 1 µM MiDCA1
(gray horizontal bar) preceded by application of 30 nM GxTx (black horizontal bar). Currents were
elicited by a 1 s voltage step to +60 mV from a holding potential of −30 mV. Toxins were applied three
min prior to the recordings. All measurements were done at 37 ◦C. (C) Data were acquired using the
experimental design shown in (A,B). Relative current inhibition was obtained by dividing plateau
current amplitudes, recorded after toxin application at the end of a 1 s test pulse to +60 mV, by the
current amplitude recorded before application. White rectangles represent the data for toxin-sensitive
DRG neurons; black rectangles represent those of DRG-insensitive neurons. (D) Relative current
inhibition, calculated as in (C), measured after MiDCA1 application followed by GxTx application
(1st MiDCA1, 2nd GxTx—black rectangles) or after GxTx application followed by MiDCA1 application
(1st GxTx, 2nd MiDCA1—gray rectangles). (E) Outward current amplitudes measured before (black
diamonds—Control) and after the application of 1 µM MiDCA (gray rectangles), 30 nM GxTx (black
triangles), and 120 nM GxTx (white circles) plotted against the test voltages. Note that the response to
120 nM GxTx was virtually identical to that seen with 30 nM GxTx. The results in panels (C,D) are
shown as the mean ± SEM (n = 7). n.s. not significant (panels C and D).

We next expressed Kv2.1 channels in a Xenopus oocyte heterologous system to examine the
inhibition by MiDCA1. The application of 1 µM MiDCA1 reversibly inhibited Kv2.1-mediated
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current by 55 ± 8.9% (Figure 3A,B). To check the selectivity of inhibition, we also applied the same
concentration of toxin to Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.6, and KCNQ2/KCNQ3 voltage-dependent
channels expressed in oocytes. None of these channel subtypes was inhibited by MiDCA1 (Figure 3C).
Other channels such as Kv 3.1, Kv 4.2, M-channel, HERG, KCNQ1, BKα, and BKβ were also tested,
but none of them was inhibited by 1µM MiDCA1 (data not shown). These findings indicate that MiDCA1
showed selectivity for Kv2.1 over all the other Kv channels tested in this study. The limited amount
of toxin available precluded similar experiments with other Kv channel subtypes, Kv2.2 channels,
and heteromeric channels composed of Kv2 and silencing KvS subunits.
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3. Discussion 

Figure 3. Inhibition of Kv2.1 channels by MiDCA1. (A) Representative current traces of the Kv2.1
channel recorded from Xenopus oocytes before (control), during incubation with 1 µM MiDCA1,
and during washout (wash). The current traces correspond to the points shown in (B) as open circles.
(B) Normalized current amplitude before (control), during application of 1 µM MiDCA1 (horizontal
bar), and during washout (wash). Inhibition of current was calculated as the difference between the
first and second open circles (0.55 ± 0.089, n = 3, p < 0.001). (C) Typical current traces from several types
of Kv channels expressed in oocytes and screened for inhibition by MiDCA1. Symbols are identical to
those in (A). Oocytes were transfected with the Kv channels as described in the Methods, and at least
three cells were tested for each channel type, with no significant differences in the responses within
each set of cells. None of the channel types screened was sensitive to blockade by MiDCA1, except for
Kv2.1 (panels A and B).
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3. Discussion

Members of the Kv2 subfamily (Kv2.1, Kv2.2) are expressed in nerve tissues and have various
splice variants. These proteins form heteromultimers with the so-called γ- or silent subunits of the Kv5,
Kv6, Kv8, and Kv9 subfamilies [21]. DRG neurons express Kv2 α-subunits as well as several of Kv2
homotetramers and silencing Kv subunits (KvS) that heterotetramerize with Kv2 subunits [18], with the
latter affecting Kv2 channel properties and pharmacology [22–28]. Since it is currently unknown which
subunit combination of Kv2 delayed-rectifier channels is expressed in which DRG neuron type, it also
remains to be determined which heteromultimeric Kv2 channel types represent the MiDCA1 target.

The secretogogue activity of snake venom PLA2 neurotoxins that disrupts synaptic function
includes the production of docosahexaenoic acid (DHA) [29]. DHA acts at an extracellular site on
neurons to produce a voltage- and time-dependent block of the delayed rectifier current (IK) [30].
Interestingly, the GxTx blockade of Kv2 channels is also voltage-dependent [7,20]. GxTx acts as a
gating modifier that apparently inhibits Kv2 channels by shifting the channel activation to very positive
potentials. In contrast, many toxins, e.g., scorpion, bee, and sea anemone toxins [7,19,28,31–33], inhibit
Kv channels by occluding the extracellular pore entrance. Whether MiDCA1 acts as a Kv2-channel
gating modifier in a manner similar to GxTx will be an interesting subject for future studies.

4. Materials and Methods

MiDCA1 was purified from M. d. carinicauda venom (obtained from Sigma Chemical Co., St. Louis,
MO, USA) using reverse-phase high performance liquid chromatography (RP-HPLC), as previously
described [13]. The purified toxin was quantified by the dye-binding assay of Bradford [34], and the
concentration used in the experiments was calculated based on the molecular mass of the purified
toxin. Guangxitoxin-1E was purchased from Alomone Laboratories (Jerusalem, Israel). Toxin solutions
were prepared daily by dilution in saline immediately before use. Small to medium-sized neurons were
isolated from the DRG of nine-week-old male C57Bl/6j mice with enzymatic and mechanical methods,
as described previously [4,18]. DRG neurons were plated on laminin/poly-L-lysine/borate-coated
cover-slips at a low density (2000–3000 per dish) and were maintained 1–3 days at 37 ◦C for recording
K+ outward currents in physiological saline solution in the whole-cell patch-clamp configuration at
37 ◦C. Contamination of the recorded current by sodium and calcium currents was suppressed by
adding 30 nM tetrodotoxin (TTX) and 1 µM nifedipine, respectively. Currents were evoked from a
holding potential of −80 mV. We included a 2 s pre-pulse of −30 mV to inactivate rapidly inactivating
Kv currents, e.g., those expressed by members of the Kv3 and Kv4 family. Thereafter, we applied 1 s
voltage steps to test potentials between −30 mV and +60 mV in 15 mV increments.

The expression of various Kv channels in Xenopus oocytes and their recordings were done as
previously described [35]. Briefly, oocytes were surgically removed and defolliculated with collagenase
(3 µg/µL) in OR2 solution. After a 24 h incubation in OR2 solution supplemented with 1.8 mM
Ca2+ and gentamicin (50 µg/mL), the oocytes were injected (50 nL/oocyte) with mRNA encoding the
desired potassium channels using a Nanoject2000 microinjector (Drumont Scientific Co., Broomall,
PA, USA). mRNA was synthesized using a T7 mMessage mMachine kit (Ambion, Austin, TX, USA),
quantified and stored at −80 ◦C. Whole-cell currents from oocytes were recorded using an OC-725C
amplifier (Warner Instruments, Hampden, CT, USA) coupled to Patchmaster software (Heka Elektronik,
Lambrecht, Germany). Data analyses were done with Excel, Igor Pro and GraphPad Prism v.5 and the
results were shown as the mean ± SEM. Statistical comparisons were done using two-way ANOVA
followed by the Bonferroni test, with p < 0.05 indicating significance.
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