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Abstract

Background: We analysed kinetics of IL-7 and IL-15 levels in 70 patients given peripheral blood stem cells after
nonmyeloablative conditioning.

Methods: EDTA-anticoagulated plasma and serum samples were obtained before conditioning and about once per week
after transplantation until day 100. Samples were aliquoted and stored at 280uC within 3 hours after collection until
measurement of cytokines. IL-7 and IL-15 levels were measured by ELISAs.

Results: Median IL-7 plasma levels remained below 6 pg/L throughout the first 100 days, although IL-7 plasma levels were
significantly higher on days 7 (5.1 pg/mL, P = 0.002), 14 (5.2 pg/mL, P,0.001), and 28 (5.1 pg/mL, P = 0.03) (but not
thereafter) than before transplantation (median value of 3.8 pg/mL). Median IL-15 serum levels were significantly higher on
days 7 (12.5 pg/mL, P,0.001), 14 (10.5 pg/mL, P,0.001), and 28 (6.2 pg/mL, P,0.001) than before transplantation (median
value of 2.4 pg/mL). Importantly, IL-7 and IL-15 levels on days 7 or 14 after transplantation did not predict grade II–IV acute
GVHD.

Conclusions: These data suggest that IL-7 and IL-15 levels remain relatively low after nonmyeloablative transplantation, and
that IL-7 and IL-15 levels early after nonmyeloablative transplantation do not predict for acute GVHD.
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Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)

following a high dose conditioning regimen has been the best

treatment option for many young patients with hematological

disorders. The antitumor activity of this approach is based not

only on high dose chemo-radiotherapy given in the conditioning

regimen but also on immune-mediated graft-versus-tumor effects

[1,2]. These observations are the basis of the development of allo-

HSCT following nonmyeloablative conditioning, in which erad-

ication of malignant cells depends on graft-versus-tumor effects [3–

6].

T-cell recovery after allo-HSCT following high-dose condition-

ing depends on both homeostatic peripheral expansion (HPE) of

donor T cells contained in the graft, and T cell neo-production

from donor hematopoietic stem cells (thymo-dependent pathway)

[7–15]. In young patients given myeloablative allo-HSCT, most

circulating T cells during the first months following HSCT are the

progeny of T cells infused with the grafts [16], while neogeneration

of T cells by the thymus plays an increasing role in reconstituting

the T cell pool beyond day 100 after allo-HSCT [17–22]. Since

HPE allow the expansion of both NK cells and non-tolerant T

cells, it is generally accepted that HPE is one of the driving force of

graft-versus-tumor effects.

Several studies have demonstrated that IL-7 and IL-15 are the

main driving forces of HPE after allo-HSCT following high-dose

conditioning [7,23]. IL-7 is a c-common chain cytokine that is

secreted by stromal cells from multiple organs including thymus,

bone marrow, and lymphoid organs. IL-7 is required for human T

cell development since mutations in the IL-7 receptor alpha can

lead to severe combined immunodeficiency [24]. Administration

of IL-7 has been shown to dramatically increase peripheral T cell

numbers, primarily through augmentation of HPE [25–31]. IL-15

is another c-common chain cytokine secreted by antigen-

presenting cells, bone marrow stroma, thymic epithelium, and

epithelial cells in the kidney, skin, and intestines [32]. IL-15 plays
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an important role in the development and function of NK cells,

and of NK/T cells, and is required for optimal proliferation of

CD8+ T cells and for homeostatic proliferation of CD8+ memory

T cells [33–39].

While high-dose conditioning regimens typically induce a

profound lymphodepletion, progressive replacement of host-

derived T cells by donor-derived T cells is the rule after

nonmyeloablative conditioning [40,41]. This prompted us to

analyze the kinetics of IL-7 and IL-15 blood levels after allo-

HSCT following a nonmyeloablative conditioning with the aim of

determining whether there is a rational for boosting HPE and

perhaps graft-versus-tumor effects in patients with high risk disease

given grafts after nonmyeloablative conditioning by administering

IL-7 and/or IL-15.

Patients and Methods

Patients and Donors
Data from 70 patients transplanted between March 2007 and

April 2011 at the University of Liège were included in the study

(Table 1). All patients were given G-CSF-mobilized peripheral

blood stem cells (PBSC) after low-dose [2 Gy (n = 60), or 4 Gy

(n = 10)] total body irradiation (TBI)-based nonmyeloablative

regimen. Twenty-three nonmyeloablative recipients who were

given PBSC from HLA-mismatched unrelated donors were co-

transplanted with third party mesenchymal stromal cells (MSCs) as

a potential way to prevent severe GVHD [42]. Further, 3

nonmyeloablative recipients were included in a double blind

randomized study assessing the impact of MSC co-transplantation

on transplantation outcomes. No patient was given in-vivo T cell

depletion.

Ethics
Written informed consent was obtained from each patient to

undergo allo-HSCT and to collect, store and analyze blood

samples for research purposes. The Ethics Committee of the

University of Liège (‘‘Comité d’Ethique Hospitalo-Facultaire

Universitaire de Liège’’) approved the consent form as well as

the current research study protocol (protocol #B707201112193).

Clinical Management
The clinical management has been performed as previously

reported [43,44]. Chimerism levels among peripheral T-cells were

generally measured with PCR-based analysis of polymorphic

microsatellite regions (AmpFlSTRH IdentifilerH, Applied Biosys-

tems, Lennik, Belgium) [43]. CD3 (T-cell) selection was carried

out with the RosetteSepR human T-cell enrichment kit (StemCell

Technologies, Vancouver, Canada) [43,44].

Cytokines Levels
EDTA-anticoagulated plasma and serum samples were ob-

tained before conditioning and about once time per week after

transplantation until day 100. Samples were aliquoted and stored

at 280uC within 3 hours after collection until measurement of

cytokines. Kinetic courses of IL-7 production in plasma samples

were evaluated before conditioning and approximately at days 7,

14, 28, 40, 60, 80 and 100 after allo-HSCT. IL-15 serum sample

levels were assessed before conditioning and approximately at days

7, 14 and 28 after allo-HSCT. IL-7 and IL-15 levels were

measured by ELISAs following the manufacturer’s protocol (High

sensitivity IL-7 and IL-15 quantikine, R&D Systems, Minneapolis,

MN, USA). The standard curve ranges for IL7 were 0.25 to

16 pg/mL, and the minimal detectable dose was ,0.1 pg/mL. No

patient had IL-7 levels below this threshold in the current study.

The standard curve ranges for IL15 were 3.9 to 250 pg/mL, and

the minimal detectable dose was ,2 pg/mL. Il-15 levels were

between 0 and 2 pg/mL in our study in 15 patients before

transplantation, in no patient on days 7 and 14, and in 1 patient

on day 28. No sample dilution was performed for IL-15 assay. For

IL-7 analysis, samples were diluted twice. Patient samples whose

cytokine level were out of standard curve range, were re-assessed

after dilution.

Immune Recovery
Immune recovery was prospectively assessed as previously

described [43,44]. Briefly, patients’ peripheral white blood cells

were phenotyped using 4 color flow cytometry after treatment with

a red blood cell lyzing solution. The following antibodies were

used: CD3-ECD (Beckman Coulter, Iotest #A07748); CD4-V450

(Becton Dickinson Horizon #560345); CD8-FITC (Beckman

Coulter Iotest #A07756); CD56-PC7 (Beckman Coulter Iotest

#A21692); CD45RA-PE (Dako #R7086). The percentage of

positive cells was calculated relative to total nucleated cells, after

subtraction of non-specific staining. Absolute counts were obtained

by multiplying the percentages of positive cells by the white blood

cell counts (XE-5000 hematology analyzer, Sysmex, Kobe, Japan).

Absolute lymphocytes counts (ALC) were measured directly by the

XE-5000 analyzer or after microscopic review of the blood smears

when the automated differential was flagged. Absolute white blood

cell counts were used instead of ALC when white blood cell counts

were below 150 cells 6109/L.

Statistical Analyses
The Mann Whitney test was used to compare counts of

lymphocyte subset and cytokine levels in patients given grafts after

2 Gy or 4 Gy TBI. The Wilcoxon matched pair test was used to

compare cytokines levels before and at various time points after

transplantation. Generalized linear mixed models were used to

analyze factors affecting immune recovery and cytokine levels after

transplantation. Factors included in the models included : (1) dose

of TBI (2 Gy vs 4 Gy), MSC infusion or not, number of days after

allo-HSCT, number of CD3+ cells transplanted, donor type

(related vs unrelated), patient age, and donor age for analyses

examining lymphocyte counts; (2) dose of TBI (2 Gy vs 4 Gy),

MSC infusion or not, grade II–IV acute GVHD the first 100 days

after transplantation, number of CD3+ cells transplanted, donor

type (related vs unrelated), patient age, and donor age, and either

IL-7 or IL-15 levels on days 7–14 (median) for analyses examining

lymphocyte count increments from days 14–28 (median) to days

80–100 (median); and (3) number of days after allo-HSCT,

number of CD3+ cells transplanted, donor type (related vs

unrelated), dose of TBI (2 Gy vs 4 Gy), ALC, CRP levels, donor

and patient ages, and MSC infusion or not, for analyses of

cytokine levels. Incidences of acute GVHD according to the

cytokines levels were assessed using cumulative incidence methods.

A Cox model was constructed for determining potential factors

associated with the occurrence of grade II–IV acute GVHD the

first 200 days after transplantation. Factors included in the model

included median day 7 and day 14 IL-7 levels, median day 7 and

day 14 IL-15 levels, dose of TBI (2 Gy vs 4 Gy), donor type

(related vs unrelated), female donor to male recipient versus other

gender combination, MSC infusion or not, patient age, and donor

age. Spearman’s correlation was used to examine the relationship

between parameters. Statistical analyses were carried out with

Graphpad Prism (Graphpad Software, San Diego, CA) and SAS

version 9.2 for Windows (SAS Institute, Cary, NC, USA).

IL-7 and IL-15 after Allo-HSCT
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Results

Immune Recovery
Median ALC count on day 0 was 110 (range, 10–5440) cells/

ml, demonstrating the persistence of recipient T cells at the time

of transplantation. While median CD8+ T cell levels reached

the lower limit of normal values from day 60 after transplan-

tation, median CD4+ T cell (including naı̈ve CD4+ T cells)

remained below the lower limit of normal values the first 6

months after transplantation (Figure 1). No significant difference

of T cell subset counts were observed between 2 Gy and 4 Gy

TBI regimen. Using generalized linear mixed models taking into

consideration data from day 14, 28, 40, 60, 80 and 100 for

each patient, counts of CD3+ T cells (P,0.001), CD8+ T cells

(P,0.001), CD4+ T cells (P = 0.024), NK cells (P,0.001) and

NK/T cells (P,0.001) increased over time but not those of

naı̈ve CD4+ T cells (P = 0.13). Further, high numbers of

transplanted CD3+ T cells were associated with higher counts

CD3+ T cells (P = 0.009), CD8+ T cells (P = 0.003), and CD4+

T cells (P = 0.0099), while high donor age was associated with

lower counts of CD3+ T cells (P = 0.04), CD4+ T cells

(P = 0.05), and naı̈ve CD4+ T cells (P = 0.021). There was no

significant association between MSC administration and lym-

phocyte subset counts after transplantation.

IL-7 Plasma Levels
Median IL-7 plasma levels remained below 6 pg/L throughout

the first 100 days (the upper limit of normal range being 9.2 pg/

mL (Quantikine� HS catalog number HS750)), although IL-7

plasma levels were significantly higher on days 7 (5.1 pg/mL,

P = 0.002), 14 (5.2 pg/mL, P,0.0001) and 28 (5.1 pg/mL,

P = 0.03) (but not thereafter) than before transplantation (median

value of 3.8 pg/mL) (Figure 1G). Using generalized linear mixed

models, low number of transplanted CD3+ T cells (P = 0.001), low

ALC level the day of IL-7 assessment (P,0.0001), high donor age

(P = 0.003), having received PBSC from unrelated donors

(p = 0.006), and high level of CRP the day of IL-7 assessment

(P = 0.033) were associated with high levels of IL-7 (Table 2).

Il-15 Serum Levels
Median IL-15 serum levels were significantly higher on days 7

(12.5 pg/mL, P,0.001), 14 (10.5 pg/mL, P,0.001) and 28

(6.2 pg/mL, P,0.001) than before transplantation (median value

of 2.4 pg/mL) (Figure 1H). IL-15 levels on day 7 and 14 were

significantly higher in 4 Gy than 2 Gy TBI. Using generalized

linear mixed models, conditioning with 4 versus 2 Gy TBI

(P = 0.002), having received PBSC from unrelated donors

(P = 0.001), low ALC level the day of IL-15 assessment

(P,0.001), and high level of CRP the day of IL-15 assessment

Table 1. Patients’ characteristics.

Nonmyeloablative conditioning (n = 70)

Median age (range) 50 (16–73)

Gender (male/female) 48/22

Diagnostic (# of patients)

Acute myeloid leukemia in CR 21

Acute lymphoblastic leukemia in CR 4

Chronic myeloid leukemia 1

Chronic lymphocytic leukemia 6

Lymphoma 16

Myelodysplatic syndrome/myeloproliferative disorder 9

Multiple myeloma 13

Donor (# of patients)

Sibling 13

Unrelated 57

Conditioning regimen (# of patients)

TBI 2 Gy 1

Fludarabine 90 mg/m2+TBI 2 Gy 59

Fludarabine 90 mg/m2+TBI 4 Gy 10

Immunosuppressive regimen (# of patients)

Tacrolimus+MMF 70

Co-transplantation with MSC

Yes 23

No 44

Unknown* 3

Graft composition; median (range) x 106/kg

CD34 5.4 (1.1–14.5)

CD3 314 (92–1216)

*double blind randomized study: The information of which of these 3 patients (if any) have been given MSC has been given by the director of the Cell Laboratory only
to LS (the statistician); TBI, total body irradiation; MMF, mycophenolate mofetil.
doi:10.1371/journal.pone.0055876.t001

IL-7 and IL-15 after Allo-HSCT
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(P = 0.006) were each associated with high IL-15 levels on days 7

and 14 after allo-HSCT (Table 2).

Correlation between IL-7 and IL-15 Levels and
Lymphocyte Subset Counts on Days 14 or 28 after allo-
HSCT

Day 14 IL-7 levels inversely correlated with day 14 counts of

CD3+ T cells (R = 20.46, P = 0.002; Figure 2A), CD8+ T cells

(R = 20.41, P = 0.006), CD4+ T cells (R = 20.44, P = 0.004), and

memory CD4+ T cells (R = 20.45, P = 0.003), but not with counts

of naı̈ve CD4+ T cells (R = 20.28, P = 0.07), NK/T cells

(R = 20.04, P = 0.8) nor NK cells (R = 20.14, P = 0.4). There

was a weak association between day 14 IL-7 and IL-15 levels

(R = 0.27, P = 0.049). Further, day 14 IL-15 levels correlated with

day 14 counts of NK cells (R = 20.32, P = 0.039; Figure 2B) and

of NK/T cells (R = 20.32, P = 0.037), but not with those of other

T cell subsets.

Day 28 IL-7 levels inversely correlated with day 28 counts of

CD3+ T cells (R = 20.47, P,0.001; Figure 2A), CD8+ T cells

(R = 20.41, P = 0.002), CD4+ T cells (R = 20.39, P = 0.002),

naı̈ve CD4+ T cells (R = 20.40, P = 0.002), and memory CD4+ T

cells (R = 20.38, P = 0.004), but not with counts of NK/T cells

(R = 20.17, P = 0.2), nor NK cells (R = 20.02, P = 0.9), nor with

day-28 donor T cell chimerism levels (R = 0.0, P = 0.95). There

was no significant association either between day 28 IL-7 and IL-

15 levels (R = 0.07, P = 0.6). Further, day 28 IL-15 levels

correlated with day 28 counts of NK cells (R = 20.32,

P = 0.015; Figure 2B) but not with those of T cell subsets, nor

with day-28 donor T cell chimerism levels (R = 0.14, P = 0.29).

To further assess the potential association between early IL-7 or

IL-15 levels on immune recovery, we analysed whether there was

a relationship between median cytokine levels on days 7 and 14

and the difference of lymphocyte subset counts between days 80–

100 (median) and days 14–28 (median). Interestingly, in multi-

variate analyses, early IL-7 levels did not correlate with any

lymphocyte subset increment from days 14–28 to day 80–100 after

transplantation, while high IL-15 levels early after transplantation

correlated with a lower increment of NK cells over time (P = 0.04).

IL-7 and IL-15 Levels did not Predict for Subsequent
Acute GVHD

The 180-day cumulative incidence of grade II–IV acute GVHD

was 30%, a rate similar to what has been observed by other group

of investigators using similar conditioning regimen [45]. As shown

in the Figure 3, no statistically significant association between

cytokines levels on days 7 or 14 after transplantation and

occurrence of grade II–IV acute GVHD were observed.

Specifically, the 180-day cumulative incidence of grade II–IV

acute GVHD was 29% in patients with day 7 IL-7 levels.median

(5.1 pg/mL) versus 20% in patients with day 7 IL-7 levels #

median (P = 0.38) (Figure 3A). Similarly, the 180-day cumulative

Figure 1. Median ALC (A), median MNC-subset cell counts (B–F), and median IL-7 (G) and IL-15 (H) after allogeneic hematopoietic
cell transplantation following 2 Gy (continuous line) or 4 Gy (broken line) total body irradiation. The error bars shows the 25th and 75th

percentiles. For ALC and MNC-subset, horizontal lines show the medians and the grey square the limit of normal value (if non truncated) in 47 healthy
volunteer donors; for IL-7, horizontal line shows the medians and the grey square the limit of normal value according to the manufacturer brochure.
*, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0055876.g001

Table 2. Multivariable analyses of factors affecting cytokines
levels on days 7 and 14 after allo-HSCT.

Factor(s) associated with higher levels*,{

IL-7 - Low ALC on day 7 or 14 (P,0.001).

- Low # of transplanted T cells (CD3+) (P = 0.001).

- High CRP levels on day 7 or 14 (P = 0.033).

- Unrelated donors (P = 0.006).

- High donor age (P = 0.003).

IL-15 - 4 vs 2 Gy TBI (P = 0.002).

- Unrelated donors (P = 0.001).

- High CRP levels on day 7 or 14 (P = 0.006).

- Low ALC on day 7 or 14 (P,0.001).

*Other factors assessed were number of days after allo-HSCT, patient age, and
mesenchymal stromal cells infusion or not;
{P values were determined according to generalized linear mixed models;
TBI, total body irradiation.
doi:10.1371/journal.pone.0055876.t002

Figure 2. Correlation between CD3+ T cell counts and IL-7
levels on day 14 (black circles and continuous line) and on day
28 (open triangles and broken lines) after transplantation (A).
Correlation between NK cell counts and IL-15 levels on day 14 (black
circles and continuous line) and on day 28 (open triangles and broken
lines) after transplantation (B).
doi:10.1371/journal.pone.0055876.g002

IL-7 and IL-15 after Allo-HSCT
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incidence of grade II–IV acute GVHD was 19% in patients with

day 14 IL-7 levels.median (5.2 pg/mL) versus 37% in patients

with day 14 IL-7 levels # median (P = 0.18) (Figure 3B).

The 180-day cumulative incidence of grade II–IV acute GVHD

was 24% in patients with day 7 IL-15 levels.median (12.5 pg/

mL) versus 28% in patients with day 7 IL-15 levels # median

(P = 0.8) (Figure 3C). Similarly, the 180-day cumulative incidence

of grade II–IV acute GVHD was 25% in patients with day 14 IL-

15 levels.median (10.5 pg/mL) versus 33% in patients with day

14 IL-15 levels # median (P = 0.8) (Figure 3D).

Finally, in a multivariate Cox model, neither median IL-7 levels

(P = 0.17 with a trend for an inverse correlation) on days 7–14 nor

median IL-15 levels (P = 0.21 with a trend for a positive

correlation) on days 7–14 correlated with occurrence of grade

II–IV acute GVHD the first 200 days after transplantation.

Similarly, the use of MSC was not associated with decreased

incidence of grade II–IV acute GVHD. This could be explained

by the fact that all 23 MSC recipients versus of 9 of the remaining

49 patients (18%) received PBSC from HLA-mismatched donors.

None of the other factors tested (dose of TBI, donor type, female

donor to male recipient versus other gender combination, patient

age, and donor age) were significantly associated with the

incidence of grade II–IV acute GVHD in the current study.

IL-15 Levels did not Predict for Subsequent Relapse/
Progression

Given that a previous publication showed an association

between high IL-15 levels and low risk of relapse/progression

[46], we compared the cumulative incidence of relapse/progres-

sion according to IL-15 levels 14 days after transplantation in our

cohort of patients. The 6-month and 1-year cumulative incidences

of relapse/progression were 29% and 32%, respectively, in

patients with day 14 IL-15 levels.median (10.5 pg/mL) versus

37% and 46%, respectively, in patients with day 14 IL-15 levels #

median (P = 0.57).

Discussion

Following allo-HSCT, eradication of residual tumor cells

depends in part (in case of high-dose conditioning) or mainly (in

case of nonmyeloablative conditioning) on immune-mediated

graft-versus-tumor effects [1,2,4]. Prior studies have demonstrated

a close relationship between T cell reconstitution and graft-versus-

tumor effects after allo-HSCT [4,14,47–49]. Given that HPE

allows the expansion of potentially alloreactive T cell clones, it has

been generally accepted that HPE plays a major role in graft-

versus-tumor effects, but could also cause or favor acute GVHD.

Figure 3. Cumulative incidence of grade II–IV acute GVHD according to day 7 IL-7 plasma levels among nonmyeloablative
recipients (P = 0.4) (A). Cumulative incidence of grade II–IV acute GVHD according to day 14 IL-7 plasma levels among nonmyeloablative recipients
(P = 0.18) (B). Cumulative incidence of grade II–IV acute GVHD according to day 7 IL-15 serum levels among nonmyeloablative recipients (P = 0.8) (C).
Cumulative incidence of grade II–IV acute GVHD according to day 14 IL-15 serum levels among nonmyeloablative recipients (P = 0.6) (D).
doi:10.1371/journal.pone.0055876.g003

IL-7 and IL-15 after Allo-HSCT

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e55876



This prompted us to investigate the kinetics of IL-7 and IL-15

levels in a cohort of 70 patients given grafts after truly

nonmyeloablative conditioning.

First, patients given grafts after nonmyeloablative conditioning

had only a modest (,2 fold) increase of IL-7 levels after

transplantation (contrarily to what we observed in another cohort

of patients given grafts after myeloablative conditioning [50]), that

persisted up to day 21. This is probably due to the fact that

nonmyeloablative patients experienced relatively mild lymphope-

nia (and thus continue to consume the IL-7 produced by stromal

cells) as demonstrated by the persistence of median ALC counts of

110 cells/mL at the time of transplantation. Although the first T

cell chimerism assessment in current patient was usually around

day 28 after HSCT, a prior study analyzing data from patients

given similar conditioning regimen demonstrated that a median of

50 CD3+ T cells of recipient origin/mL persisted on day 14 after

HSCT [40]. Further, as observed by other groups of investigators

[46,51,52], there was a strong inverse correlation between IL-7

levels and absolute lymphocyte counts [46,52], as well as a strong

inverse correlation between IL-7 levels and T cell subsets on days

14 and 28 after transplantation. Other factors associated with IL-7

levels included high CRP levels, and low numbers of transplanted

T cells. Levels of IL-7 in current nonmyeloablative recipients

where lower to what was observed by Thiant et al. in a cohort of 45

patients given grafts after fludarabine +2 Gy TBI (n = 18) or more

intense but still reduced-intensity conditioning (n = 27) [52], and

where much lower than what was observed by Dean et al. in

patients given grafts after sequential chemotherapy followed by a

chemotherapy/fludarabine-based reduced-intensity conditioning

[53]. This apparent discrepancy is probably explained the fact

than median ALC counts on day 0 were 110 (range, 10–5440)

cells/ml in current patient versus 0 (range, 0–322) cells/mL in the

Dean et al. study, while median counts of CD3+ T cells were 0

(range, 0–1900) cells/mL at the time of transplantation in Thiant

et al. study.

Il-15 levels were lower in nonmyeloablative patients conditioned

with 2 Gy TBI than in those conditioned with 4 Gy TBI,

demonstrating that the release of IL-15 was proportional to the

intensity of the conditioning regimen. As observed by Thiant et al.

[46,52], there was a correlation between IL-7 and IL-15 levels on

day 14 (but not on day 28) after transplantation, and an inverse

correlation between IL-15 levels and NK cell counts. Other factors

affecting IL-15 levels included high CRP levels.

Several observations demonstrate that immune recovery

depended mainly on HPE the first year after nonmyeloablative

conditioning regimen in current patients. Firstly, there was a

strong correlation between the number of infused T cells and high

counts of CD4+ and CD8+ T cells, as previously observed [43,54].

Secondly, thymic function was minimal during the first 100 days

after allo-HSCT given that levels of naı̈ve CD4+ T cells did not

significantly increase the first 100 days after transplantation

despite that some naı̈ve T cells can undergo HPE and keep their

naı̈ve phenotype. Third, there was a correlation between high

donor age and low counts of CD3+ T cells (P = 0.04), CD4+ T cells

(P = 0.05), and naı̈ve CD4+ T cells (P = 0.021), as previously

observed in patients given grafts after nonmyeloablative condi-

tioning [55]. Despite that, we failed to find any significant

association between IL-7 and/or IL-15 levels early after

transplantation and increment of T cell subset counts from days

14–28 to day 80–100, even after adjusting for potentially

confounding cofactors.

A number of previous studies have demonstrated that high

levels of IL-7 [46,52,53] and/or IL-15 [46,52] early after

transplantation correlated with subsequent occurrence of grade

II–IV acute GVHD, while others study failed to find such an

association [51,56]. The largest study including data from 153

consecutive allogeneic transplant recipients given grafts after high-

dose conditioning and ATG observed no correlation between IL-7

levels early after transplantation and acute GVHD, while,

interestingly, there was an inverse correlation between IL-15

levels early after transplantation and grade II–IV acute GVHD

[57]. Further, a recent study demonstrated that administration of

IL-7 after allogeneic T cell-depleted transplantation in humans did

not increase acute GVHD [58]. In the current study, we did not

observe any association between levels of IL-7 or IL-15 early after

allo-HSCT and grade II–IV acute GVHD. The same was true

after adjusting the analyses for potentially confounding cofactors.

Differences in postgrafting immunosuppression might be the cause

for these apparent discrepancies between studies. As example, it

has been shown that tacrolimus (given in patients included in the

current study) decreased T cell proliferation induced by IL-7 [59],

and tacrolimus levels were kept high in our patients the first weeks

after transplantation (median 18.6, 16.4, 14.9 and 14.3 mg/L on

days 0, 7, 14 and 21 after transplantation, respectively) probably

explaining the low relatively incidence of acute GVHD observed

[60].

In summary, these data suggest that IL-7 and IL-15 levels

remain relatively low after nonmyeloablative transplantation, and

that IL-7 and IL-15 levels early after nonmyeloablative transplan-

tation do not predict for acute GVHD.
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