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Abstract

In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation
testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the
number of permutations. These databases were integrated with a range of peptide identification indicators from three
popular open-source database search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of
neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with
match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually
annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the
neuropeptides at p-value 25 p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp score
(Crux) match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive
indicator ‘‘number of matched ions between the experimental and theoretical spectra’’ highlights the importance of
considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases
of size 16105 are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the
search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model) can be easily
combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source
code is available at http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting.
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Introduction

Neuropeptides participate in cell to cell communication and

regulate many biological processes such as behavior, learning, and

metabolism [1]. Mass spectrometry has revolutionized neuropep-

tide characterization and quantification [2–7]. However, detection

is complicated by the neuropeptide size (typically 3 to 40 amino

acids long) and by the complex post-translational processing that

includes cleavage, and amino acid modifications of prohormones

into neuropeptides [1,8].

Database search programs are commonly used to identify

peptides from tandem mass spectrometry experiments [9]. These

programs generate in silico theoretical spectra from target

databases of known peptide sequences that have masses within a

range (tolerance) of the observed peptide mass. The in silico
spectra are then compared to the observed experimental spectra

and indicator scores that signify the closeness of the match are

computed. To assess the statistical significance of these matches,

the observed-target match indicator is compared to the distribu-

tion of indicator values under the null hypothesis of no match

using various methods. In the popular target-decoy approach, the

experimental spectra are compared to spectra from a decoy

database consisting of peptides sequences that were generated by

reverting or reshuffling the amino acids in the sequences of the

target database [9–11].

For neuropeptide identification, the target-decoy approach can

result in false negatives because the small size of many

neuropeptides leads to low observed-target match indicator values

and consequently low significance levels [11]. Furthermore, the

small size of many neuropeptide leads to few decoy reshuffled

sequences and the resulting granularity of the null distribution of

decoy scores further lowers the significance levels [11–15]. At the

protein level, alternative identification approaches have attempted

to address the challenge of assessing statistical significance [16,17].
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However, the implementations of the previous approaches do not

work with widely used database search programs, do not use all

the information resulting from the mass spectrometry experiment,

and are biased by peptide length or assume one-direction

progressive processing. Approaches that rely on fewer limiting

assumptions and that use all the information available need to be

evaluated.

Permutation tests are well-suited for neuropeptide database

searches by helping to overcome the finite combination of amino

acids from small neuropeptides and do not rely on directional

assumptions. Furthermore, permutation testing provides strong

control of Type I errors thus minimizing the incidence of false

positive results [18]. Under the null hypothesis of no match, the

experimental spectrum of a peptide is the result of a random

sequence of amino acids provided that the total mass is close to the

experimental mass. This requirement stems from the database

search program strategy that only accepts sequences within a user

determined range of the experimental spectra. Computation of the

permutation statistical significance requires the distribution of the

peptide-spectrum match scores generated by the database search

program under the null hypothesis that there is no correct match.

This distribution is then generated by searching the experimental

spectrum against a decoy database considering all possible amino

acid sequences within the predetermined range of the experimen-

tal spectra. The permutation p-value is then the proportion of

peptide-spectrum scores obtained from the decoy database that

are equal to greater to the score obtained using the target

database. Under the null hypothesis any amino acid can be

present at any position of the sequence, thus, addressing the

exchangeable assumption required by the permutation test [18].

Monte Carlo sampling is used to reduce the number of possible

sequences while providing an unbiased estimate of the p-value.

Furthermore, the loss in statistical efficiency when estimating the

p-value decreases with increasing number of random samples [18].

The previously demonstrated advantage of the Monte Carlo

permutation approach proposed over existing decoy generation

based on sequence reversion or reshuffling of the target sequence is

the improved definition of the null distribution [18]. The larger

number of decoy sequences results in lower granularity and, thus,

more precise assessment of the statistical significance of the

observed matches. Two major advantages of the Monte Carlo

permutation approach proposed over existing dynamic program-

ming approaches [16,17] is the simplicity of integration to existing

database search programs, the use of all spectra information

available and consideration of all possible spectra matching

processes.

This study demonstrates the use Monte Carlo permutation

testing to overcome the limitations of current protein identification

approaches to accurately assess neuropeptide statistical signifi-

cance. This approach combines and extends the model-free

property of current decoy databases with the more extensive

search of dynamic programming approaches. The aims are: (1) to

develop permutation resampling methodology that can be easily

integrated with existing peptide database search software, and (2)

to demonstrate the advantages of this approach to provide

accurate measures of neuropeptide match significance using ideal

and real experimental neuropeptide spectra. Supporting objectives

were: (1) to develop and implement complementary novel

permuted databases; (2) to determine the number of permutations

required for accurate significance levels; and (3) to identify the

neuropeptide match indicators within and across programs that

are better suited to provide accurate statistical significance.

Materials and Methods

Tandem Spectral Dataset and Target Database
Tandem mass spectra from a comprehensive list of 103

experimentally-obtained and manually annotated mouse neuro-

peptide were obtained from the SwePep database (http://www.

swepep.org). These spectra were obtained using linear ion trap

mass spectrometer coupled with liquid chromatography and

electrospray ionization source [19]. Neuropeptides were manually

validated after identification using the X! Tandem database search

program [20]. The independent manual annotation step also

ensured that the subsequent software comparison would not be

biased in favor of the X! Tandem database search program. Of

these, 80 neuropeptides were unmodified and the remaining 23

encompassed post-translational modifications (PTMs) including C-

terminal amidation, N-terminal acetylation, phosphorylation,

pyroglutamination and oxidation. The spectra corresponded to

5, 68, 25, and 5 peptides that had precursor charge states +1, +2, +
3 and +4, respectively, and all charge states were observed in

modified and unmodified peptides.

Ideal uniform spectra of all possible b- and y-ions with +1

product charge state were simulated for 103 annotated exper-

imental spectra. The ideal spectra also included all the PTMs

identified in the corresponding experimental spectra. The neutral

mass loss peaks due to loss of single water or ammonia molecules

from the b- and y-ions were simulated regardless of their position

in the ions sequence. These ideal spectra are expected to be

correctly identified at an extremely high significance level because

these spectra are equivalent to the theoretical spectra internally

generated by the database search engine.

A comprehensive target database of 618 mouse neuropeptides

was obtained from the PepShop database (http://stagbeetle.

animal.uiuc.edu/pepshop; [21]). This target database encom-

passed the neuropeptides corresponding to the 103 tandem spectra

studied. The neuropeptides in the PepShop were assembled from

the known 95 mouse prohormones present in SwePep [19] and

UniProt [22] complemented with NeuroPred [23] predictions.

The neuropeptides in the target database ranged from 2 to 223

amino acids in length because this included all known experi-

mentally confirmed mouse neuropeptides as well as all possible

intermediate and other peptides produced during the processing of

prohormones. The target database of neuropeptides is available at

http://stagbeetle.animal.uiuc.edu/pepshop/

MSMSpermutationtesting.

Database Search Programs and Database Searching
Three open source database search programs were used in this

study: Crux [24] (version 1.37), OMSSA [25] (version 2.1.8), and

X! Tandem [20] (version 2013.02.01.1). These commonly used

open source programs were selected because the code could be

modified to ensure comparable search parameter specification and

enabled to retrieve intermediate indicators of the strength of the

match between the observed and target or decoy spectra. The

observed-target or observed-decoy spectra match indicators

extracted from OMSSA were: number of matched fragment ions,

lambda or Poisson mean match indicator, Poisson probability of

the lambda match indicator, and corresponding E-value of the

match (Poisson probability multiplied by the effective database

size). The spectra match indicators extracted from X! Tandem

were: number of matched fragment ions, intermediate convolution

score (product of the intensities of the shared b- and y-fragment

ions between experimental and theoretical spectra), hyperscore

(factorial of the number of matching b- and y-ions multiplied by

the convolution score), and E-value (calculated from the distribu-
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tion of hyperscores scores). The spectra match indicators extracted

from Crux were: number of matched fragment ions, Sequest Sp

score (Sp), cross-correlation score (XCorr), deltaCn score (DCn)

and p-value that is calculated from the Weibull distribution fitted

to the XCorr scores of observed-theoretical spectra matches [26].

For comparable neuropeptide identification across the three

programs the following search parameters from our prior research

[11] were used: (1) precursor ion tolerance: 1.5 Da; (2) fragment

ion tolerance: 0.3 Da (OMSSA and X! Tandem); mz-bin-width:

0.3 (Crux) (3) searches were performed with and without PTMs.

The PTMs evaluated were: amidation, phosphorylation, N-

terminal acetylation, acetylation of lysine, pyroglutamination of

glutamine, methylation of lysine and arginine residues, sulfation of

tyrosine residue, and oxidation of methionine; (4) ‘‘protein’’

(OMSSA) or ‘‘enzyme: custom cleavage site’’ (X! Tandem and

Crux) to prevent peptide cleavage since the detection of

neuropeptides does not involve protease digestion; (5) fragment

ion charge: default values; (6) OMSSA ‘‘ht’’ option was set to eight

to filter database peptides that have at-least one theoretical

fragment ion match to one of the top eight most intense peaks in

the observed spectra; and (7) peptide mass: monoisotopic; 8) Crux

p-values were computed using 1000 Weibull points because this

information provides more accurate p-values than the default 40

Weibull points [11].

Permutation Approach and K-Permuted Decoy
Databases

A Monte Carlo permutation test approach based on biological,

computational and statistical considerations was used to generate

decoy sequence databases. The resulting decoy database accom-

modates limited changes in the specified search parameters and

can be used by all database search programs without the need to

modify the original program code. A decoy database considering

all possible amino acid sequences can be used to generate the

distribution of the peptide-spectrum match scores under the null

hypothesis of no correct match. This distribution is required by

database search programs to assess the statistical significance of the

match. This requirement results in an extremely large number of

sequence since a decoy database of only 10-amino acid long

peptides consists of 6.1361012 sequences. This number would be

further increased to account for different possible lengths of the

target neuropeptides. Due to the potential size of a database

encompassing all possible sequences, a Monte Carlo permutation

approach based on a set of candidate peptides was used to

generate a random sample of all possible sequences. Applying the

same strategy used by the database search programs, 236 mouse

neuropeptides within 12 Da of the precursor mass of the 103

studied neuropeptides were considered as candidate peptides. The

12 Da arbitrary threshold enabled the creation of single flexible

peptide catalog that could be used with different database

programs while permitting different mass tolerance specifications

and precursor charge states. The arbitrary threshold does not

influence the results because the database search programs ignore

candidate sequences outside the settings and all peptide-spectrum

scores involving target database size will be equally affected.

Figure 1 depicts the correspondence between the lengths of

neuropeptides in the target database, the 103 experimental

neuropeptides and the neuropeptides that fall within 12 Da of

the 103 peptides. A new decoy peptide database was obtained by

generating a set of random sequences from each of the candidate

peptides. Random sequences were generated by sequentially

replacing each amino acid in the sequence of each candidate

peptide by a randomly selected amino acid from the 19 amino

acids from the candidate peptide list (leucine and isoleucine were

considered the same amino acid due to the same neutral masses).

This was repeated until the predetermined number of permuted

sequences per candidate sequence was obtained. The resulting

permuted sequences are comparable to those generated from a

Markov model of order zero such that the 19 amino acids are

equally likely at all positions. These permuted sequences were

collected into a single database after removal of duplicate peptides

and sequences present in the target database. This procedure was

used to generate k-permuted decoy sequence databases where the

numbers of unique permuted sequences per candidate peptide (k)

were: 103 (K103 with 236,000 decoy peptide sequences), 104 (K104

with 2,360,000 decoy peptide sequences), 105 (K105 with

23,600,000 decoy peptide sequences), and 106 (K106 with

236,000,000 decoy peptide sequences). The target database was

appended to each of the four k-permuted databases to create a

combined target-k-permuted decoy database. The combined

database search is more accurate than separate database searches

and to avoid zero p-value [27–29]. This strategy also removed

potential database size dependency of the match indicators

between target and permuted sequences because the correct

match was evaluated under the same database sizes as the

permuted databases.

The search of spectra against the k-permuted decoy databases

produced many matches that were indistinguishable from each

other based on the indicators reported by the programs (e.g.,

number of matched ions, hyperscore, convolution score, and E-
value for the X! Tandem). Matches were considered ‘‘homeo-

metric’’ [18] when the matches had the same indicator values

across programs and the matched peptides masses were within

61.5 Da from each other. Figure 2 depicts the number of peptides

with homeometric matches ranging from 1 to 10 for the K106 k-

permuted decoy database across the three databases search

programs. Homeometric matches were counted only once while

calculating the number of random peptides that have an indicator

value equal or better than the true target peptide. This strategy

resolved the challenge that database search programs were not

able to differentiate between such matches that are technically

redundant and ensured the calculation of permutation p-values
that were unbiased by these effects.

Figure 1. Distribution of neuropeptides length in target
database peptides (less than 60 amino acid in length are
shown), 103 studied peptides, and 236 peptides that fall within
±12 Da of the 103 peptides.
doi:10.1371/journal.pone.0111112.g001
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For each database search program and target sequence, the

observed tandem spectra were searched for matches within each

combined target-k-permuted decoy spectra. The permutation p-
values were estimated as the fraction of combined target-k-

permuted decoy peptides, excluding any homeometric matches

that have a matching indicator score equal or better than the score

of target peptide.

A comprehensive evaluation of the k-permuted decoy ap-

proaches, programs, and peptide match indicators was undertaken

including: (a) Search for ideal uniform simulated spectra against

the target database using all three database search programs; (b)

Search for real tandem spectra against the target database using all

three database search programs; (c) Search for the 80 tandem

spectra containing no PTMs against the K103, K104, K105, and

K106 target-k-permuted decoy databases without PTM specifica-

tion using all three database search programs; (d) Search for the 80

tandem spectra containing no PTMs against the K105 k-permuted

database with PTM specification using all three database search

programs; and (e) Search for the 23 tandem spectra containing

PTMs against the K105 k-permuted database with PTM specifi-

cation using OMSSA and X! Tandem. Crux was excluded from

this last comparison due to considerable amount of search time

required.

Results and Discussion

A k-permuted decoy database approach that resolves limitations

of existing methods to assess the significance of peptides is

presented. The proposed approach can be used with any database

search program, especially when the program lacks of a statistical

approach for p-value calculation, and can be integrated to target

and target-decoy databases. The k-permutation strategy proposed

supersedes a decoy database of randomly generated decoy

peptides that underestimates the false discovery rate because, by

definition, the vast majority of the random peptides will be true

negatives. Non-random approaches such as reversing peptide

sequences are more appropriate than random approaches in

generating decoy databases [9–11].

Results from a three step benchmarking strategy were used to

evaluate the performance to detect neuropeptides using target-k-

permuted decoy databases. First, a baseline performance was

obtained by comparing ideal simulated spectra against a standard

‘‘target database’’ using the three database search programs.

Then, observed tandem spectra were matched to a target

database. Lastly, the observed tandem spectra were matched to

different target-k-permuted decoy databases. Evaluation of results

among modified and non-modified spectra enabled understanding

of the influence of PTMs on the search results. The source code to

generate k-permuted decoy databases is available at http://

stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting.

Peptide Detection using Ideal Simulated Spectra and a
Target Database

Table 1 summarizes the results from the three database search

programs when 103 ideal uniform spectra were simulated with all

b- and y-ions including neutral mass losses and searched against

the target database. The search of ideal simulated spectra

demonstrated the ability of the database search methods to assign

an E-value or p-value to each peptide-spectrum match in the

absence of technical or biological noise [30]. Although the E-

values and p-values reported by these programs have different

interpretations and are computed differently between programs,

match counts based on the same threshold are reported to

facilitate the identification of trends.

The three programs matched all unmodified neuropeptides

correctly at an E-value or p-value 610 . At an E21 -value or p-
value 61022, OMSSA, X! Tandem, and Crux identified 80

(100% of unmodified neuropeptides), 80 (100% of unmodified

neuropeptides), and 73 (91.25% of unmodified neuropeptides)

peptides, respectively. This trend was consistent with previous

study that compared Crux, OMSSA and X! Tandem [11]. Our

study confirmed the lower significance values that Crux computes

for peptides less than 45 amino acids in length [11]. OMSSA E-
values averaged more significant matches than X! Tandem for the

32 peptides that were less than 13 amino acids in length. However,

for the 48 peptides longer than 12 amino acids in length, the

difference in significance levels of X! Tandem and OMSSA

decreased on the average with 8, 18, and 22 peptides getting

lower, equal, and better significance levels for the X! Tandem than

OMSSA, respectively.

For the 23 neuropeptides with PTMs and an E-value or p-
value 61021, OMSSA, X! Tandem, and Crux correctly

detected 23 (100% of modified neuropeptides), 18 (78.26% of

modified neuropeptides), and 23 (100% of modified neuropep-

tides) peptides, respectively. X! Tandem failed to correctly match

five peptides with N-terminal acetylation modification instead

these five peptides were matched with incorrect internal acetyla-

tion modification at 9th lysine residue. The failure in the peptide

detection of X! Tandem was only observed when multiple PTMs

were specified in the search specification. The five peptides were

correctly detected when only N-terminal acetylation was used in

the search specification. At an E-value or p-value 61022, 23

(100% of modified neuropeptides), 18 (78.26% of modified

neuropeptides), and 22 (95.66% of modified neuropeptides)

peptides were detected by OMSSA, X! Tandem, and Crux,

respectively. The three peptides that were not significant for

OMSSA at E-value,161024 all had a pyroglutamination (Q

residue) modification. Two of these peptides, somatostatin (gene

symbol: SMS) [87–100] (QRSANSNPAMAPRE; charge state +2)

and secretogranin-2 (gene symbol: SCG2) [205–216]

(QELGKLTGPSNQ; charge state +1), were significant for the

X! Tandem and Crux at an E-value or p-value 61024. A nine

Figure 2. Frequency (number) of spectra with 1 to 10
homeometric matches for K106 k-permuted decoy databases
across the three database search programs (X! Tandem,
OMSSA, and Crux).
doi:10.1371/journal.pone.0111112.g002
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amino acid long peptide secretogranin-1 (gene symbol: SCG1)

[667–675] (QKIAEKFSQ; charge state +2) was not significant for

all three programs at an E-value or p-value 61024, while the

same peptide was missed by the Crux at p-value 61022.

Peptide Detection using Observed Spectra and a Target
Database

Table 2 summarizes the performance of the three database

search programs when the 80 experimental tandem spectra

containing no PTMs were searched against the target database.

All peptide assignments by the three database search methods

were correct at an E-value or p-value 61021. At an E-value or

p-value 61022, OMSSA, X! Tandem and Crux detected 80

(100% of unmodified neuropeptides), 71 (88.75% of unmodified

neuropeptides), and 63 (78.75% of unmodified neuropeptides)

peptides, respectively. The higher number of significant peptide

detections by OMSSA relative to Crux was consistent with the

prior reports [11]. The three search methods were less accurate on

23 observed spectra with PTMs when searched against the

standard target database (Table 2). From the correctly matched

peptides for each program, at an E-value or p-value 61022,

OMSSA, X! Tandem and Crux detected 20 (86.95% of modified

neuropeptides), 15 (65.21% of modified neuropeptides), and 17

(73.91% of modified neuropeptides) peptides, respectively.

The 80 spectra without PTMs were searched against the target

database using three database search programs and with PTM

specifications. X! Tandem peptide detection significance levels for

the 76, 3, and 1 target peptide remained unchanged, decreased,

and increased, respectively, relative to the searches involving no

PTMs. The changes in the significance levels of the four peptides

were due to higher number of candidate peptides available in the

PTM searches which in turn changed the estimation parameters

used in the E-value computation. The OMSSA peptide detection

significance levels decreased for the majority of the previous

peptides (75 out of 80 peptides) or remained unchanged (5 out of

80 peptides) when searches included PTMs, respectively. Crux

peptide detection significance levels were improved when searches

included PTMs with 65 and 29 peptide detections at p-value
161022 and ,161024, respectively. Comparison of peptide

detections across PTM scenarios indicated that at p-value
161022, 54 peptides were detected by both scenarios, 11 peptides

were detected in the PTM scenario, 9 peptides were detected in

the no PTMs scenario, and 6 peptides were not detected by either

scenario. The target peptides with low XCorr scores remained

undetected either across both scenarios or with PTM search. The

clear positive correlation between significance level and XCorr

score for the PTM searches relative to the searches without PTMs

could be due to the higher number of low scoring matches in the

searches with PTMs than without PTMs. The Crux resampling

from the low scoring matches might have resulted in a shift on the

distribution of XCorr scores towards lower scores than the target

peptides XCorr scores.

X! Tandem Peptide Identification using a K-Permuted
Decoy Database

Table 3 summarizes the log10 transformed of the E-values to

the target database and permutation p-values computed for the X!

Tandem indicators: number of matched ions, hyperscore, E-value,

and convolution score using the 80 spectra without PTMs across

the four target-k-permuted decoy databases studied. The permu-

tation p-values from number of matched ions, hyperscore and E-
value showed that the X! Tandem E-values from the target

database were dramatically underestimated (less significant) for

most target peptides. Detection and significance level using the

number of ions matched, hyperscore and E-value were almost the

same across all target-k-permuted decoy databases. Only at the

106 permutations did the p-values for number of ions matched

started to differ from the p-values from the hyperscore and E-
value match indicators. This trend was expected as the hyperscore

is a function of the product of factorial of the number of matched

ions and the ion intensity values and E-value is a function of the

hyperscore.

The convolution score resulted in fewer target peptide

identifications with higher number of sequence permutations due

to relative increase in the number of decoy matches with equal or

better scores. From the K103, K104, K105, and K106 target-k-

permuted decoy databases, 72 (90% of unmodified neuropeptides),

31 (39% of unmodified neuropeptides), 9 (11% of unmodified

neuropeptides), and 10 (13% of unmodified neuropeptides)

peptides were identified at p-value 610 ,22 ,161023, ,

161024, and ,161024, respectively. These results showed that

the convolution score alone was less suitable to discriminate

between true target and decoy matches than the hyperscore and

E-value.

Comparison of the p-values obtained from the target-k-

permuted decoy number of matched ions, hyperscores and

convolution scores suggested that roughly 105 permutations were

required for significant p-value computations using the convolu-

tion scores. Higher number of sequence permutations provided

better separation between the significance levels of the three

indicators. There were 7 peptides with E-values,1027 from the

target database indicating that the lower bound of p-values
appeared to be far smaller than the limit provided by the K106

permuted database. Comparable performance (significance level)

using number of matched ions and hyperscore were observed with

fewer permutations or lower significance thresholds. This novel

finding suggests that more significant detections can be obtained

by permuting the X! Tandem hyperscore and number of matched

ions indicators, even with a relatively small k-permuted decoy

database size.

Crux Peptide Identification using a K-Permuted Decoy
Database

Table 4 summarizes the log10 transformed permutation p-
values computed for the Crux match indicators: number of

matched ions, XCorr, DCn, and Sp using the 80 spectra without

PTMs across the four target-k-permuted decoy databases. Higher

number of sequence permutations increased the significance

values using the number of matched ions and Sp. This trend

was due to the lower number of matched ions and Sp scores of the

decoy peptide matches relative to the target peptides. The two

non-detected peptides could be attributed to the low number of

decoy candidates for those peptides rather than to an increase in

the number of decoy peptides with equal or better scores. The

hindering effect on the match significance of better or equal decoy

matches on Sp was more evident with the large decoy databases at

p-value 161025.

Peptide detection was less significant when using XCorr relative

to Sp and number of matching ions. The drop in significance level

with increase in threshold and database size was due to the higher

number of decoy peptides reaching XCorr levels better or equal

than the target peptides. The detection and significance compu-

tation using XCorr and DCn (the difference in XCorr between

candidates) was similar across all target-k-permuted databases

which reflects that the range of these match indicators stabilized.

The range of possible XCorr values was limited by the number of

observed spectrum peaks because the background adjustment is
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expected to be constant across permuted database sizes. This result

indicates that only a relatively few permuted sequences are

required to cover the range of XCorr values and that higher

number of permutations offer greater precision to detect match

differences.

OMSSA Peptide Identification using a K-Permuted Decoy
Database

Table 5 summarizes the log10 transformed permutation p-
values calculated for the OMSSA match indicators: number of

matched ions, lambda match indicator, p-value, and E-value
using the 80 spectra without PTMs across the target-k-permuted

decoy databases. Comparison between the target database and the

permutation p-values indicated that most peptides were accurately

estimated by OMSSA suggesting that the k-permuted database

size was unimportant. Examination of the few peptides with

underestimated E-values suggested that these peptides had fewer

intense MS/MS ion peaks resulting in lower 75% quartile values

than peptides of similar size with lower E-values. This result

indicates that OMSSA E-values may be less reliable in the

presence of multiple low intensity spectra peaks.

Detection and significance computation using the number of

matched ions, OMSSA p-value and E-value indicators was

identical across all k-permuted decoy databases. However, the

lambda parameter was less suitable than the other OMSSA match

indicator to discriminate matches than the other match indicators.

Differences in the lambda indicator for the same observed

spectrum were mainly determined by the total number of

theoretical m/z values for product ions and hence by the length

of the decoy peptide sequence. After a relatively few permutations,

the range of possible sequences is determined such that fewer

permutations are required to determine the distribution of the

lambda parameter than other match indicators.

Impact of PTM on Peptide Identification using a K-
Permuted Decoy Database

Searches of 80 peptides with no PTMs including the specifica-

tion of common neuropeptide PTMs improved the significance of

the detection in target-k-permuted decoy databases. Using X!

Tandem, all 80 observed peptides were identified at p-value
161025 using the number of matched ions and hyperscore

indicators in the K105 permuted database, while convolution score

indicator detected only 7 (8.75% of unmodified neuropeptides)

peptides. Consistent with searches without PTMs using the

OMSSA program, when the searches included PTMs the number

of matched ions and E-value indicators provided more significant

permutation p-values than the lambda indicator. For Crux,

specification of PTMs reduced the performance (significance

levels) of the number of matched ions, XCorr, and Sp indicators in

the K105 database. The lower significances was due to

corresponding increase in the decoy peptides with equal or better

scores than the target peptides with increase in decoy database size

when PTMs are considered in the search. Using the K105

permuted database, OMSSA and X! Tandem correctly identified

the 20 and 17 of spectrum with PTMs as the first match,

respectively. Both programs correctly identified the same 16

peptides, 6 peptides were identified by only one program and 1

peptide was not detected by either program. There were 4

peptides unmatched by X! Tandem only and the unmodified

forms were matched outside the top 20 matches. The unmatched

peptide, acetyl-YGGFMTSEKSQTPLVT, was undetected by

OMSSA both in the target or k-permuted databases. X! Tandem

was able to match the correct sequence, however the match has an

additional amidation. Manual evaluation would have corrected

the match as the amidation was on an unexpected amino acid and

the non-amidated form was closer to the precursor mass then the

amidated form.

The remaining 2 peptides that were unmatched by OMSSA

were both amidated. One peptide, SYSMEHFRWGKPV-amide,

was correctly identified as the 15th best match by OMSSA with the

unamidated form providing the best match. The difference in

monoisotopic mass between modified and unmodified was less

than 1 Da. The experimental spectrum had a precursor m/z value

of 541.70 with an assigned a 3+ charge state. At a 3+ charge state

the predicted m/z values were 541.9294 and 541.6014 for the

unmodified form and amidated forms, respectively. Biologically

the unmodified form would be identified as a probable match since

this sequence is an intermediate in the amidation process and the

unmodified sequence is uncommon among neuropeptides because

this form lacks the terminal G-residue after cleavage [11].

Consequently this unmodified peptide could be considered a

match for OMSSA.

Comparison of Peptide Database Search Programs
Overall the k-permuted decoy databases allowed the detection

of more peptides based on real spectra than the use of the standard

target database regardless of the database search program. The

search of spectra against the k-permuted decoy databases

produced many matches that were indistinguishable from each

other based on the indicators reported by the programs (e.g.,

number of matched ions, hyperscore, convolution score, and E-
value for the X! Tandem). Permutation testing is computational

demanding even with Monte Carlo sampling (Table 6). The

increase in time across permutated database sizes is a consequence

of the exponential increase in the number of sequences evaluated.

However, the K105 database provided adequate results and all

programs completed the search within 35 CPU minutes using a

single process Intel Core i7-3770 CPU @ 3.40 GHz. This timing

is the result of single-processor searches that ignored possible

parallel processing of individual spectra. The advantages of Monte

Carlo permutation approaches to assess the statistical significance

of neuropeptide matches could be further advanced by simulta-

neously running groups of observed spectra using parallel

processing.

An alternative approach to generate a permutated database is to

perform targeted permutation of specific regions such as the

terminal amino acids to disrupt b- and y-ion series. While other

regions can be permuted, the advantage of permuting only the

terminal peptides is that this strategy is independent of peptide

size. The size of the required database quickly increases from

84,960 sequences per target peptide when one terminal position

was permuted to 47,045,880 sequences per target peptide when 3

terminal positions were permuted. Evaluation of terminal

permuted databases demonstrated that this approach offered

similar yet less significant matches than the whole sequence

permuted database approach. Also, this permutation approach

had the disadvantage of providing a large number of homeometric

matches since experimental ions near the termini are required to

differentiate the order of amino acids. Thus, results from this

approach are not reported.

With the goal of accurate significance evaluation of protein

matches, dynamic programming-related approaches have been

proposed [31]. However, dynamic programming assumes that a

problem (i.e., spectra matching) can be divided into independent

components. In the context of tandem spectra, any division based

on sequence location creates dependent components because

changing an amino acid in any location will change both the b-
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and y-ion fragment series. Further any mass change must be

balanced by a corresponding change in another part of the

sequence such that the overall mass is within the specified

tolerance of the original mass. Also, the implementation of these

approaches limit high computational requirements by limiting the

information considered or through analytical assumptions. These

strategies resulted in non-exhaustive libraries that could lead to

biased statistical significance assessment. In one case, the

algorithm used is location based such that the only one ion series

can be used [16,17] due to interrelationship between ion series and

that precursor must remain within the preset tolerances. However,

using only one series is not as effective as using both ion series and

that one ion series can be more informative than the other series

[17]. In the other case, the score for a given number of matched

peaks is assumed to encompass the score from fewer matched

peaks [11]. This assumption fails when different sets of peaks are

being matched from the same peptide and the number of peaks in

common changes. Both strategies do not consider the optimal

starting location such that a peptide will be dropped from

consideration when a region of the spectrum has a poor match

score despite the higher score in other unevaluated regions. The

published algorithms appear to lack error corrections for common

problems of incorrect peak assigned due to charge state, presence

of chimeric peptides, and missing peaks. Also, both dynamic

programming strategies do not have a clear approach to account

for peptide length that has been proven to bias the statistical

significance of neuropeptides identifications [16]. Lastly, both

approaches cannot be directly applied to the open source X!

Tandem, Crux and OMSSA unlike the straightforward permu-

tation approach proposed in this study. Although the lack of

comparable basis challenges the benchmarking of strategies, the

Monte Carlo permuted database approach proposed addresses the

previous limitations while enabling simple integration to database

search programs and prompt results.

Conclusions

The present study demonstrated that the k-permuted decoy

database is an effective and computationally feasible approach to

accurately calculate the statistics of neuropeptide matches from

complex tandem MS datasets. Unlike other proposed methods to

control multiple testing such as target-decoy approaches, permu-

tation testing provided strong control of Type I error such that

neuropeptides are detected at high confidence of significance. The

implication of this finding is that an extensive decoy database is

not required to accurately detect neuropeptides and this can be

exploited to increase the speed of the search.

This study demonstrated the relative superiority of specific

detection indicators for database search programs. The indicators

E-value, hyperscore, and Sp score from the OMSSA, X! Tandem,

and Crux programs, respectively, performed better than other

indicators. The results indicated that 105 permutations per peptide

were sufficient to provide significant peptide identifications.

Indication of the suitability of the Monte Carlo permutation

approach using 105 permutations was the capability of all three

database search programs to detect all or nearly all neuropeptides

at p-value 24 and the absence of a trend for lower statistical

significance with higher permutation number. A promising finding

is the robust performance of the simple indicator, number of

matched ions between the experimental and theoretical spectra to

detect peptides. This intuitive indicator identified the vast majority

of the peptides also identified by other indicators such as

hyperscore, Sp and E-value that rely on assumptions or

parametric specifications. This result also highlights the impor-

tance of considering the number of matched ions when a match is

borderline significant. The results have shown that, in conjunction

with database search programs, the k-permuted sequence data-

bases allowed the detection of more peptides and exhibited high

consensus among the various indicators and database search

programs.

Permutation testing approached developed here can easily be

integrated into standard database search programs to compute

spectrum specific p-values for any indicator reported by the

program. Through the generation of decoy peptides, the

permutation approach could offer insights into unknown or

unexpected neuropeptides (including those resulting from PTMs

or polymorphisms or chimeras) not present in the target database.

Further, the k-permuted databases can be generated once and

shared between programs and the community.

Author Contributions

Conceived and designed the experiments: BRS SRZ JVS. Performed the

experiments: MNA BRS. Analyzed the data: MNA BRS. Contributed

reagents/materials/analysis tools: PEA. Contributed to the writing of the

manuscript: SRZ JVS BRS MNA PEA.

Table 6. Computation times in seconds for search of 80 unmodified spectra against different databases using a single process
Intel Core i7-3770 CPU @ 3.40 GHz.

Databasea Database Search Program

Crux OMSSA X! Tandem

Target 5 11 1

K103 7 56 41

K104 61 915 476

K105 200 1220 467

K106 2162 24475 5196

aTarget: database of 236 neuropeptide sequences; K103: k-permuted decoy database size of 236,000 peptides; K104: k-permuted decoy database size = 2,360,000
peptides; K105: k-permuted decoy database size = 23,600,000 peptides; K106: k-permuted decoy database size = 236,000,000 peptides.
doi:10.1371/journal.pone.0111112.t006
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