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Improving privacy‑preserving 
multi‑faceted long short‑term 
memory for accurate evaluation 
of encrypted time‑series MRI 
images in heart disease
Lenka Čepová 1, Muniyandy Elangovan 2,3*, Janjhyam Venkata Naga Ramesh 4,5, 
Mandeep Kaur Chohan 6,7, Amit Verma 8 & Faruq Mohammad 9

In therapeutic diagnostics, early diagnosis and monitoring of heart disease is dependent on fast 
time-series MRI data processing. Robust encryption techniques are necessary to guarantee patient 
confidentiality. While deep learning (DL) algorithm have improved medical imaging, privacy and 
performance are still hard to balance. In this study, a novel approach for analyzing homomorphivally-
encrypted (HE) time-series MRI data is introduced: The Multi-Faceted Long Short-Term Memory 
(MF-LSTM). This method includes privacy protection. The MF-LSTM architecture protects patient’s 
privacy while accurately categorizing and forecasting cardiac disease, with accuracy (97.5%), 
precision (96.5%), recall (98.3%), and F1-score (97.4%). While segmentation methods help to improve 
interpretability by identifying important region in encrypted MRI images, Generalized Histogram 
Equalization (GHE) improves image quality. Extensive testing on selected dataset if encrypted time-
series MRI images proves the method’s stability and efficacy, outperforming previous approaches. 
The finding shows that the suggested technique can decode medical image to expose visual 
representation as well as sequential movement while protecting privacy and providing accurate 
medical image evaluation.

Keywords  Heart Disease, MRI Images, Encryption, Multi-faceted long short-term memory (MF-LSTM)

Early detection and monitoring of cardiac disease are crucial in therapeutic diagnostics, necessitating the fast 
processing of time-series MRI data. But, due to the sensitive nature of this data, strict privacy controls are 
required to ensure affected person confidentiality1. Utilizing an innovative encryption strategy is important due 
to this demand for privacy. Despite advances in Deep learning (DL) algorithms for scientific imaging, achieving 
a stability between enhancing image quality and protection affected person privacy remains a major difficulty.
Medical imaging is a rapidly evolving field of which has rewarding effects on diagnosing and managing fairly 
many conditions, particularly cardiovascular diseases. Among the minimally invasive, a crucial element is Mag-
netic Resonance Imaging, MRI with a particular focus on the field of cardiovascular pathology. This means that 
patient’s privacy is a significant concern and there is rising need for technologies that can ensure privacy of the 
medical information2. For the encryption of time series MRI images, the deep learning method seems to offer 
a very promising area for accurate evaluation. This has brought about the answer to the usage of encryption 
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systems to preservation of privacy. It is important to note that even though these techniques can be effective for 
data protection, they may bring some changes in the methods of carrying out the diagnostic evaluations3. The 
use of deep learning can also help in extracting detailed features and patterns from encrypted data; it provides 
a solution for this particular problem. Since medical information, in general, is sensitive, in questions related to 
heart health, the matter of privacy preservation is paramount4. MRI data is very specific in case of patients and 
contains a lot of valuable information regarding temporal characteristics of certain heart morphology/physiol-
ogy. Digital frameworks within the healthcare industry continue to expand at newer rates, thus increasing the 
need to safeguard such information from unauthorized access5. Traditional methods work well to keep data 
and information confidential they do not allow researchers to carry out analytical work effectively. That is why 
sometimes presence of such information in the encrypted form can interfere with extraction of therapeutically 
relevant information6. Detection is a difficult problem, especially when using encrypted data which cannot be 
processed directly by deep learning models The use of deep learning models that are able to process encrypted 
data while at the same time maintaining its confidentiality can help solve this problem. Another great advance 
of the field is the combination of deep learning procedures to decrypted time-series MRI images7. This makes it 
possible to analyse the raw data in order to make conclusions without compromising on the data’s confidential-
ity. Coupling with encrypted data is possible through deep learning networks with homomorphic encryption 
structures included. This permits key diagnostic information to be obtained from the outputs without the need 
to decrypt the results8. Moreover, the application of deep learning within this certain framework can lead to 
improvement in diagnostic assessments primarily based on these results. Through neural networks, the encrypted 
time-series MRI images with multiple layers can be decrypted and the existence of complicated patterns will be 
detected by medical practitioners, which gives medical practitioners an understanding of how cardiovascular 
diseases evolve9. Concerning the two criteria, the combination of the two, that is, of privacy preservation and the 
diagnostic precision in this respect helps to satisfy one of the major requirements of the medical domain, con-
tributing to the development of a stronger and more effective system for handling private cardiac information10. 
For time-series MRI data under homomorphic encryption, we have presented a unique technique in the study 
termed Multi-Faceted Long Short-Term Memory (MF-LSTM). Ensuring the patients confidentiality in this 
approach assist in accurate prognosis of cardiac diseasesmaking the results more interpretable this makes this 
approach to underline good performance in estimating encrypted medical images.

Medical imaging analysis faces challenges in balancing data security with performance, particularly in han-
dling sensitive patient information, and traditional methods struggle to maintain strict privacy while achieving 
high diagnostic accuracy.Addressing these challenges motivates the development of innovative approaches like 
MF-LSTM, which combines homomorphic encryption with LSTM networks to preserve patient privacy while 
achieving high accuracy in medical imaging analysis.The major challenges addressed in this paper is enhanc-
ing the evaluation of encrypted time-series MRI data for heart disorder prediction even as making sure patient 
privacy.

Specifically, the studies question is: “How can a DL model be designed to appropriately classify and predict 
heart disease from encrypted MRI statistics without compromising privacy?”.

Contribution of this study

•	 Propose a novel Multi-Faceted Long Short -Term Memory (MF-LSTM) method that integrates privacy 
protection with accurate heart disease categorization and prediction.

•	 Make use of Generalized Histogram Equalization (GHE) to enhance the quality and evaluation of encrypted 
MRI images.

•	 Implement segmentation algorithms to improve the interpretability of pathogenic modifications in encrypted 
images.

•	 Demonstrate the approach’s effectiveness via great experimentation, attaining advanced performance metrics 
as compared to existing strategies, with an accuracy, precision, recall, and F1-score.

This examine presents a strong framework for retaining affected person privacy even as reaching exces-
sive accuracy in clinical photograph evaluation, addressing an important need inside the area of therapeutic 
diagnostics.

Parts of the article: In “Related works”, there is a list of related works. Presenting the proposed techniques is 
“Methodology”. Section "Result and discussion" presents the results and discussion. Section "Conclusion" contains 
the final findings of the recommended research.

Related works

Study Method Advantage Disadvantage

11
Deep Convolution Neural Network 
(DCNN) with Residual Number 
System (RNS)

High classification performance on 
encrypted data

Complex setup with RNS; Limited scal-
ability

12 Faster R-CNN (SecRCNN) Lightweight, improved accuracy and 
reduced computation time

Requires fine-tuning for specific tasks; 
Potential accuracy trade-offs

13 Homomorphic encryption algo-
rithm with CaRENets (CNN)

Efficient inference and memory usage on 
encrypted images

Computational overhead; Complex integra-
tion
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Study Method Advantage Disadvantage

14
Homomorphic Residue Number 
System-Convolutional Neural 
Network (HoRNS-CNN)

Promising results for dyslexia neural bio-
marker classification

Promising results in privacy; Limited 
scalability

15

Adaptive Sigma Filterized Synorr 
Certificate Less Sign Cryptive 
Levenshtein Entropy Coding 
(ASFSCSLEC-DNL)

Improved privacy of transmitted medical 
images, competitive results

Competitive privacy results; Effective 
compression

16
Perceptual Encryption (PE) method 
for color and grayscale images with 
JPEG compression

High security, no quality loss in lossy 
compression Enhanced security; Lossless compression

17 Medi-Sec-Fed framework for feder-
ated education

Enhanced privacy and security, outperforms 
FedAvg

Outperforms FedAvg; Secure knowledge 
distillation

18 Chaotic system and ANN-based 
crypto-compression technique High-quality and secure compressed images High privacy protection; Maintains image 

quality

19 Deep learning-based key generation 
network (DeepKeyGen)

Superior security compared to existing 
methods

Superior security; Efficient key manage-
ment

20 Neural network with key creation 
using Region of Interest (ROI) Greater encryption and key strength Strong encryption strength; Tailored 

security

21 Deep learning-based image encryp-
tion system

High security against statistical and dif-
ferential attacks Strong encryption; Comparative analysis

22 DeepFixCX privacy-preserving 
image compression

Enhanced predictive ability, unsupervised 
image compression

Enhances DL-based classification; Privacy-
enhanced

23 FEDResNet framework High level of security, strong encryption 
network High security; Parallel dissemination

24 Generally Nuanced Deep Learning 
Framework (GaNDLF)

Comprehensive solution for clinical opera-
tions

Scalable; Supports diverse medical imaging 
tasks

25 Two-stage Generative Adversarial 
Neural Network (ToStaGAN)

Superior performance in brain tumor 
segmentation

High performance; Contextual autoencoder 
integration

26 Progressive Generative Adversarial 
Network (PG-GAN) Generates realistic cardiac MRI images Generates realistic images; Useful for rare 

diseases

27 Deep learning for Cardiac MRI 
(CMR) analysis High-precision automated analysis Largest annotated dataset; Automated 

diagnosis

28 Deep learning for cardiac MRI 
imaging plane recommendation Accurate imaging plane approximation Precision in imaging; Automatic generation

29
Deep learning structure for myocar-
dial infarction image categorization 
and localization

High-level feature representation, accurate 
predictions

High-level feature representation; Clinical 
relevance

30
Deep Convolutional Neural 
Network (DCNN) for image quality 
assessment

High agreement with human experts Automated assessment; Agreement with 
experts

31 Multiscale Residual Attention-UNet 
(MRA-UNet)

Achieves state-of-the-art results in brain 
tumour segmentation, particularly in core 
and tumour area improvement

Specific dataset dependency; performance 
may vary on other datasets

32 Dense Attention Mechanism Net-
work (DAM-Net)

Uses dense layers, channel attention, adap-
tive downsampling, and label smoothing for 
high accuracy in detection

Requires large, diverse dataset for robust 
generalization; computational intensity due 
to complex architecture

33
Semi-supervised Multitask Learning 
with Unlabeled Data (Kaggle-
EyePACS)

Enhances performance using unlabeled data; 
improves resilience and generalization

Dependency on availability and quality of 
unlabeled data; complexity in multitask 
training

34 Deep learning and hybrid tech-
niques

Efficient and accurate brain tumor detec-
tion and classification. Reduces reliance on 
manual segmentation Improves diagnostic 
speed and consistency

Requires large annotated datasets. Potential 
overfitting with complex models. Interpret-
ability challenges for clinical acceptance

35
Radiomics approach with advanced 
ML algorithms for microcalcifica-
tion detection

Effective decision support for radiologists, 
Improves efficiency in early breast cancer 
screening

Complexity in implementing contourlet 
transform and parameter tuning for radi-
omic fusion algorithm

36

Advanced deep learning using 
transfer learning (SE-ResNet152, 
modified VGGNet). To detect 
lesions, use Chaotic Leader Selec-
tive Filler Swarm Optimisation 
(cLSFSO). grading and diagnosis 
using hybrid models (CNN + SVM, 
CNN + LSTM)

Enhanced accuracy in lesion detection 
and classification, Reduced false positives, 
Improved risk assessment, Faster conver-
gence rates

Complexity in integrating multiple deep 
learning models, Potential overfitting 
despite regularization, High computational 
resource requirement

37

Deep learning approaches for breast 
cancer prognosis, integrating multi-
imaging modalities, segmentation, 
feature extraction, and classification

Improved diagnostic accuracy, leveraging 
complex data patterns and multi-modal 
information to reduce misinterpretations 
and unnecessary biopsies

Requires large annotated datasets, signifi-
cant computational resources, potential for 
overfitting, and challenges in validation and 
clinical interpretability

Problem statements
Balancing information privacy and high-performance predictive modeling in medical imaging is a essential 
venture. existing methods like DCNN with RNS and SecRCNN provide high accuracy however be afflicted 
by complexity and confined scalability. Homomorphic encryption with CNNs and HoRNS-CNNs enhance 
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privacy however introduce computational complexity. Adaptive filtering and encryption-compression tech-
niques enhance protection. Butcomputationally in depth and dataset-dependent. therefore, there can be a need 
for innovative strategies that combine superior encryption, effectivedata processing, and specific deep learning-
model to ensurescalable, robust and secure clinical diagnostics.

We developed an innovative method known as MF-LSTM in order to overcome these constraints.By utiliz-
ing an advanced encryption algorithm develop specifically for time-series MRI data, our suggested technique 
intends to improve privacy preserving method.

Methodology
The dataset of MRI images is encrypted with HE-based encryption. Generalized Histogram Equalization (GHE) is 
used for image enhancement. Adaptive K-means clustering was used for the segmentation process. The proposed 
MF-LSTM was employed to predict the time series MRI image. Figure 1 shows the suggested model’s general flow.

Dataset
The dataset from https://​github.​com/​lalaa​ntika/​Hyper​kines​iaML/​tree/​master/​datas​et, comprising data from 30 
sufferers with 900 to 1200 image, faces boundaries and biases38. Its small sample size might not completely rep-
resent the variety of hyperkinesia. Potential biases in patient selection and variability in image satisfactory could 
have an effect on the reliability and generalizability of findings. Additionally, without detailed distribution facts, 
there is a danger of dataset imbalance. Addressing those issues requires cautious interpretation and validation 
on large, further diverse datasets to make sure robustness in analyses and model improvement.

Encryption using homomorphic encryption (HE)
Homomorphic encryption (HE) is a cryptographic technology that allows calculations on encrypted data without 
decrypting it, making it useful in data privacy-sensitive instances including healthcare applications like assessing 
MRI scans for heart disorder. HE improves privacy in assessing encrypted MRI images. It conserves privacy, 
enables accurate version evaluation, and guarantees affected person privacy without compromising diagnostic 
accuracy in healthcare packages.

The potential to carry out calculations on encrypted information homomorphic encryption (HE) protects 
magnetic resonance imaging (MRI) at the same time as preserving diagnostic integrity and retaining privacy. In 
this study, we employ the Paillier method to secure image encryption. Paillier ciphers are Partially Homomor-
phic Encryption (PHE) that could fulfill additive homomorphism. we can explain the essential ideas behind this 
research, which encompass key generation, encryption and homomorphic addition.

Key generation: The formula for computing (m, h) as the public key and
(�,µ) as the private key is as follows.

1.	 Find a pair of huge prime numbers, o and r , where their gcd
(

oq, (o− 1)(r − 1)
)

= 1.

Fig. 1.   Overview of the suggested model for encrypted MRI images in heart disease.

https://github.com/lalaantika/HyperkinesiaML/tree/master/dataset
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2.	 Find the least common multiple (lcm) of the two numbers m and � , where m = or  and 
� = lcm(o− 1, r − 1).

3.	 Decide on a number h at random.
4.	 Since µ =

(

K
(

h�modm2
))−1

modm and K(w) = w−1
m  , then calculate m.

Encryption: The cipher-text d can be calculated as follows: d = hn.qmmod m2 and q is a number that is chosen 
at random 

(

0 < q < mand gcd
(

q,m
)

= 1
)

.
Homomorphic addition: Two cipher-texts multiplied together will be decoded into their combined plaintext 
form: C

(

F
(

n1, q1
)

.F
(

n2, q2
)

mod m2
)

= (n1 + n2)mod m and the decryption of a ciphertext multiplied by a 
plain-text will yield the sum of the plaintexts involved
C
(

F
(

n1, q1
)

.hn2mod m2
)

= (n1 + n2)mod m.

Homomorphic encryption (HE) is used to encrypt MRI images before transmission or storage, providing an 
extra layer of protection for patient’s personal health data.

Image enhancement
Improvements in definition, contrast and resolution are part of the MRI enhancement process for heart disease. 
The diagnostic accuracy of cardiovascular examinations can be greatly improved by using better images help 
doctors to detect minor abnormalities.

Generalized histogram equalization (GHE)
Generalised Histogram Equalisation (GHE) improves image contrast by dispersing pixel concentrations. In 
privacy-preserving LSTM for encrypted MRI analysis, GHE improves image quality prior to encryption, increas-
ing model accuracy in identifying heart disease from time-series MRI data. This method improves encrypted 
data reliability, which is critical for accurate medical diagnoses.

Through redistributing pixel intensities, Generalized Histogram Equalization (GHE) improves image contrast. 
It enhances detail visibility in different lighting circumstances, producing visually appealing and crystal-clear 
images.

To construct the histogram of the MRI image, the intensity transfer function for contrast enhancement is 
derived as

where d is the intensity value, dmin and dmax represent the minimum and maximum values of d , h(w) is the image 
histogram and T(d) is the intensity transfer function for contrast improvement. Naturally, an enormous point 
in a histogram creates an immediate rise in the cdf function. Therefore, more gray levels are assigned to more 
common intensity values, while fewer gray levels are assigned to less common intensity values.

This method of histogram equalization can be understood from a different angle, though. To visualize how 
likely it is that the intensity value w requires to be enlarged for image enhancement, H(w) can be conceptualized 
as an expansion function. The magnitude of emphasis: We prefer to make this circle around w ’s intensity levels 
larger when w occurs more frequently. Hence, Eq. (1) can be construed as a reallocation of intensities based on 
the distribution of an expansion function h(w).

(1)T(d) = dmin + (dmax − dmin).

d
∫

dmin

h(w)dx

dmax
∫

dmin

h(w)dx

Fig. 2.   The process of generating a histogram is demonstrated.
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Onanother side, the construction of the histogram h(w) can be seen as a masking-and-accumulating method. 
Let’s pretend we’re measuring the intensity of each pixel in the image by scanning it with a 1x1 mask. The resulting 
h(w) is an accumulation of these intensities. To produce the histogram function h(w) , we simply apply the mask-
ing and accumulation process throughout the entire image. In Fig. 2, we show an example of this masking and 
accumulation in action. The HE technique disregards information surrounding each pixel because of the small 
size of the 1x1 mask. Therefore, the overall statistics of the image are contained in the histogram function h(w).

Image segmentation
In the case of heart illness, MRI segmentation is cutting up MRI scans of the heart into sections for more accurate 
study of the heart’s architecture. This improves health care and the results for patients by facilitating accurate 
diagnosis of a variety of heart diseases.This research shows how the “Adaptive K-means clustering” technique 
can be used to classify heartMRI scans for the purpose of diagnosing cardiac disease.

Adaptive K-means clustering dynamically partitions encrypted time-series MRI images, assisting in feature 
extraction for LSTM models. This approach enhances privacy-preserving analysis by adapting clusters to vary-
ing data individualities, enhancing accuracy in diagnosing heart disease from encrypted medical imaging data.

Classification is where features like shape and brightness get their start.

Initialization stage:Goodness functions can be calculated after a number of rounds with the K-means image 
clustering method (where, n = 10). An earlier version of the suggested adaptive segmentation technique 
looked like this.
Adaptive classification stage:Heart illness is broken down into its component parts and image clustering 
techniques are applied. Starting with the initial iteration in the phase of initialization, K-means clustering is 
effective for a total number of iterations (n = 10). Many tiny processes are there in this process: feature-based 
calculation, feature-based evaluation method, new centers creating process and object selection.

Initialization stage
The first step of the adaptive segmentation strategy is the phase of initialization, during which K-means clustering 
is applied for n rounds. The core novel clusters are constructed with the help of newly disseminated midpoints. 
In this particular iteration, the evaluation of goodness occurs immediately. As the average roundness of complete 
consequences, the goodness functions are defined. The circularity ratio, defined by Eq. (2), is the ratio of the area 
enclosed by a contour to the area enclosed by a circle with its border.

where B and O are two different regions of the object. For non-circular shapes, the ecirc function evaluates to a 
value less than 1, but for circular shapes, it evaluates to 1. The area is determined by adding the pixels in each 
alienated set. The following Eq. (3) is used to develop the quality measure:

where ecirc are the aspect ratios of the jth object and Bj are the area of the jth object. Large object standards are 
raised and tiny object values are lowered thanks to the region’s coupling via circularity ratio.

Classification stage
It plays a pivotal role in the anticipated algorithm. After the initialization step is complete, the K-means method 
can be used for another n iteration. Goodness is recalculated using an equation and the feature-based calculation 
approach. We compare our estimates of the present and past positions’ goodness using this evaluation method. If 

(2)ecirc =
4πB

O2

(3)GOODNESS =

∑N
j=1 ecircj Bj
∑N

j=1 Bj

Fig. 3.   Architectural design of the multi-faceted LSTM Network.
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the current goodness is higher, the outputs from the past are discarded and the current location is used instead. 
If the current goodness is lower than the novel goodness, new clusters will be generated using the two bright-
est clusters as targets and the present clusters will be stored unaltered. These steps are repeated until no change 
occurs in the goodness output or N iterations have passed. Finally, the object selection technique is utilized to 
identify the most circular areas (those with a circularity ratio close to 1).

Prediction of heart disease
Through performing a sequential and multi-feature analysis of cardiac MRI images, the MF-LSTM algorithm for 
image segmentation improves accuracy, making it useful for the prediction of heart contamination.

Multi‑faceted long short‑term memory (MF‑LSTM)
This study examine introduces a unique category algorithm for coronary heart sickness, especially the network 
of multifaceted long short-term memory (MF-LSTM).The properties of heart disease are extracted using aLong 
Short-Term Memory (LSTM) network, which makes use of time series data obtained from MRI images.Moreover, 
the activity classification of datainstances is accomplished by using a softmax category algorithm, which utilizes 
the given capabilities as its basis.A time series dataset may be expressed in a matrix format comprising MRI image 
data received over a selected time frame, encompassing many MRI images.This can be characterized as Eq. (4).

In this context, C and D denote different sensors, whereas x,y and z indicate the three dimensions of each 
MRI image. Additionally, t  represents the duration of a single activity. As previously stated, the task of process-
ing a long-time-step input with a single LSTM neuron is a labor-intensive process. In our suggested technique, 
numerous Long Short-Term Memory (LSTM) units are employed to process distinct segments of the activity data. 
Fig 3 illustrates the architectural design of the multi-faceted LSTM Network. The architectural design consists of 
multiple components, including a layer of input, a layer of parallel LSTM, a layer of merging LSTM,layers that 
are fully connected and a layer of softmax.

During the signal’s input phase, the time sequence signals are partitioned into n segments, denoted as S1 ∼ Sn , 
along the time dimension. Each segment consists of an equal number of time steps and there is no overlap 
between segments. In accordance with this, there exists a set of n LSTM units that are supplied with n seg-
ments, thereby forming the parallel LSTM layer. Each LSTM unit is equipped with identical hyper-parameters, 
including the number of neurons and the dropout rate to ensure equitable treatment of each segment. The Long 
Short-Term Memory (LSTM) unit processes segmented data in a chronological manner, iterating via a loop. The 
preliminary features, which consist of the outputs at the final stage of time of each Long Short-Term Memory 
(LSTM) unit, are gathered and merged to form a matrix of size n× h1 . Here, h1 variable denotes the quantity of 
hidden neuronsin each unit of LSTM. A layer of LSTM for merging is incorporated. The framework is provided 
with the initial characteristics and proceeds to iterate over the sequence of outputs from the preceding layer. In 
essence, the combining layer of LSTM operates in a sequential manner.

The characteristic of the activity determined the result that occurs at the last stage of the combining layer 
of LSTM is selected which incorporates the temporal relationship. The vector has a dimension of h2 , where h2 
denotes the number of hidden neurons in the combining unit of LSTM. Based on previous splitting and merging 
procedures, it is possible to extract the temporal dependency from the data. The initiation of signal processing 
can occur prior to the full completion of an activity, hence decreasing the duration of waiting time for activity 
detection in real-world scenarios.

Subsequently, a pair of fully-connected layers are employed to decrease the dimensionality of the features to 
a vector of size 1×m , where m represents the total number of diseases. Next, the resulting output is sent into a 
layer of softmax regression using logistic regression, which generates the classification result. Algorithm 1 shows 
the process of MF-LSTM.
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Algorithm 1.   The process of MF-LSTM.

Result and discussion
We implemented our privacy-preserving LSTM approach in python version 3.10 on system running window 
10. An Intel Core i3 CPU and a specialized high-performance IRIS graphics card are part of the hardware setup, 
which maximizes processing power for demanding machine learning task. The effectiveness of the suggested 
method (MF-LSTM) was analyzed by applying a set of parameters such asaccuracy, precision, recall and F1-score 
are compared with existing methods KNN (k-Nearest Neighbor)39, RF (Random forest)40, and SVR (Support 
Vector Regression)40 The hyper parameter used for training are described in Table 1.

Comparing MF‑LSTM complexity with traditional LSTM
The computational complexity of the proposed Multi-Faceted Long Short-Term Memory (MF-LSTM) version 
exceeds that of conventional LSTM model because of its incorporation of a couple of layers, parallel processing 
paths, and potentially extra mechanisms like attention and adaptation. This complexity allows MF-LSTM to 
address diverse encrypted MRI data successfully, albeit requiring more computational assets for training and 
inference. Figure 4 shows the computational complexity of LSTM and MF-LSTM.

ROC (Receiver operating characteristic)
The Receiver operating characteristic (ROC) curve is a graphical illustration of a binary classifier machine’s 
overall performance, plotting True Positive Rate (TPR) in opposition to False Positive Rate (FPR) at unique 
threshold settings. It is beneficial in comparing encrypted time-series MRI images for coronary heart disease 
detection, assessing the classifier’s capacity to differentiate between positive and negative instances. Figures 5, 6 
show the ROC results and the confusion matrix and the ROC results. The formula of ROC is shown in Eq. (5), 
(6). The TPR (Sensitivity) FPR (1- Specificity) is defined as:

•	 True positive rate (TPR)

Table 1.   Hyper parameter configuration.

Hyper parameter Typical values/Selection process

Number of LSTM layers (L) 2 layers

Hidden state size (H) 256

Batch size 16—128

Learning rate Tuned via grid search or adaptive methods

Dropout rate Empirically chosen (e.g., 0.2, 0.3)

Epochs Typically 50 to 100, adjusted based on convergence and metrics
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Fig. 4.   Traditional LSTM vs MF-LSTM.

Fig. 5.   Outcome of ROC.

Fig. 6.   Outcome of confusion matrix.
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•	 False positive rate (FPR)

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TN + FP

Fig. 7.   Comparison of accuracy.

Table 2.   Comparison of accuracy.

Methods

Accuracy (%)

KNN[39] RF[40] SVR[40] MF-LSTM [Proposed]

10 92.4 91.8 78.4 90.8

20 93 93.4 79 92.7

30 94.8 94.9 80.5 93.8

40 96.1 95.3 82.4 95.7

50 97 96.28 84.97 97.5

Fig. 8.   Comparison of precision.
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ROC analysis is essential for validating the accuracy and reliability of diagnostic models, ensuring robustness 
in clinical imaging packages including heart disease detection the usage of encrypted MRI data.

Accuracy
Accuracy assesses the model’s overall correctness in categorization or prediction. The comparisonof accuracy 
is displayed in Fig. 7 and Table 2.The existing KNN, RF and SVR algorithms achieve 97%, 96.28% and 84.97% 
accuracy, while the proposed MF-LSTM achieves 97.5%.The proposed method shows the higher accuracy scoreis 
able to identify diseased cardiac images as distinct from healthy ones.The increased accuracy shows how well 
the MF-LSTMmodel can recognize and separate healthy from sick cardiac images.The formula of accuracy is 
shown in Eq. (7).

Precision
Precision measures the model’s accuracy in making beneficial predictions. Precision in medical imaging refers to 
how many of the displayed cases of heart disease actually occur as true positives. The comparison of precision is 
displayed in Fig. 8 and Table 3. Here, compared to the existing KNN (96%), RF (96.2%) and SVR (84%) methods, 
our proposed method MF-LSTM has a much higher precision value of 96.5%.The higher precision score of our 

(7)Accuracy =
Number of Correct Predictions

Total Number of Predictions

Table 3.   Comparison of precision.

Methods

Precision (%)

KNN[39] RF[40] SVR[40] MF-LSTM [Proposed]

10 90.8 89.5 74.9 91.5

20 92.7 90.7 78.9 92.8

30 93.8 92.8 82.4 94.8

40 95.8 93.9 83.9 95.1

50 96 96.2 84 96.5

Fig. 9.   Comparison of recall.

Table 4.   Comparison of Recall.

Methods

Recall (%)

KNN[39] RF[40] SVR[40] MF-LSTM [Proposed]

10 92.4 79.5 88.5 92.7

20 93.7 80.1 90.7 93.8

30 93.9 80.9 91.7 96.7

40 95.7 82.7 93.7 97.1

50 98.3 84 95 98.3
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method will reduce the number of false positive patients thereby improving clinical outcome and the care of 
the diseases’ patients.The proposed method shows the higher precision score is able to identify diseased cardiac 
images as distinct from healthy ones. The formula of precision is shown in Eq. (8).

Recall
The metric referred to as recall, which is known as sensitivity or true positive rate, quantifies the model’s capac-
ity to detect every relevant incident, namely instances of heart disease in the domain of medical imaging. The 
comparison of recall is shown in Fig. 9 and Table 4. Our suggested MF-LSTM strategy has a high recall percentage 
of 98.3%, while the existing KNN, RF and SVR methods achieve 98.3, 84 and 95%, respectively. The proposed 
method shows the higher recall score is able to identify diseased cardiac images as distinct from healthy ones. 
High recall is crucial in medical imaging for heart disease diagnosis, minimizing false negative and ensuring 
accurate diagnosis and timely medical intervention.The formula of recall is shown in Eq. (9).

F1‑score
The F1-score is a balanced measure that includes the advantage of false positives and false negatives. It is a har-
monic mean of precision and recall. The comparison of the F1-score is shownin Fig. 10 and Table 5. Compared 
to the traditional methodologies KNN (97%), RF (84%) and SVR (96%), our suggested method, MF-LSTM 
has a higher F1-score of 97.4%.Our proposed method outperforms the previous method by achieving a higher 
f1score, enhancing the identification of diseased cardiac images as distinct from healthy ones.The formula of 
recall is shown in Eq. (10).

(8)Precision =
True Positives

True Positives + False Positives

(9)Recall =
True Positives

True Positives + False Positives

(10)f 1− score =
2× (Precision× Recall)

Precision+ Recall

Fig. 10.   Comparison of F1-score.

Table 5.   Comparison of F1-score.

Methods

F1-Score (%)

KNN[39] RF[40] SVR[40] MF-LSTM [Proposed]

10 90.4 79.4 90.4 92.6

20 92.4 80.1 91.4 93.7

30 93.7 81.9 93.7 95.8

40 95.8 83.2 95.9 96.3

50 97 84 96 97.4
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Discussion
The main disadvantages of KNN (k-Nearest Neighbor)39, RF (Random forest)40, and SVR (Support Vector 
Regression)40in the accurate assessment of encrypted time-series MRI images in coronary heart disorder stem 
from their inherent obstacles in managing complex, excessive-dimensional statistics and encrypted information. 
KNN suffers from scalability troubles and high computational costs as the dataset grows, making it inefficient 
for large-scale MRI data. RF, at the same time as strong, can struggle with overfitting, in particular with time-
seriesdatathat might have temporal dependencies not easily captured by tree-based model. SVR, on the other 
hand, require for significant tuning of hyper parameters and it was sensitive to the selection of kernel functions, 
which could restrict its performance on encrypted datasets in which characteristic extraction and representation 
are critical. Those techniques commonly lack the functionality to absolutely exploit the temporal and spatial 
intricacies of MRI data, leads to suboptimal accuracy within the assessment of heart disorder while compared 
to more advanced deep learning strategies tailored for such tasks.

The Multi-Faceted Long Short-Term Memory (MF-LSTM) excels in accurately comparing encrypted time-
series MRI images in coronary heart disorder via retaining temporal dependencies and shooting complicated 
styles, vital for retaining information integrity and diagnostic accuracy in sensitive clinical imaging application.

Practical implication

•	 Enhance security: Making sure sensitive patient data remains private while taking into account powerful 
evaluation and diagnosis the usage of superior deep learning models.

•	 Advanced Diagnostic Accuracy: Facilitating more particular detection and type of heart sickness situations 
from encrypted MRI data, assisting better affected patient care and treatment plans.

•	 Facilitated data Sharing: assist secure sharing of encrypted MRI data across healthcare provider and 
researchers, promoting collaborative efforts in medical research and diagnostics.

•	 Regulatory Compliance: Assembly regulatory requirements for affected person facts privacy ensuring ethical 
use of AI technologies in healthcare.

Those implications highlight the practical benefits of MF-LSTM in addressing the dual challenging situa-
tions of maintaining patient privacy and achieving accurate medical critiques in coronary heart disease analysis.

Conclusion
Wediscuss the importance of patient privacy in time-series magnetic resonance imaging for early diagnosis and 
monitoring of cardiac disease. In this paper, we introduce the Multi-Faceted Long Short-Term Memory (MF-
LSTM) method that integrates privacy protection with the homomorphic-encrypted (HE) time-series MRI data. 
The suggested MF-LSTM architecture maintains the highest level of security while safeguarding patient privacy 
and enabling precise classification and prediction of heart disease scenarios. By distributing the intensity values 
to create a more harmonious and aesthetically pleasing representation, Generalized Histogram Equalization 
(GHE), a complex image enhancement technique, improves the contrast and overall quality of images. The 
identification of crucial regions in the encrypted MRI images is made possible by adaptive k means clustering, 
which enhances the interpretability of pathological alterations. Python software is used for simulation. Experi-
mental findings value such as accuracy (97.5%), recall (98.3%), F1-score (97.4%) and precision (96.5%) were 
found to be best achieved by the proposed MF-LSTM method. The real-time assessment of medical images can 
be impacted by the computational overhead that privacy-preserving approaches impose. Create and investigate 
more sophisticated privacy-preserving methods that can improve the security of private medical data while 
retaining the accuracy of the model.

Limitation and future scope of this study
The study’s application may be limited by the unique dataset employed and its representation of varied patient 
demographics and imaging procedures. Further investigation into the scalability and practical deployment 
aspects of the privacy-preserving MF-LSTM approach in clinical contexts, as well as the resolution of integra-
tion obstacles and performance evaluation on bigger and more diverse datasets, might be considered as future 
research.

Data availability
The data presented in this study are available through email upon request to the corresponding author.
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