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Abstract

Rationale

Respiratory syncytial virus (RSV) infection in preterm and newborn infants can result in

severe bronchiolitis and hospitalization. The lamb lung has several key features conducive

to modeling RSV infection in human infants, including susceptibility to human strains of

RSV such as the A2, Long, and Memphis Strain 37 (M37). In this study, the kinetics of M37

infection was investigated in newborn lambs in order to better define clinical, viral, physio-

logical, and immunological parameters as well as the pathology and lesions.

Methods

Newborn lambs were nebulized with M37 hRSV (6 mL of 1.27 x 107 FFU/mL), monitored

daily for clinical responses, and respiratory tissues were collected from groups of lambs at

days 1, 3, 4, 6, and 8 post-inoculation for the assessment of viral replication parameters,

lesions and also cellular, immunologic and inflammatory responses.

Results

Lambs had increased expiratory effort (forced expiration) at days 4, 6, and 8 post-inocula-

tion. Nasal wash lacked RSV titers at day 1, but titers were present at low levels at days 3

(peak), 4, and 8. Viral titers in bronchoalveolar lavage fluid (BALF) reached a plateau at day

3 (4.6 Log10 FFU/mL), which was maintained until day 6 (4.83 Log10 FFU/mL), and were

markedly reduced or absent at day 8. Viral RNA levels (detected by RT-qPCR) in BALF

were indistinguishable at days 3 (6.22 ± 0.08 Log10 M37 RNA copies/mL; mean ± se) and 4

(6.20 ± 0.16 Log10 M37 RNA copies/mL; mean ± se) and increased slightly on day 6 (7.15 ±

0.2 Log10 M37 RNA copies/mL; mean ± se). Viral antigen in lung tissue as detected by

immunohistochemistry was not seen at day 1, was present at days 3 and 4 before reaching
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a peak by day 6, and was markedly reduced by day 8. Viral antigen was mainly present in

airways (bronchi, bronchioles) at day 3 and was increasingly present in alveolar cells at

days 4 and 6, with reduction at day 8. Histopathologic lesions such as bronchitis/bronchioli-

tis, epithelial necrosis and hyperplasia, peribronchial lymphocyte infiltration, and syncytial

cells, were consistent with those described previously for lambs and infants.

Conclusion

This work demonstrates that M37 hRSV replication in the lower airways of newborn lambs

is robust with peak replication on day 3 and sustained until day 6. These findings, along with

the similarities of lamb lung to those of infants in terms of alveolar development, airway

branching and epithelium, susceptibility to human RSV strains, lesion characteristics (bron-

chiolitis), lung size, clinical parameters, and immunity, further establish the neonatal lamb

as a model with key features that mimic RSV infection in infants.

Introduction
Human Respiratory Syncytial Virus (hRSV) is an enveloped, non-segmented, single stranded
negative sense RNA pneumovirus of the paramyxoviridae family that causes lower airway
respiratory disease in preterm newborns, term newborns, and elderly adults [1, 2]. It is the
most important viral pathogen causing acute lower respiratory tract infections (ALRI) in
infants younger than 5 years old and it is estimated to have resulted in ~3.4 million hospitaliza-
tions and ~200,000 deaths worldwide in 2005 [3]. RSV is transmitted by direct and indirect
contact of nasal or oral secretions from an infected individual and primarily targets the lower
airway respiratory epithelium (bronchioles) [4]. Clinical signs in infants and in children
develop four to six days after infection with RSV, and usually subside after one to two weeks
[5]. These signs vary with severity of disease and range from mild flu-like symptoms (coughing,
sneezing, fever, and loss of appetite) in 25% to 40% of first-time exposed infants to severe bron-
chiolitis with or without pneumonia (rapid breathing, difficulty breathing, and wheezing)
necessitating hospitalization in 0.5% to 2% of infants[6]. In very young infants, irritability,
decreased activity, and apnea may be the only symptoms of infection. These clinical symptoms
have been attributed to both the immune response to RSV, as well as the direct damage to
RSV-infected bronchiolar epithelium [7, 8].

Current treatment of RSV infection is limited to supportive care. There exists an inhaled
nucleoside analog (Ribavirin) that is approved for therapeutic use but which has limited treat-
ment efficacy, as well as a monoclonal antibody (Synagis1, palivizumab), but whose use is lim-
ited to prophylactic application in high risk infants [9]. Two major hurdles in the development
of preventative and therapeutic regimens are (i) the safety considerations following vaccination
in young infants exemplified by the disastrous initial formalin-inactivated vaccine clinical trials
where vaccination potentiated the disease rather than being protective and (ii) the lack of an
available, clinically relevant model of RSV infection [10].

Animal models developed to study RSV infection include mice, cotton rats, ferrets, non-
human primates, cattle, and lambs [9]. Lambs have several biological features that closely
mimic RSV infection in human infants such as: similarities to human infants in lung develop-
ment, lung structure and airway branching, cellular composition and immune responses, sur-
vival after late-preterm birth, susceptibility to various strains of RSV including human strains
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(Long, A2, and Memphis Strain 37), similar histologic lesions and lung size to human infants,
and the ability to obtain lambs lacking maternal antibodies [11–15]. Despite these advantages
and the many previous and on-going studies of RSV infection in lambs, the progressive devel-
opment of clinical signs, lung pathology and inflammatory/immune responses over time after
inoculation with a human strain of RSV have not been fully characterized. Thus, the aim of this
study was to gain further insight and understanding of the effects of RSV infection in the neo-
natal lamb model throughout infection (days 1, 3, 4, 6 and 8 after inoculation) with the human
RSVMemphis Strain 37. This kinetic information is needed in order to more fully characterize
and utilize the lamb model for therapeutic and vaccine studies.

Material and Methods

Experimental design
Colostrum-deprived neonatal lambs (2–7 days of age) received daily antibiotics (Ceftiofur, Pfi-
zer, New York, NY; 1–2 mg/kg, intramuscular) to prevent secondary bacterial infections. They
were randomly assigned to five M37 hRSV-infected groups, of 3 lambs (n = 3). Each lamb
received three 2-mL installments of 1.27 x 107 FFU/mL in DMEM over a 23-minute period
using a PARI LC Sprint™ nebulizer (PARI Respiratory Equipment, Inc., Lancaster, PA, USA) at
4L/min at 16 PSI (Philips Respironics Air Compressor, Andover, MA, USA) attached to a coni-
cal mask fitted with a round rubber diaphragm with a pre-cut center hole through which the
nose and mouth of the lamb was inserted (MidWest Veterinary Supply, Inc., Burnsville, MN).
Following infection, lambs were euthanized by sodium pentobarbital overdose and necropsied
at different days post viral infection (p.i.): days 1, 3, 4, 6, and 8 p.i. After euthanasia the thorax
was opened, lungs were removed, and RSV gross lesions (not including bacterial pneumonia
lesions) were scored and photographed ex vivo. Tissue samples were collected from each lung
lobe of all animals in the same manner, with uniform sampling of each lobe, and avoiding
areas of bacterial pneumonia. Before lung dissection, bronchoalveolar lavage fluid (BALF) was
collected from the right caudal lung lobe for infectious Focus-Forming Unit (FFU) assay and
RT-qPCR for M37 hRSV total nucleoprotein RNA and accessory lobe, for cytology (total and
differential cell counts), as described below. Three samples from each lobe were snap frozen in
liquid nitrogen for reverse transcription quantitative polymerase chain reaction (RT-qPCR),
and two samples from each lobe were placed in tissue cassettes and put in 10% neutral-buffered
formalin for histological and immunohistochemical analyses.

Due to limitations in housing and number of lambs that can be handled in one study, the
day 6 assessments were derived from an additional group of 3 lambs that was infected shortly
after the necropsy of the other groups. The procedures, viral stock used and animal handling
were identical to the viral kinetic (VK) study. The only difference was that the day 6 animals
were slightly younger and lighter than the VK study animals as these came from another sup-
plier (mean bodyweights of 3.4 ± 0.17 vs 6.3 ± 0.24 for the VK study on day 0; mean± se). In
accordance to the 3R-principles, control lambs were not included in this study as previous
work in our lab showed that non-infected lambs entirely lacked evidence of clinical illness,
lung pathology, or immune and inflammatory changes that are consistent with M37 hRSV
infection [1, 16–20]. Animal use and experimental procedures were approved by Iowa State
University’s Animal Care and Use Committee (IACUC).

Virus
Memphis 37 (M37) RSV is a wild type RSV-A, first isolated from a 4 month old infant [21] and
used in human clinical studies [22–24]. The Memphis 37 RSV strain used in this study was pas-
saged 6 times on Vero cells then twice on HEp-2 cells. Sucrose was added to 20% and the virus
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stock was frozen at −80°C and titered for infectivity on HEp-2 cells as we have characterized
previously in this model [20].

Monitoring of clinical signs
Lambs were monitored daily for body weights, rectal temperatures, heart rate and percent
blood oxygenation measurements (PalmSAT1 2500A VET pulse oximeter, Nonin Medical
Inc., Plymouth, MN, USA), and manual heart and respiratory rates (by auscultation). Increased
expiratory effort (forced expiration) was scored daily as were animal “wheeze” scores (Table 1).

Collection of nasal wash fluid (NWF)
Just before euthanasia the nasal cavity of each lamb was washed with double-modified Iscove’s
medium (DMIM) containing 42.5% Iscove's modified Dulbecco's medium, 7.5% glycerol, 1%
heat-inactivated FBS, 49% Dulbecco’s Modified Eagle medium (DMEM), and 5 μg/mL kana-
mycin sulfate. Using a 6-mL syringe fitted with a mucosal atomization device (MAD) conical
foam end-piece (Intranasal Mucosal Atomization Device, Wolfe Tory Medical, Inc., Salt Lake
City, UT, USA) a single 5 mL aliquot of DMIM was instilled into the right nare, and then
(while still preserving a good seal between the nare and the MAD-device conical end-piece),
any out-coming fluid was extracted fairly quickly, in one motion, back into the delivery syringe
to collect (1.3–2.5 mL) NWF; which was dispensed into a 15 mL conical tube and placed on
ice.

Collection of bronchoalveolar lavage fluid (BALF)
Following euthanasia the lungs of each lamb were removed and each left and right lung was
separated and weighed. The excised right caudal lung lobe was instilled with 5 mL of cold
DMIM (42.5% Iscove's modified Dulbecco's medium, 7.5% glycerol, 1% heat-inactivated FBS,
49% DMEM, and 5 μg/ml kanamycin sulfate) after which 1 mL of the resulting BAL fluid was
placed on ice and spun down for 5 minutes in a centrifuge at 3,000 x g to pellet large debris.
Approximately 800–850 μL of each supernatant was collected and then spun through 850 μL-
capacity 0.45 μmCostar SPIN-X filter (microcentrifuge 15,600 x g) for 5 minutes before being
used in the standard infectious focus forming unit assay (FFU).

Gross lesions evaluation and scoring
Following euthanasia, the thorax was opened and the heart and esophagus were removed from
the lungs. The percentage parenchymal involvement of gross RSV lesions was scored for each
individual lung lobe, and if present, the area and amount of lung lobes affected by bacterial
pneumonia was also recorded. The percentage of a specific lobe tissue that was affected by RSV

Table 1. Scoring criteria for lung function by auscultation.

Score Expiratory efforts Wheezing (High-pitched whistling sound
made while breathing)

0 No expiratory effort No wheeze

1 Earliest detection of increased expiratory effort Earliest detectable wheeze by auscultation

2 Moderate expiratory effort (>1sec) observed with
some abdominal effort

Audible wheeze in all lung fields by
auscultation

3 Expiratory effort (>3 sec) with hard abdominal
effort

Wheeze audible without stethoscope

doi:10.1371/journal.pone.0143580.t001
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in relation to the overall lobe tissue being scored was estimated based on a score as done previ-
ously [1]. Mean percentage averages per lobe were calculated for each day of necropsy.

Histologic evaluation and scoring
A histologic score was given by determining percent involvement followed by conversion to an
additional integer-based consolidation scale used by our laboratory previously [1] wherein: 0%
consolidation = 0; 1%-9% consolidation = 1; 10%-39% consolidation = 2; 40%-69% consolida-
tion = 3; 70%-100% consolidation = 4. In total, multiple fields from 4 slides per animal were
scored for the lesions. Each slide contained 2 different sections from the same lobe. Histologic
score for each animal was the mean of all 4 slides and group averages were calculated for the
alveolar consolidation score. In addition to the consolidation score, bronchitis/bronchiolitis,
neutrophil infiltration, peribronchiolar and perivascular infiltration of lymphocytes, syncytial
cell formation, and epithelial alterations were also scored according to criteria indicated in
Table 2.

Immunohistochemistry for viral antigen detection
Immunohistochemistry for the detection of RSV antigen was performed on 5 μm-thick forma-
lin-fixed paraffin-embedded (FFPE) lamb lung tissue sections taken from the right and left cra-
nial, left middle, and left caudal lung lobes of each animal in accordance with methods
published previously [17, 25], but with the following variations: instead of Pronase E antigen
retrieval, heated buffer antigen retrieval was performed in TRIS-EDTA-0.05% Tween 20, pH
9.0 in a pressure cooking device (Decloaking Chamber™ Plus, Biocare Medical, Concord, CA)
using the factory default 40-minute program (125°C reached in 18 minutes and cooling to
80°C in another 22 minutes). Primary polyclonal goat anti-RSV (all antigens) antibody (EMD
Millipore Corporation, Billerica, MA, USA) was applied for 90 minutes at room temperature
diluted 1:500 in TBS-tween containing 10% NSS and 3% BSA. After rinsing with TBS-tween,
biotinylated rabbit anti-goat secondary antibody (Kirkegaard-Perry Labs, Gaithersburg, MD,
USA) diluted 1:300 in TBS-tween containing 10% NSS and 3% BSA was applied for 45 minutes,
after which slides were rinsed with TBS-tween, treated with 3% H2O2 in TBS-tween for 25 min-
utes, rinsed and then incubated with streptavidin-conjugated HRP (Invitrogen) diluted 1:200
in TBS-tween for 30 minutes. Development of the color was performed in custom 12-slide plas-
tic containers (Antibody Amplifier™ containers, ProHisto, LLC, Columbia, SC, USA) by apply-
ing Nova Red (Vector Laboratories, Inc.) for about 90 seconds followed by copious rinses with
ddH2O, counterstaining with Harris’ hematoxylin (for 2 minutes), bluing with alkaline Scott’s
water (for 1 minute), dehydration and coverslipping with Permount mounting medium
(Sigma, St. Louis, MO, USA). 20 unique 10X fields on each slide (containing two lung sections
each) were assessed for RSV antigen staining by counting positively-stained cells within bron-
chioles and alveoli. The mean number of stained bronchi/bronchioles and alveoli per field were
counted for each day of necropsy.

Reverse transcription quantitative polymerase chain reaction (RT-
qPCR) assessment of RSV and chemokine gene mRNA expression
levels in lamb lung
For each animal, tissue samples from right and left cranial, left middle and left caudal lung
lobes (0.3–0.4 g of each lobe) were homogenized for total RNA isolation in TRIzol (Invitrogen)
and previously described methods [1]. RNA was assessed for quantity and purity by spectrom-
etry (Beckmann DU1 640B, Beckmann Coulter Inc., Brea, CA, USA) and all OD260nm/280nm
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values measured between 1.96 and 2.12. Agilent Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, USA) analysis of RNA prior to DNase treatment consistently yielded RIN values
�8.0 for all lamb lung RNA samples isolated this way [16]. Reverse transcription quantitative
polymerase chain reaction (RT-qPCR) was performed using One-Step Fast qRT-PCR Kit mas-
ter mix (Quanta, BioScience, Gaithersburg, MD, USA) in a GeneAmp 5700 Sequence Detection
System (Applied Biosystems, Carlsbad, CA, USA) and PREXCEL-Q for all set up calculations
[26, 27]. Primer and probe sequences for all targets were designed with ABI Primer Express
2.0, and have been used previously [1, 17, 28]. Primers and hydrolysis probe for targeting M37
hRSV NP RNA were designed using ABI Primer Express version 2.0 based on RSV accession
number M74568. Thermocycling conditions were 5 minutes at 50°C; 30 seconds at 95°C; and
45 cycles of 3 seconds at 95°C and 30 seconds at 60°C. Samples and standards were assessed in
duplicate, and each target gene quantification cycle (Cq) value was converted to a relative
quantity (Qr) based on each target’s standard curve using: Qr = EAMP

(b-Cq), wherein “b” and
“EAMP” are the y-intercept and exponential PCR amplification value, respectively. EAMP values
were obtained from the slope (m) of each target standard curve by: EAMP = 10(-1/m), and all Qr

values interpolated from standard curves were normalized to total lung RNA per RT-qPCR
(0.784 ng RNA/μL for all reactions). No-RT control (NRC) reactions gave either no signal or
generated Cq values greater than 13 cycles later than those in the corresponding RT-qPCR tar-
get reactions.

Reverse transcription quantitative polymerase chain reaction (RT-
qPCR) for RSV in nasal wash fluid and bronchoalveolar lavage fluid
Viral RNA was quantified by reverse transcription quantitative polymerase chain reaction
(RT-qPCR) in NWF and BALF obtained from each animal at necropsy. NWF was obtained
from the right nasal cavity and BALF from the right caudal lung lobe of each animal (see sec-
tion on NWF and BALF collection). Briefly, 100 μL of each collected fluid sample was pipetted
directly into 1 mL of TRIzol (Invitrogen/Life Technologies, Carlsbad, CA, USA) on ice,
inverted to mix, and then transferred to -80°C for storage until RNA isolation and subsequent
RT-qPCR. Upon thawing, each 1.1 mL sample was vortexed for 10 seconds and allowed to sit
at room temperature for 10 minutes. RNA isolation from NWF and BALF samples continued
as per manufacturer’s instructions. The resulting (non-visible) RNA pellets, were each dis-
solved in 100 μL of nuclease-free water (Invitrogen/Life Technologies), vortexed thoroughly,
microfuged briefly, warmed to 60°C for 3 minutes, vortexed for 5 seconds, microfuged briefly,
then 80 μL of each was diluted 1:10 with a combination of 10 μL RNaseOUT™ (to 0.5 Units/
μL), and 710 μL nuclease-free water, then stored at 4°C prior to RT-qPCR. RT-qPCR for RSV
was then carried out as described above in the section: “Reverse transcription quantitative poly-
merase chain reaction (RT-qPCR) assessment of RSV and chemokine gene mRNA expression
levels in lamb lung”.

Focus-forming unit (FFU) assay
Viral titers in both nasal wash fluid (NWF) and bronchoalveolar lavage fluid (BALF) from the
right lung caudal lobe were determined using an infectious focus assay (FFU). In brief, 200 μL
of serially-diluted NWF or BALF samples were applied to HEp-2 cells grown to 70% conflu-
ence in 12-well culture plates (Fisher Scientific, Hanover Park, IL) in DMEMmedia (Media-
tech, Inc., Manassas, VA) supplemented to 10% with heat-inactivated fetal bovine serum (FBS)
(Atlanta Biologicals, Atlanta, GA) and 50 μg/mL kanamycin sulfate (Invitrogen/Life Technolo-
gies). Each sample was analyzed undiluted and at four additional serial-dilutions of 1:10, 1:100,
1:1,000 and 1:10,000 in duplicate. Following a 48-hour incubation at 37°C, 5% CO2, the cells
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were fixed with cold 60% acetone/40% methanol solution for 1 minute. Overnight primary
polyclonal goat anti-RSV (all antigens) antibody (EMDMillipore Corporation, Billerica, MA,
USA) incubation was followed by washing and secondary antibody (Alexa Fluor1 488 F(ab’)2
fragment of rabbit anti-goat IgG (H+L), Molecular Probes/Life Technologies) incubation for
30 minutes. Plates were rinsed and inspected for the presence of fluorescing foci of infection
using the FITC/GFP filter on an inverted fluorescence microscope (Olympus CKX41, Center
Valley, PA). Five or more fluorescing cells were counted as single focal events. An average of 40
counts in a 1:10-diluted (duplicate) sample indicated an original NWF or BALF sample “titer”
of 2,000 [40 counts x dilution of 10 x 1,000 μL/mL]/200 μL assessed = 2,000 infectious focus-
forming units/mL (FFU/mL).

Results

Clinical findings
Following RSV-infection, there were no differences in weight gain, body temperature, heart
rate, and percent blood oxygen saturation when compared to control lambs from previous
studies in which the procedures, facilities, animal handling, and source and age of lambs were
similar [1, 16–20]. Despite a small drop in mean blood oxygen saturation levels on day 6
(92.4% ± 2%; mean ± SD) when respiratory distress was present in most lambs, these remained
above the 90% limit. Respiratory rates (not shown) were variable and non-predictable for each
day of the study and were likely confounded by the heavy sampling schedule and the resultant
stress level of the newborn lambs. Increased expiratory efforts and wheezing were the only
noteworthy clinical features observed in RSV-infected lambs in this study. Following inocula-
tion with M37 hRSV, expiratory efforts became apparent on day 3 in 4 out of 12 lambs (33%).
On day 5 this proportion increased to 4 out of 6 lambs (66%) and on day 6 to 5 out of 6 lambs
(83%). By day 7 all lambs (100%) had increased expiratory efforts, but on day 8 this proportion
dropped to 2 lambs out of 3 (66%). The severity of expiratory efforts increased from day 3 to
day 7 as shown by the mean expiratory effort score (Fig 1A). Similarly, wheezing was apparent
on day 3 although only in 1 out of 12 lambs (8.3%). The proportion of lambs that developed
wheeze gradually increased to reach a peak on day 5 (83.3%) and decreased on day 8 (33%).
The mean wheeze score followed a similar time profile (Fig 1B).

Gross and microscopic lung lesions
Following necropsy, gross examination of the lungs determined the percent of each lobe that
was covered with typical RSV-induced lesions. In some cases, areas of lung with lesions sugges-
tive of bacterial pneumonia were also present along with RSV-induced lesions, and lung lobes
with lesions suggestive of bacterial pneumonia were recorded, but not scored as RSV lesions.
RSV lesions were bilateral, evenly-distributed and characterized by multifocal to locally exten-
sive dark plum-red, well-demarcated foci of pulmonary consolidation which varied from mild
to severe (Fig 2A); consistent with RSV infection in lambs as reported previously [1, 17, 29]. In
contrast to RSV lesions, lung lobes affected by bacterial pneumonias were mild, unilateral, and
cranial ventral (right and middle lung lobes being mostly affected), and were characterized by
multifocal, locally extensive, firm, red-brown areas. Following RSV-infection, gross RSV viral
lesions were already detectable on day 1, and further increased by day 3, to reach maximal lev-
els by day 6 of around 40% and decreased thereafter (Fig 2B). For the lambs used in this study,
only the last group of lambs (10 and 12) necropsied at day 8, had gross lesions of bacterial
pneumonia affecting the right middle lung lobe. For day 6 lambs, lamb 14 had bacterial pneu-
monia affecting the right cranial and middle lung lobes. Again, these lung regions bearing non-
RSV-induced lesions were not sampled for attaining experimental endpoints.
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Microscopically, lungs of infected lambs had multifocal to coalescent foci of an inflamma-
tory infiltrate that partially filled the lumen of bronchi/bronchioles, alveolar spaces, and alveo-
lar septa. The airway lumen was also partially occluded by seroproteinaceous fluid and cell
debris intermixed with mucin. These lesions increased progressively with time and were similar

Fig 1. Respiratory distress score of lambs inoculated with human respiratory syncytial virus (hRSV)
strain Memphis 37 (M37).Respiratory distress score was assessed daily for each lamb by auscultation or
visual observation, and was categorized by expiratory effort (A) and wheezing (B). Results are shown as
mean ± standard error.

doi:10.1371/journal.pone.0143580.g001

Fig 2. Viral gross lesions caused by M37 hRSV infection in neonatal lambs. (A) Picture of a lung on day
6 post-infection. Dark plum-red, well-demarcated foci of pulmonary consolidation are indicated by
arrowheads. (B) Percentage parenchymal involvement was estimated for each lung lobe and mean
percentage averages per lobe were calculated for each day of necropsy (± standard error). Legend: Rt
Cr = Right cranial lobe; Rt Mid = Right Middle lobe; Rt Cd = Right Caudal lobe; Acc = Accessory lobe; Lt
Cr = Left Cranial lobe; Lt Mid = Left Middle lobe; Lt Cd = Left Caudal lobe.

doi:10.1371/journal.pone.0143580.g002
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to those described previously with M37 hRSV and with hRSV A2 strains [1, 17, 18, 25]. On day
1 p.i., small numbers of neutrophils were present within the lumen of bronchioles and occa-
sional bronchi. On day 3, microscopic lung lesions were characterized by mild to moderate
infiltrates of neutrophils in bronchiolar lumens with small amounts of seroproteinaceous fluid
and mucin. A mild but detectable infiltration of lymphocytes in the tunica adventitia of bron-
chioles and nearby blood vessels was also present. There was degeneration (cells with rounded
cell borders and basophilic/pyknotic nuclei) of epithelial cells in bronchioles (Fig 3A). The
intensity of the lesions were further increased on day 4 and characterized by the neutrophil
infiltration with sloughed, necrotic epithelial cells, seroproteineous fluid and small amounts of
mucin in bronchioles and bronchi along with occasional macrophages and the formation of
occasional syncytial cells in bronchio-alveolar spaces. The alveolar septa were mildly to moder-
ately thickened by hyperplasia of type II pneumocytes and the bronchioles were surrounded by
moderate to mild numbers of lymphocytes and plasma cells; a few lymphocytes were present
within the alveolar septa. By day 6, all observed lesions present on day 4 peaked, with the nota-
ble exception of lymphocytic infiltration in the peribronchiolar region and blood vessels. Neu-
trophils were prominent on day 6 p.i. but reduced/absent on day 8 p.i. which is consistent with
our previous studies in the lamb model [17, 28]. Peribronchiolar and perivascular lymphocyte
infiltration was increased on day 8 while all other parameters were reduced (Fig 3B).

Viral titers, viral RNA levels and viral antigen expression
Levels of M37 hRSV total nucleoprotein RNA in lung tissue, BALF, and NWF were measured
by RT-qPCR, while cultivatable virus was quantified by infectious focus (FFU) assay in NWF
and BALF collected on each day of necropsy. Viral titers and viral RNA in BALF and lung tis-
sue increased progressively from day 1 to day 3 and were sustained or increased slightly until
day 6. On day 8, viral titers and RNA decreased substantially as observed for all other virology
endpoints (viral antigen expression, gross lung lesions, and microscopic lesions). In contrast,
viral titers and viral RNA levels in NWF were more variable when comparing them to levels in
BALF and lung tissue. Viral titers in NWF were highest at day 3 (1.7 log10 FFU/mL), whereas
this was the case on day 6 (2.9 log10 RNA copies/mL) for viral RNA. Overall, intranasal viral
replication was substantially lower than viral replication in the lung (Table 3) and may be due
to the administration of virus by nebulization which may bypass the nose to some extent or be
indicative of a lower permissiveness of lamb nasal epithelial cells for RSV replication.

With immunohistochemistry, RSV antigen was present in areas with microscopic lesions.
Within these areas, RSV antigen was present in the entire cytoplasm of epithelial cells lining
bronchi and bronchioles, alveoli, and the cytoplasm of occasional macrophages (Fig 4A). On
day 1 p.i. no viral antigen expression was detected in the lungs of infected lambs and was only
apparent on day 3 predominantly in the epithelial cells of bronchi and bronchioles when com-
pared to the alveoli. There was an increasing progression of viral antigen expression in both
bronchi/bronchioles and alveoli, which reached a peak on day 6 with a marked shift in viral
antigen expression occurring in the alveoli. Degenerate and necrotic epithelial cells within
lumens of bronchioles also contained viral antigen at days 3, 4, and 6. On day 8, viral antigen
expression in lung tissue had decreased substantially (Fig 4B) consistent with a decline in RSV
titers in lung (Table 3).

Chemokine and cytokine expression in lung tissue
Lung cytokine mRNA expression levels were quantified by RT-qPCR and demonstrated vary-
ing patterns of expression in M37 hRSV-inoculated lambs throughout infection. While IL-10
expression levels were highest on day 3 post-infection other chemokines and cytokines had
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Fig 3. Microscopic lung lesions severity score in M37 hRSV infected neonatal lambs. (A)
Histopathologic lesions included bronchiolitis with degenerate/necrotic individual epithelial cells (thin arrow),
occasional syncytial cells (long arrow), accumulation of degenerate neutrophils (short arrow), and occasional
macrophages. H&E Bar = 50 μm. (B) A histologic score was given by determining percent consolidation
followed by conversion to an integer-based consolidation scale used by our laboratory previously [1]: 0%
consolidation = 0; 1%-9% consolidation = 1; 10%-39% consolidation = 2; 40%-69% consolidation = 3; 70%-
100% consolidation = 4. Group averages were calculated for alveolar and bronchiolar consolidation scores.
In addition to the consolidation score, bronchitis, bronchiolitis, neutrophil infiltration, peribronchiolar and
perivascular infiltration of lymphocytes, syncytial cell formation, and epithelial alterations were also scored.
Results are indicated as mean ± standard error for each scored parameter.

doi:10.1371/journal.pone.0143580.g003

Table 3. Quantification of RSV replication via RT-qPCR and infectious focus assay in lambs inocu-
lated with M37 hRSV.

Viral load (Nasal Washes)* Viral load (BALF)* Viral transcripts
(Lung tissue)

Viral culture
(Log10 FFU/
mL ± se)

RT-qPCR (Log10

M37 RNA
copies/mL ± se)

Viral culture
(Log10 FFU/
mL ± se)

RT-qPCR (Log10

M37 RNA
copies/mL ± se)

RT-qPCR (Log10

M37 RNA copies/
mg lung

tissue ± se)

Day
1

BDL (0.7) 1.44 ± 1.1 2.53 ± 0.09 3.80 ± 0.03 4.81 ± 0.15

Day
3

1.7 ± 0.4 1.68 ± 1.4 4.60 ± 0.32 6.22 ± 0.08 6.51 ± 0.08

Day
4

0.6 ± 0.1 0.42 ± 0.1 3.94 ± 0.25 6.20 ± 0.16 6.67 ± 0.25

Day
6

0.99 ± 0.3 2.89 ± 0.34 4.83 ± 0.04 7.15 ± 0.2 7.63 ± 0.07

Day
8

0.8 ± 0.1 1.46 ± 1.2 1.02 ± 0.32 4.70 ± 0.38 5.24 ± 0.26

*BDL = below detection limit. All samples BDL were assigned a value of 0.7 log10 FFU/mL for culture and

0.3 log10 RNA copies/mL for RT-qPCR. Values in brackets depict the standard error.

doi:10.1371/journal.pone.0143580.t003
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maximal expression at later timepoints (e.g. TGF-β on day 4; IL-8, RANTES and MCP-1α on
day 6 and IFN-γ on day 8) (Fig 5). Similarly, previous results from our laboratory have shown
that MCP-1α, MIP-1α, RANTES, IFN-γ, and IL-8 were increased upon RSV-infection in neo-
natal lambs on day 6 [1], whereas the anti-inflammatory mediator, IL-10, was down regulated
at day 6 post-infection, but increased on day 3 post-infection [28].

Discussion
This study aimed to determine the time course of M37 hRSV replication in neonatal lambs and
the corresponding pathophysiology i.e. clinical signs (wheezing, respiratory distress), airway
inflammation, and lung histopathology. Such a time course is difficult to assess in infants since
the diagnosis is often only done at the time of or near peak viral titers.

Colostrum-deprived neonatal lambs are highly relevant for the study of RSV infection and
may serve as a model of RSV infection in human infants due to the natural susceptibility of
lambs to ovine, bovine and human strains of RSV as well as similarities in disease pathogenesis
and anatomical, physiological and developmental similarities to that of human infants [13–15].
Experimentally, it has been shown that lambs and other ruminants can be infected with human
or bovine RSV strains and that the infection induces lung lesions that resemble those observed

Fig 4. Immunohistochemistry and scoring of RSV antigen expression in lambs inoculated with M37
hRSV. Immunohistochemistry was used to detect viral antigen using an all-antigens polyclonal antibody for
RSV. (A) RSV immunoreactivity is shown within epithelial cells lining the bronchioles (brown cells).
Bar = 50 μm (B) The mean number of virally-infected bronchi/bronchioles and alveoli per field was counted
for each day of necropsy.

doi:10.1371/journal.pone.0143580.g004
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in human RSV pathology such as bronchiolitis with epithelial cell necrosis, syncytial cell for-
mation, hyperplasia of nearby epithelium and infiltrates of neutrophils with occasional macro-
phages [1, 11, 17, 29–33]. Moreover, RSV infected lambs develop mild to moderate clinical
symptoms such as expiratory effort, fever, tachypnea, wheeze, malaise and listlessness [1, 11,
17, 29, 32] and formalin-inactivated RSV vaccination in lambs induces enhanced lesions upon
RSV infection [19] as observed in infants [34, 35]. To date, and to our knowledge, no study has
yet specifically addressed the time course of viral replication, histopathology, airway inflamma-
tion, and associated clinical symptomatology (wheezing, respiratory distress) in neonatal
lambs following infection by nebulized inhalation of the M37 hRSV strain. The purpose of this
study, therefore, was to define the time course of Memphis 37 RSV replication in the lungs of
neonatal lambs and the corresponding clinical features and pathophysiology.

Following RSV infection, this study demonstrates that there is robust viral replication as
determined by titers and mRNA levels in the lungs, which peaked on day 3, were sustained until
day 6 and decreased by day 8. Viral replication was present in the nasal cavity with maximal
titers detected at days 3 (cultivatable virus) and 6 (mRNA) post inoculation, but this replication
was less robust compared to lung, as viral titers were ~3 Log lower in the nasal wash fluid than
in lung on day 3. Such differences in NWF and BALF titers may be related to the administration
route which partly bypasses the nasal meatus and also because the sampling of nasal cavity
(washes of a cavernous space) differs from solid lung tissue and BALF (taken from a bronchus
directly at post mortem). The kinetics of RSV RNA expression levels in BALF and lung tissue
displayed a similar profile. Viral antigen expression followed a similar time-profile as titers and
mRNA levels, albeit with a delay, and was detected in intact and degenerate/necrotic bronchio-
lar epithelial cells and ciliated airway epithelial cells in bronchi; cell types that were shown to be
permissive to RSV infection [36–41], as well as in the cytoplasm of occasional macrophages,
consistent with the distribution of virus-infected cells in fatal cases of RSV-infection [33]. Viral
antigen expression in bronchi/bronchioles and alveoli for each day post-inoculation followed
the progression/severity of microscopic lung lesions, gross lung lesions, and respiratory distress.

Fig 5. Lung chemokine mRNA expression assessed by RT-qPCR in lambs inoculated with M37 hRSV.
Lung tissue obtained from each animal was evaluated for the following mRNA targets: surfactant protein A
(SP-A), surfactant protein D (SP-D), interleukin 8 (IL-8), interleukin 10 (IL-10), macrophage inflammatory
protein 1 alpha (MIP-1α), monocyte chemotactic protein 1 alpha (MCP-1α), tumor necrosis factor alpha (TNF-
α), transforming growth factor beta (TGF-β), interferon beta (IFN-β), interferon gamma (IFN-γ), programmed
cell death 1 ligand 1 (PD-L1), and regulated on activation normal T-cell expressed and secreted (RANTES).
Mean relative mRNA expression was calculated for each target with respect to each day of necropsy.
Relative mRNA expression means: relative to the total amount of RNA loaded per reaction (which is kept
constant) and relative to the values established by the standard curves for each target.

doi:10.1371/journal.pone.0143580.g005
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Microscopically, the bronchiolar epithelia had evidence of necrosis on days 3 and 4 and epi-
thelial hyperplasia, which increased until day 6. The infected bronchiolar cells can, as a result,
become degenerate and necrotic and contribute to the cell debris entering and partially occlud-
ing the airway lumen. In addition, the necrotic areas and the inflammatory mediators released
in this process facilitate neutrophil infiltration and accumulation of seroproteinaceous fluid
and mucin, all of which can further occlude the airway lumen. Lymphocytes were first observed
by day 3 and 4 and appeared to achieve peak levels by day 6 to 8. Immune cell infiltrates accu-
mulated in the tunica adventitia of bronchi, bronchioles and small blood vessels, and slightly
more macrophages were observed in the alveolar and bronchiolar lumens. On day 8 post-infec-
tion, airway lumens were observed to contain only occasional neutrophils and macrophages,
while infiltrates of lymphocytes and plasma cells remained present in the adventitia, reflecting
a change from neutrophilic to lymphocytic and plasmacytic inflammation. The role of lympho-
cytes in RSV clearance and convalescence has previously been evidenced in human and mouse
studies [42–44] and the failure to develop an adaptive cytotoxic T lymphocyte response has
been proposed to be related to the pathogenesis of RSV infection of the lower respiratory tract
[45]. Conversely, neutrophils are the most abundant cell type recovered from the respiratory
tract in infants-hospitalized for RSV disease [46–48] and it has been suggested that they can
contribute significantly to epithelial cell damage and to disease severity [49, 50].

In addition to inflammatory cell influx in the lungs, it has been shown that chemokines and
cytokines, such as IL-8, RANTES, MIP-1α, IL-6 and IL-10 are increased in RSV-infected
infants [49, 51–57] and likely to promote the intense inflammatory process present in the air-
ways of these infants. For this reason, we sought to investigate the time course of chemokine
expression in lung tissue from RSV-infected lambs. Expression of proinflammatory chemo-
kines and cytokines such as IL-8, IFN-γ, IFN-β, MCP-1α, MIP-1α and TNF-α or anti-inflam-
matory cytokines such as IL-10 was detected and was consistent with previously published data
[1, 28]. Peak expression of IL-8 was present at day 6 post-infection and coincided with peak
neutrophil influx in the lungs of RSV-infected lambs which indicates that the increased chemo-
kine expression contributed to neutrophil infiltration into the site of intense RSV infection, in
accordance with the role of IL-8 in neutrophil chemotaxis [7]. In contrast, IFN-γ expression, a
cytokine mainly produced by NK cells and activated CD4+ and CD8+ T cells that promotes
cell-mediated immune responses to intracellular pathogens, was maximal at day 8 post-infec-
tion at a time when peak lymphocyte lung infiltration was noted. Taken together, this data sug-
gests that RSV infection in neonatal lambs results in an initial innate inflammatory response,
the peak of which coincides to that of peak disease, and is characterised by IL-8 secretion and
neutrophil influx. During the transition from the initial inflammatory response, there is infil-
tration of lymphocytes and, as the disease resolves, the inflammatory response is characterised
by IFN-γ secretion and continued lymphocyte influx. Interestingly, a suppressed lymphocyte
function and increased plasma IL-8 levels were shown to be markers of severe disease in RSV
bronchiolitis [58].

The most interesting results, however, obtained in the current study were those related to
the clinical parameters. Infants with RSV-disease typically develop clinical manifestations such
as bronchiolitis and pneumonia symptoms of which include wheezing, crackles, rhonchi,
tachypnea, nasal flaring, and intercostal muscle retractions [59, 60]. In our study, the neonatal
lambs developed respiratory distress (forced expiration, abdominal breathing and wheeze) fol-
lowing RSV-infection consistent with previous reports [1, 18]. The progression of respiratory
distress coincided with that of viral replication (titers, viral RNA and viral antigen expression),
lung gross viral lesions, and histopathological changes. The resultant partial occlusion of the
small airways by sloughed epithelial cells, inflammatory cells, respiratory secretions and
mucous plugs as observed microscopically may lead to air trapping, lung hyperexpansion and
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increased airway resistance causing respiratory distress [61]. The deterioration of lung function
and clinical symptomatology thus appears to be a direct effect of viral replication and its induc-
tion of bronchiolar/lung pathology. In experimentally-infected adults, a similar close temporal
association between onset, peak, and clearance of viral replication, and the onset, peak, and res-
olution of the disease, has been described as well. However, viral replication and disease are
limited to the upper airways in this human model [22].

This viral kinetic study of M37 hRSV in newborn lambs establishes a baseline of clinical fea-
tures and pathology in a model where RSV infection and the consequences thereof resembles
that of human infant RSV disease in the lower airways and may serve as a valuable tool to
assess vaccine and antiviral drug safety and efficacy.
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