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Introduction 

Despite the numerous research and clinical studies, ovarian cancer (OC) still has a high 
mortality rate among gynecological cancers since lack of effective biomarkers for early 
detection and prognosis [1-3]. Also, the treatment efficiency of OC is low depending on 
multiple challenges such as late diagnosis, lack of reliable markers, the development of re-
sistance to current therapeutics, and phenotype of heterogeneity [1,4]. For these chal-
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Recent studies have focused on the early detection of ovarian cancer (OC) using tumor 
materials by liquid biopsy. The mechanisms of microRNAs (miRNAs) to impact OC and sig-
naling pathways are still unknown. This study aims to reliably perform functional analysis 
of previously validated circulating miRNAs’ target genes by using pathfindR. Also, overall 
survival and pathological stage analyses were evaluated with miRNAs’ target genes which 
are common in the The Cancer Genome Atlas and GTEx datasets. Our previous studies have 
validated three downregulated miRNAs (hsa-miR-885-5p, hsa-miR-1909-5p, and hsa-
let7d-3p) having a diagnostic value in OC patients’ sera, with high-throughput techniques. 
The predicted target genes of these miRNAs were retrieved from the miRDB database 
(v6.0). Active-subnetwork-oriented Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was conducted by pathfindR using the target genes. Enrich-
ment of KEGG pathways assessed by the analysis of pathfindR indicated that 24 pathways 
were related to the target genes. Ubiquitin-mediated proteolysis, spliceosome and Notch 
signaling pathway were the top three pathways with the lowest p-values (p < 0.001). 
Ninety-three common genes were found to be differentially expressed (p < 0.05) in the 
datasets. No significant genes were found to be significant in the analysis of overall surviv-
al analyses, but 24 genes were found to be significant with pathological stages analysis (p 
< 0.05). The findings of our study provide in-silico evidence that validated circulating miR-
NAs’ target genes and enriched pathways are related to OC and have potential roles in 
theranostics applications. Further experimental investigations are required to validate our 
results which will ultimately provide a new perspective for translational applications in OC 
management. 
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lenges of OC, new studies need to reveal underlying molecular 
mechanisms, and to discover molecular biomarkers for early diag-
nosis, prevention, and targeted therapy [4]. 

MicroRNAs (miRNAs) are small non-coding RNAs that are 
about ~22 nucleotides in length. Their function is transcriptional 
and post-transcriptional regulation of gene expression by targeting 
mRNAs [5,6]. According to the effect on cancer, there are two 
types of miRNAs which are tumor suppressor miRNAs and on-
comiRs. Depending on the type of cancer, oncomiRs or tumor 
suppressor miRNAs are inhibited or stimulated, respectively [7]. 
Especially, dysregulations of specific miRNAs affect cancer cell 
proliferation, differentiation, metastasis, and recurrence formation 
[8,9]. Various miRNAs have been shown to play different roles in 
OC. The mechanisms of miRNAs to impact OC and signaling 
pathways are still unknown. [2,10]. 

Many experimental studies have verified the detected interac-
tions with bioinformatics analysis and proved the accuracy and 
predictivity with in-silico tools or databases. Although significant 
progress has been made about in-silico analysis in evaluating miR-
NAs, the need for new tools/databases is increasing day by day. It 
is also because of the limitations in existing tools/databases, that 
has increased with the development of high-throughput miRNAs 
technologies to analyze miRNA [11,12]. 

In this study, pathfindR was used for enrichment analysis of tar-
get genes. PathfindR uses active subnetworks, where an active sub-
network can be defined as a subnetwork of interconnected genes 
in a protein-protein interaction network (PIN), predominantly 
consisting of significantly altered genes. The tool initially maps the 
input genes with significance values onto the PIN and identifies 
active subnetworks, then it performs enrichment analysis on the 
identified subnetwork gene sets. In general, enrichment approach-

es overlook the relational information captured in the PIN and the 
genes neighboring the significant genes are not considered. By 
identifying active subnetworks, pathfindR exploits interaction in-
formation to enhance enrichment analysis. Active subnetworks al-
low the inclusion of possibly relevant genes that are not significant 
but connect significant genes in the PIN, and, in turn, the identifi-
cation of phenotype-associated connected significant subnetworks 
[13]. This aids pathfindR uncover relevant mechanisms underly-
ing the studied disease/phenotype. 

In this study, we developed an in-silico approach to evaluate tar-
get genes of OC-related circulating and previously validated miR-
NAs which may be targeted for therapeutic approaches and uti-
lized for OC management and diagnosis (Fig. 1). 

Methods 

Identification of the targets genes of validated miRNAs 
In our functional analyses, we used hsa-miR-885-5p, hsa-miR-
1909-5p, and hsa-let7d-3p which were previously defined by our 
group as the dysregulated miRNAs that can be a candidate bio-
marker for OC. These candidate miRNAs, which were determined 
by microarray, were validated by quantitative polymerase chain re-
action (qPCR). Both microarray and qPCR results showed that 
these three miRNAs were downregulated in the OC group com-
pared with healthy individuals [14,15]. 

Target genes of validated circulating miRNAs were examined by 
using the miRDB online database (http://www.mirdb.org). As one 
of the miRNA-target predictions and the functional annotations 
databases, miRDB provides access to miRNA-target genes and 
functions of five different species: human, mouse, rat, dog, chick-
en. All targets in the database were acquired from the MirTarget 

Fig. 1. The workflow for bioinformatics analysis of miRNAs. GEPIA, Gene Expression Profiling Interactive Analysis; qPCR, quantitative 
polymerase chain reaction.
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database, which was a bioinformatics tool developed with analyz-
ing thousands of miRNA-target interactions obtained from 
high-throughput techniques. By integrating target prediction and 
gene ontology enrichment analyses, miRDB presents a stream-
lined pipeline for quickly identifying miRNA functions [16]. 

Functional and pathway enrichment analyses 
Using all (i.e., union of) target genes of the validated miRNAs, ac-
tive-subnetwork-oriented Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway enrichment analysis was performed us-
ing pathfindR. The tool pathfindR identifies gene sets that form 
active subnetworks in a PIN using a list of genes. Afterwards, it 
performs pathway enrichment analysis. An active subnetwork can 
be defined as a group of interconnected genes in a PIN that pre-
dominantly consists of significantly altered genes. Active subnet-
works define distinct disease-associated sets of interacting genes. 
By incorporating interaction information, pathfindR yields more 
relevant enrichment results.  

For assigning a significance value for each target gene (for use 
with pathfindR), initially, all Homo sapiens miRNA-target gene 
scores were obtained from miRDB (v6.0). The significance for 
each target gene was defined as the probability of observing a score 
greater than or equal to the score of this target gene over all H. sa-
piens miRNA-target gene scores [i.e., P(x ≥  observed score)]. For 
genes that are targeted by more than one miRNA, the lowest sig-
nificance was kept. The final list of target genes-significance values 
was, then, filtered keeping genes with significance ≤  0.5 (corre-
sponds to a score of 67). The significance value used for pathfindR 
indicates what proportion of all scores (across all H. sapiens miR-
NA-target gene scores) was as high or higher than the observed 
score for a given miRNA-target gene pair. The threshold proxy sig-
nificance value of 0.5 was an ad-hoc choice corresponding to a 
score of 67, which was roughly equivalent to the threshold value 
suggested by miRDB for obtaining high-confidence miRNA-target 
gene pairs. 

Determination of differentially expressed target genes 
The expressions of the target genes were enriched in The Cancer 
Genome Atlas and Genotype-Tissue Expression (GTEx) datasets 
by using GEPIA (Gene Expression Profiling Interactive Analysis) 
(http://gepia.cancer-pku.cn). GEPIA provides customizable func-
tions, such as tumor and/or normal differential expression analy-
sis, profiling according to cancer types or pathological stages, pa-
tient survival analysis, detection of gene expression similarities, 
correlation analysis and dimensionality reduction analysis using 
RNA sequencing (RNA-seq) data of The Cancer Genome Atlas 

(TCGA) and GTEx projects [17]. 
All target genes enriched were analyzed separately by using the 

Expression DIY feature and performed for the RNA-seq data of 
TCGA and GTEx datasets by using the ANOVA test. For each 
gene expression features of box plots were set as | Log2FC| cutoff: 
1 and p-value cutoff: 0,01, jitter size: 0,4 and log2 (TPM + 1) for 
log-scale. Genes with a p-value < 0.05 were identified as differen-
tially expressed target genes. 

Overall survival and pathological stage analyses 
The associations between expression signatures of shared genes 
and overall survival and pathological stage analyses were per-
formed in the TCGA and GTEx dataset by the GEPIA platform. 
For overall survival plot analysis used log-rank test, also known as 
the Mantel-Cox test, for the hypothesis test and cohorts’ thresh-
olds adjusted. The Cox proportional hazard ratio and the 95% 
confidence interval information are included in the survival plot. 
The method for differentially expressed target gene analysis is one-
way ANOVA, using the pathological stage as variable for calculat-
ing differential expression. The expression data are first log2(T-
PM+1) transformed for differential analysis. They included fur-
ther statistical analysis, Benjamini and Hochberg’s false discovery 
rate (FDR) adjusted p-value (q-value) <  0.05 was identified as 
statistically significant. Genes with FDR p-value (q-value) <  0.05 
were identified as significant association with overall survival or 
pathological stage. 

Results 

Target genes analysis of miRNAs 
Target genes of validated circulating miRNAs were comprehen-
sively analyzed by miRDB database. Target genes were retrieved 
separately determined for each miRNA. No specific filters were 
applied for target gene prediction in miRDB database. Respective-
ly, 422, 230, and 44 target genes were identified with mining target 
genes of hsa-miR-885-5p, hsa-miR-1909-5p, and hsa-let-7d-3p. 
Target genes were filtered by a score of 67 for significance values. 
After filtering, the number of target genes detected for hsa-miR-
885-5p, hsa-miR-1909-5p, and hsa-let-7d-3p were respectively 
229, 90, and 23 (Table 1). While two common target genes were 
found in hsa-miR-885-5p and hsa-miR-1909-5p: ERICH3 (gluta-
mate rich 3) and CAPRIN1 (cell cycle associated protein 1), one 
common target gene were observed in hsa-miR-885-5p and hsa-
let-7d-3p: SEC24D (SEC24 homolog D, COPII coat complex 
component). No common target gene was found for all three 
miRNAs. The numbers of target and common genes are shown in 
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Fig. 2. Venn diagrams were drawn by using VENNY 2.1 (https:// 
bioinfogp.cnb.csic.es/tools/venny) online web tool.  

Pathway enrichment analyses of target genes of miRNAs 
Performing active-subnetwork-oriented enrichment analysis via 
pathfindR using the union of miRNA-target genes (339 genes in 
total), 24 enriched KEGG pathways were identified (Table 2). The 
top three pathways were ubiquitin-mediated proteolysis, spliceo-
some, and Notch signaling pathway according to p-values. The 
pathway diagrams for these pathways, in which the target genes of 
our dysregulated miRNAs are indicated by orange color, are pre-
sented in Fig. 3. It is found that a total of ten different target genes 
were involved in these pathways. A part of the target genes which 
are TRAF6 (TNF receptor associated factor 6), UBE2N (ubiquitin 
conjugating enzyme E2 N), UBA7 (ubiquitin like modifier activat-
ing enzyme 7), UBE2K (ubiquitin conjugating enzyme E2 K), 
WWP1 (WW domain containing E3 ubiquitin protein ligase 1) are 
ubiquitin-mediated proteolysis (Fig. 3A) whereas, SRSF2 (serine 
and arginine rich splicing factor 2), SRSF6 (serine and arginine rich 
splicing factor 6), and U2SURP (U2 SnRNP associated SURP do-
main containing) are involved in spliceosome pathway (Fig. 3B). 
There are only two genes in the Notch pathway: ATXN1L (ataxin 1 

Table 1. Target genes determined in the miRDB database (score ≥ 67, for representation purposes)

miRNAs Target genes
hsa-miR-885-5p GALNT3, ZNF367, C9orf3, TMEM135, CTNNB1, ZNF354A, OXR1, ZFP91, LRP4, CPEB2, SYTL4, SLC11A2, ZNF281, PGK2, ASCL4, CAMK4, 

FAM81A, KIF21A, MXD1, LCP1, ATXN1L, C8orf88, CCDC71L, UPF2, ADD1, FAM241A, GPR68, MAN1C1, ELAVL1, ZADH2, PANK3, PFDN4, 
JAZF1, OR51E1, ECE1, FURIN, CDC73, FNTA, MAP4K3, UBTD2, LACTB, ATAD2B, ENKUR, TMEM41A, FAM98A, KAT2B, EMILIN2, CPSF6, 
NLRP1, KIAA0825, OSBPL6, ZFY, MAGT1, ZBTB34, NUDT21, CEP170, CPEB3, ING3, SNAPC3, ARID2, PDE10A, NUDCD2, MTMR9, ASB5, 
ZC3H12C, MAN1A2, PCSK5, WWP1, PARVA, DPY19L1, TDRD6, PDCD6IP, VSTM2A, PROK2, ZC3HAV1, SH2D1A, HSFY2, LAMC2, HSFY1, 
MACF1, WNT5A, VPS13A, GTF2H3, ZNF407, MEX3D, TMEFF2, PHF6, TSC22D2, SLC33A1, SRSF6, DNAJC15, STRIP2, EIF1AX, EIF1AY, 
SMIM13, TPMT, RFX7, CEBPD, ZNF10, PBOV1, NSUN5, SEMA6A, UBE2N, CXADR, CDK17, TMEM185B, TCTEX1D1, PDK1, CPSF7, SL-
C35D1, ZNF516, PARG, RAD54B, RET, NME5, SLC35F5, HMBOX1, SAMD12, FSBP, CCDC182, SMARCE1, CLASP2, LRRK2, LYPLA1, 
B3GLCT, TMEM41B, YWHAE, IMPACT, HSBP1, PPP3R1, HINT3, FSD1L, KIF1C, MRPL2, SH3BGRL2, TTC30A, ANKFY1, CDK14, ERICH3, 
ZFHX4, HMGB1, ZFX, TMPRSS11A, UBE2K, NR2C1, TMEM230, PRRG1, MRPS10, KLHL29, SRSF2, ETFBKMT, GOPC, HRASLS5, AIG1, 
SLC38A2, PAK5, NUP50, RBPMS, GPR75, DGKH, LPAR1, CALN1, ZNF80, ANKS4B, STMN2, NR5A2, BMP3, EYA1, CREBZF, SEC24D, TRIM7, 
LRRC40, TRAF6, U2SURP, EZR, IL6ST, VPS41, JAKMIP3, FREM2, CCR9, SYPL1, RPGRIP1L, RBBP4, CAPRIN1, MYT1, EYA3, POU4F2, RSPH3, 
CTNNA3, FZD10, HGSNAT, ARPP21, TNRC6C, REL, ERBIN, SEMA6D, KHDRBS2, RBM14, TGFBR1, AP2M1, MYSM1, WDR43, URI1, TBCC, 
TVP23B, USF3, GNB4, ABCB8, CENPK, USP14, CLVS2, CD59, TOX, PLEKHA5, C10orf25, OPA1, ABHD17C, SOAT1, UBN2, YWHAH, 
CCDC155, IL6R, FAM126A, DCUN1D5, MIER3, RHOQ, DSTN, HIPK3, MDM4

hsa-miR-1909-5p F7, PTPN4, RCBTB2, MEF2C, TAF5, TSPAN16, CCDC113, COX11, SHOC2, KBTBD12, BCO2, KIF3B, TIGD2, POM121, ERICH3, BLOC1S5, 
MMD2, RAPGEFL1, YY1, B4GALT1, AEBP2, BAZ1A, PLCXD2, C2orf48, C4orf19, SERF2, GPX4, MOB4, ARID4A, ADGRL3, ZNF275, CREB5, 
PIGZ, TBC1D10A, FAM83G, ERBB3, EIF4E2, YES1, GLP2R, METTL7B, IL21R, RPGR, COL8A1, KCNK15, GGA2, COPS7B, ZKSCAN1, SNTB2, 
MFHAS1, CEMP1, GTPBP1, TRIO, CNGB3, GMPR2, ARPIN-AP3S2, MEOX2, ABHD2, AP3S2, APC, ZNF687, YAE1, STMND1, SCAMP5, DI-
CER1, FCRL1, RAB36, SGCD, NOL12, FMC1, TGFA, CNKSR2, UBA7, ECHDC2, TTC16, PTPA, SLC35E4, BAP1, CDKN1B, PEX19, DNAJC11, 
EIF4EBP2, CHST9, KCTD16, MEP1A, GDF6, CAPRIN1, RP1L1, RIMKLA, ARL8B, STX5

hsa-let-7d-3p MEX3C, SEC24D, BEND2, PTGIS, PARP11, HMGA2, SH3RF1, PRKACB, GSTK1, PHF14, EXOSC7, SIGLEC6, CYP4Z1, KANSL1, NOM1, ABCA8, 
ZNF486, CASD1, TMEM117, CAMKK2, RLN2, TIMMDC1, KLHL31

Fig. 2. Venn diagram of common and overlapping target genes 
identified for the three miRNAs (score ≥ 67).

hsa-miR-885-5p hsa-miR-1909-5p

hsa-let-4d-3p
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like) and KAT2B (lysine acetyltransferase 2B) (Fig. 3C). While 
nine of these ten genes are (UBE2N, UBE2K, WWP1, TRAF6, 
U2SURP, SRSF2, SRSF6 KAT2B, and ATXN1L) targeted by hsa-
miR-885-5p, only the UBA7 gene is targeted by hsa-miR-1909-5p. 
There are no target genes of hsa-let-7d-3p associated within three 
pathways. 

Analysis of differentially expressed target genes 
Differentially expressed target gene analysis was conducted to ex-
amine the expressions of identified target genes of miRNAs in the 
TCGA and GTEx datasets. In union of miRNA-target genes (339 
genes in total), 93 genes were found to be differentially expressed 
(p <  0.05) in TCGA and GTEx datasets of when compared to 
cancer tissues with paired normal tissues (Table 3). None of the 
common genes (ERICH, CAPRIN1, and SEC24D) among target 
genes were significant in TCGA and GTEx datasets. While miR-
885-5p targets 64 out of 93 genes, miR-1909-5p regulates 20 and 

let-7d-3p 9 target genes. 

Overall survival and pathological stage analyses 
The associations with overall survival outcomes and pathological 
stage analysis for expression signatures of 93 genes in the TCGA 
and GTEx datasets were performed by the GEPIA (Table 3). After 
FDR tests, no significant genes were found to be significant in the 
analysis of overall survival analyses, but 24 genes were found to be 
significant with pathological stages analyses (p <  0.05). No signif-
icant differentially expressed target genes were found to be with 
overall survival after statistical analyses. However, 24 differentially 
expressed target genes were significantly associated pathological 
stage of OC (Fig. 4). Of 24 genes, ZNF407 (zinc finger protein 
407) and UBN2 (ubinuclein 2) genes had the lowest p-value for 
their relationship with pathological stages for the TCGA and 
GTEx datasets (p =  0.017856) (Table 3). 

Table 2. Enriched KEGG pathways identified via pathfindR analysis

ID Pathway p-value Target genes
hsa04120 Ubiquitin-mediated proteolysis <0.001 UBA7, UBE2N, UBE2K, WWP1, TRAF6
hsa03040 Spliceosome <0.001 U2SURP, SRSF2, SRSF6
hsa04330 Notch signaling pathway <0.001 KAT2B, ATXN1L
hsa05205 Proteoglycans in cancer 0.001160427 ERBB3, CTNNB1, FZD10, EZR, WNT5A, PRKACB
hsa04390 Hippo signaling pathway 0.001309875 TGFBR1, GDF6, WNT5A, FZD10, YWHAE, YWHAH, CTNNB1, APC, CTNNA3
hsa05160 Hepatitis C 0.001416289 TRAF6, YWHAE, YWHAH, CTNNB1
hsa04657 IL-17 signaling pathway 0.002692059 TRAF6, ELAVL1
hsa04144 Endocytosis 0.003025769 AP2M1, TGFBR1, TRAF6, WWP1, PDCD6IP
hsa03015 mRNA surveillance pathway 0.003942335 NUDT21, CPSF6, CPSF7, UPF2
hsa05225 Hepatocellular carcinoma 0.008091156 TGFA, TGFBR1, WNT5A, FZD10, APC, CTNNB1, SMARCE1, ARID2
hsa04670 Leukocyte transendothelial migration 0.008953354 EZR, CTNNB1, CTNNA3
hsa03013 RNA transport 0.0091471 NUP50, POM121, EIF1AY, EIF1AX, EIF4E2, EIF4EBP2, UPF2
hsa05203 Viral carcinogenesis 0.011431025 CREB5, YWHAE, YWHAH, REL, PRKACB, GTF2H3, CDKN1B, KAT2B, IL6ST
hsa04919 Thyroid hormone signaling pathway 0.014664218 PRKACB, KAT2B, CTNNB1
hsa04520 Adherens junction 0.015121939 CTNNB1, CTNNA3, YES1, TGFBR1
hsa05226 Gastric cancer 0.016356287 WNT5A, FZD10, APC, CTNNB1, CDKN1B, TGFBR1, CTNNA3
hsa05230 Central carbon metabolism in cancer 0.017277363 PDK1, RET
hsa04550 Signaling pathways regulating pluripotency of 

stem cells
0.017619136 IL6ST, WNT5A, FZD10, APC, CTNNB1

hsa04621 NOD-like receptor signaling pathway 0.018069616 TRAF6, NLRP1, YWHAE
hsa04934 Cushing syndrome 0.030370611 PRKACB, CREB5, CDKN1B, WNT5A, FZD10, CTNNB1, APC
hsa04310 Wnt signaling pathway 0.033429078 WNT5A, FZD10, CTNNB1, APC, PRKACB, PPP3R1
hsa05131 Shigellosis 0.034316691 TRAF6, UBE2N
hsa05216 Thyroid cancer 0.040790494 RET, CTNNB1
hsa05167 Kaposi sarcoma-associated herpesvirus infection 0.045496474 GNB4, PPP3R1, IL6ST, CTNNB1

ID indicates the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ID. The pathway column indicates the name of pathways. The p-value column 
indicates the lowest enrichment p-value obtained through multiple iterations. The target genes column indicates the target genes (that are the targets of at 
least one miRNA) involved in the given enriched pathway.
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Discusssion 

Recently, a considerable number of research have been made to 
determine the effect of miRNAs regulate cancer hallmarks and to 
develop the early diagnosis and prognosis of cancer [18]. Never-
theless, several challenges such as various sampling methods, sam-
ple size, detection techniques, gender, and ethnicity or genetic 
background, affect the reliance on utilizing miRNAs as biomarkers 
[1,3,10,19]. One of the fundamental research areas for easily de-
tectable, non-invasive, sensitive, and specific miRNA-based bio-
marker discoveries are of a great value for accurate and effective 
early diagnosis, risk prediction, prognosis, recurrence, and effective 
management of OC [8,10,12]. 

Identification of miRNAs’ target genes has been the focus of 
computational biology for the last few years. Since detecting all 
possible miRNA targets with high-throughput technologies is la-
borious and costly, a wide variety of computational resources has 
been developed. The methodologies used by databases range from 

evolutionary conservation evaluations of putative miRNA binding 
sites to machine learning and classification algorithms. Continu-
ous improvement is needed to develop new tools/databases to ac-
curate predictions of miRNA targets [20,21]. One of these data-
bases is miRDB online database and determines miRNA-target 
prediction and functional annotations. Estimating that 3.5 million 
target genes were regulated by 7,000 miRNAs in human, mouse, 
rat, dog, and chicken, in the latest version of miRDB (v6.0) major 
updated in 2019. In miRDB, miRNA binding and target down-reg-
ulation features used to predict miRNA targets with machine 
learning methods, generates a prediction scores are in the range of 
0–100, and candidate genes with scores ≥  50 are presented as pre-
dicted miRNA targets [16]. 

The pathfindR tool was used for the enrichment analysis of tar-
get genes within the scope of the study. While pathfindR allows 
better identification of disease-related pathways, it should be noted 
that the tool requires a significance level per each input gene. To 
overcome this limitation, we followed an approach where we used 

Fig. 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway diagrams of ubiquitin-mediated proteolysis (A), spliceosome (B), and 
Notch signaling pathway (C). Genes targeted by at least one validated miRNA are indicated in orange color.

A B

C
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Table 3. Overall survival and pathological stage analysis of the differentially expressed target genes regulated by circulating validated miRNAs 
in TCGA and GTEx datasets

Circulating  
validated  
miRNAs

Differentially
expressed target 

genes

miRDB 
score

Differential expression analysis Overall survival analysis Pathological stage analysis
Log2

(fold change) adjp Log-rank
p-value FDR Pr(>F) FDR

Hsa-miR-885-5p GALNT3 100 2.444 3.13E-53 0.41 0.99 0.565 0.649142857142857
LRP4 95 –1.867 2.18E-17 0.86 0.99 0.86 0.917333333333333
SYTL4 95 –4.934 6.99E-181 0.96 0.99 0.54 0.649142857142857
LCP1 93 2.188 7.68E-31 0.83 0.99 0.0715 0.165257142857143
C8orf88 92 –2.239 6.46E-65 0.059 0.618666666666667 0.88 0.92327868852459
ADD1 92 –1.492 3.55E-50 0.85 0.99 0.313 0.435478260869565
MAN1C1 91 –2.329 6.38E-61 0.053 0.618666666666667 0.67 0.749241379310345
ECE1 90 –1.596 1.17E-32 0.0067 0.4288 0.0063 0.0310153846153846
MAP4K3 89 –1.158 3.69E-35 0.98 0.99 0.298 0.434909090909091
ATAD2B 89 –1.679 6.85E-71 0.37 0.99 0.0048 0.02832
KAT2B 88 –1.820 8.32E-63 0.087 0.618666666666667 0.0365 0.106181818181818
EMILIN2 88 –1.063 5.2E-17 0.88 0.99 0.568 0.649142857142857
NLRP1 88 –3.098 2.14E-77 0.91 0.99 0.297 0.434909090909091
CEP170 87 –1.235 1.02E-34 0.97 0.99 0.0222 0.07104
PDE10A 86 –2.166 6.35E-91 0.51 0.99 0.716 0.776677966101695
ZC3H12C 86 –1.207 5.94E-52 0.31 0.99 0.129 0.264
PCSK5 86 –2.428 1.61E-73 0.76 0.99 0.307 0.435478260869565
LAMC2 84 3.724 4.23E-83 0.98 0.99 0.461 0.59008
MACF1 84 –1.498 2.12E-35 0.072 0.618666666666667 0.0103 0.0406588235294118
ZNF407 84 –1.085 2.9E-54 0.033 0.618666666666667 0.00033 0.017856
PHF6 84 –1.270 2.27E-32 0.69 0.99 0.0477 0.123648
SRSF6 83 –1.279 3.03E-43 0.83 0.99 0.0483 0.123648
TPMT 83 1.519 9.14E-51 0.33 0.99 0.00528 0.02832
CEBPD 83 –1.953 6.27E-35 0.051 0.618666666666667 0.266 0.4256
ZNF10 82 2.257 9.93E-84 0.8 0.99 0.00231 0.02112
SEMA6A 82 –2.468 3.3E-52 0.27 0.99 0.107 0.228266666666667
UBE2N 82 1.075 2.46E-25 0.92 0.99 0.0881 0.194427586206897
CXADR 82 3.495 4.19E-107 0.23 0.99 0.132 0.264
CDK17 81 –1.058 2.1E-28 0.63 0.99 0.0108 0.0406588235294118  
TMEM185B 81 1.771 1.01E-63 0.46 0.99 0.158 0.297411764705882
ZNF516 81 –2.404 6.02E-72 0.99 0.99 0.00876 0.0400457142857143
HMBOX1 80 –1.798 1.66E-54 0.9 0.99 0.249 0.408615384615385
SAMD12 80 1.632 1.01E-56 0.77 0.99 0.521 0.649142857142857
CLASP2 79 –1.691 1.63E-52 0.6 0.99 0.00269 0.02152
LRRK2 79 2.551 1.75E-156 0.72 0.99 0.243 0.408615384615385
LYPLA1 79 1.886 6.21E-55 0.89 0.99 0.0723 0.165257142857143
HSBP1 78 1.049 7.63E-27 0.031 0.618666666666667 0.942 0.963
TTC30A 77 1.336 1.37E-39 0.61 0.99 0.00212 0.02112
ANKFY1 77 –1.215 3.2E-28 0.47 0.99 0.000853 0.0181973333333333
UBE2K 77 1.396 3.47E-32 0.3 0.99 0.18 0.311351351351351
NR2C1 77 –1.060 8.37E-32 0.6 0.99 0.0633 0.155815384615385
GOPC 76 –1.215 5.91E-36 0.45 0.99 0.431 0.562938775510204
HRASLS5 76 –1.137 2.09E-46 0.96 0.99 0.963 0.963
SLC38A2 76 –1.343 3.99E-26 0.98 0.99 0.18 0.311351351351351
RBPMS 75 –2.988 1.62E-66 0.62 0.99 0.679 0.749241379310345
DGKH 75 –1.085 6.98E-54 0.78 0.99 0.151 0.292848484848485

(Continued to the next page)
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Circulating  
validated  
miRNAs

Differentially
expressed target 

genes

miRDB 
score

Differential expression analysis Overall survival analysis Pathological stage analysis
Log2

(fold change) adjp Log-rank
p-value FDR Pr(>F) FDR

CREBZF 74 –2.524 3.14E-80 0.87 0.99 0.0133 0.0448
TRIM7 74 –1.351 5.49E-71 0.95 0.99 0.297 0.434909090909091
IL6ST 73 –1.746 4.03E-55 0.61 0.99 0.347 0.472510638297872
VPS41 73 –1.177 4.94E-27 0.47 0.99 0.00946 0.0403626666666667
JAKMIP3 73 –1.807 2.5E-194 0.77 0.99 0.567 0.649142857142857
FZD10 71 1.693 1.78E-14 0.27 0.99 0.299 0.434909090909091
HGSNAT 71 –1.255 3.27E-27 0.66 0.99 0.00128 0.02048
TNRC6C 71 –1.140 1.25E-20 0.2 0.99 0.533 0.649142857142857
SEMA6D 70 –1.887 3.05E-42 0.6 0.99 0.382 0.509333333333333
MYSM1 69 –1.920 1.94E-75 0.66 0.99 0.0123 0.0437333333333333
TBCC 69 1.468 7.57E-48 0.08 0.618666666666667 0.169 0.309028571428571
CENPK 69 1.782 2.7E-57 0.7 0.99 0.00474 0.02832
PLEKHA5 68 –1.640 9.96E-46 0.99 0.99 0.0351 0.106181818181818
ABHD17C 68 2.353 7E-69 0.97 0.99 0.0425 0.118260869565217
UBN2 68 –1.158 1.26E-39 0.57 0.99 0.000558 0.017856
FAM126A 67 –1.282 5.07E-34 0.55 0.99 0.948 0.963
MIER3 67 –1.139 1.5E-37 0.79 0.99 0.00531 0.02832
MDM4 67 –1.924 5.04E-60 0.99 0.99 0.00181 0.02112

Hsa-miR-1909-5p RCBTB2 95 –1.508 2.75E-43 0.33 0.727272727272727 0.645 0.903333333333333
MEF2C 95 –2.096 3.29E-71 0.75 0.833333333333333 0.974 0.978
BCO2 88 –1.333 5.48E-43 0.4 0.727272727272727 0.807 0.903333333333333
C4orf19 83 1.547 5.38E-31 0.39 0.727272727272727 0.433 0.721666666666667
ZNF275 81 –1.501 1.58E-30 0.87 0.89 0.022 0.0733333333333333
PIGZ 80 1.131 2.34E-20 0.63 0.833333333333333 0.415 0.721666666666667
ERBB3 80 4.024 2.49E-87 0.13 0.727272727272727 0.793 0.903333333333333
METTL7B 78 3.511 3.47E-77 0.19 0.727272727272727 0.609 0.903333333333333
KCNK15 77 3.713 7.25E-70 0.27 0.727272727272727 0.978 0.978
GGA2 76 –1.710 1.26E-43 0.89 0.89 0.0143 0.0628
CEMP1 75 –1.950 6.66E-67 0.32 0.727272727272727 0.417 0.721666666666667
GTPBP1 74 1.18 1.68E-34 0.44 0.733333333333333 0.00195 0.0195
TRIO 74 –1.925 2.19E-54 0.71 0.833333333333333 0.0012 0.0195
MEOX2 73 –1.228 3.36E-33 0.025 0.5 0.0157 0.0628
DICER1 72 –1.709 6.59E-51 0.68 0.833333333333333 0.0073 0.0486666666666667
SGCD 72 –1.537 6.45E-35 0.67 0.833333333333333 0.715 0.903333333333333
TGFA 71 1.493 1.38E-30 0.11 0.727272727272727 0.813 0.903333333333333
UBA7 70 –1.552 1.11E-30 0.17 0.727272727272727 0.0311 0.0888571428571429  
ECHDC2 70 –3.671 4.08E-118 0.75 0.833333333333333 0.123 0.273333333333333
CDKN1B 69 –1.130 1.33E-30 0.3 0.727272727272727 0.0933 0.23325

Hsa-let-7d-3p PTGIS 88 –2.804 5.93E-41 0.18 0.54 0.199 0.3582
HMGA2 86 1.875 6.14E-18 0.073 0.3285 0.243 0.3645
GSTK1 81 1.034 1.13E-26 0.25 0.5625 0.0408 0.1224
KANSL1 74 –1.149 5.13E-28 0.47 0.74 0.00972 0.04374
NOM1 72 –1.178 2.34E-31 0.73 0.74 0.00311 0.02799
ABCA8 72 –5.852 1.13E-253 0.74 0.74 0.556 0.714857142857143
CASD1 71 –1.808 4.08E-81 0.65 0.74 0.133 0.29925
RLN2 69 1.1 1.26E-26 0.054 0.3285 0.74 0.8325
TIMMDC1 67 1.527 1.44E-60 0.65 0.74 0.897 0.897

TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; FDR, false discovery rate.

Table 3. Continued
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the scores for miRNA-target gene pairs to calculate a significance 
level. Additionally, some genes (usually a small proportion) that 
are not in the PIN (that do not have any curated interactions) have 
to be discarded, resulting in the loss of possibly relevant genes. 

In our previous studies, three downregulated circulating miR-
NAs (hsa-miR-1909-5p, hsa-miR-885-5p, and hsa-let-7d-3p) in 
OC patients were consistently validated by comparison with 
healthy individuals. In these studies, circulating miRNAs, which 
were determined to be dysregulated by microarray, were then vali-
dated with the qPCR [14,15]. In this study, we predicted the vali-
dated circulating miRNAs’ target genes with miRDB database and 
performed functional analysis by pathfindR tool to understand the 
pathogenesis of OC especially the molecular mechanisms of its 
development. Also, overall survival and pathological stage analyses 
were evaluated with differentially miRNAs’ target genes which are 
commonly found in the TCGA and GTEx datasets. 

Two hundred and twenty-nine, 90, and 23 of target genes of hsa-
miR-1909-5p, hsa-miR-885-5p, and hsa-let-7d-3p were separately 
determined via miRDB (score ≥  67), respectively (Fig. 2). En-
riched KEGG pathways of target genes were performed with path-
findR tool. Totally, 339 genes included in active-subnetwork-ori-
ented enrichment analysis and as a result, 24 enriched KEGG 
pathways were identified (Table 2). Top three pathways with the 
lowest p-values are ubiquitin-mediated proteolysis (p <  0.001), 
spliceosome (p <  0.001), and Notch signaling pathway (p <  
0.001), respectively (Fig. 3). TRAF6, UBA7, UBE2K, UBE2N, 
and WWP1 genes regulate the ubiquitin-mediated proteolysis 
pathway. While SRSF2, SRSF6, and U2SURP are involved in the 
spliceosome, ATXN1L and KAT2B are adjusted to the Notch path-
way. Although hsa-miR-885-5p targets ATXN1L, KAT2B, SRSF2, 
SRSF6, TRAF6, UBE2K, UBE2N, U2SURP, and WWP1 genes, 
hsa-miR-1909-5p just targets UBA7 gene. No target genes of hsa-
let-7d-3p were found to be associated with these three pathways. 

Our pathway analysis determined different pathways that can be 
related to the OC development. Of these pathways, only ubiqui-
tin-mediated proteolysis, spliceosome, and Notch signaling path-
way showed that their p-value is less than 0.001. Besides the effects 
of these pathways on OC, they also have roles on other cancer 
types. Firstly, ubiquitin-mediated proteolysis is an essential mecha-
nism that is responsible for 80%–90% of intracellular protein deg-
radation and is involved in many cellular processes, including tum-
origenesis, tumor survival and apoptosis [22,23]. Ubiquitin-medi-
ated pathway modulates BRCA1/2, p53, ERBB2 gene expressions, 
ERK pathway, cyclin-dependent cell cycle regulation which are re-
lated to OC [24]. Bazzaro et al. [25] claimed that upregulation of 
proteasome subunit levels occurs in OC and proteasome inhibi-

tors may have utility in the treatment of OC. Secondly, splicing 
mechanism is a crucial process that regulates cellular proliferation, 
differentiation, and survival [26]. Dysregulation of splicing pro-
cesses and splicing factor genes contribute to cancer, including OC 
[27,28]. Especially, splicing machinery mutations especially con-
tribute to tumorigenesis. Additionally, it is critical to understand 
that the molecular mechanism of RNA splicing is causing the de-
velopment of drug resistance in cancer treatment [26]. Regulation 
of the relationship between splicing and cancer can be led to splic-
ing-based therapies for cancer treatment [29]. Thirdly, Notch sig-
naling pathway regulates not only cell self renewal and differentia-
tion but also a cell to cell communication [30]. Upregulation of 
Notch signaling pathway proteins have been identified in OC [31]. 
Several studies have revealed that it is related to poor overall and 
disease free survival time, and more advanced stages [30,32]. The 
Notch signaling pathway plays a specific role in deregulation of sig-
naling cascade has been associated with OC. Targeted therapy 
against Notch pathway activation can offer clinical benefit to OC 
[30,31]. 

According to these studies, our findings also indicate that our 
dysregulated miRNAs are significant in OC via pathway related-tar-
get genes. Briefly, circulating downregulated miRNAs could not 
suppress their target genes in these pathways, hence, have activated 
these pathways, resulting in the development of OC. As we can see 
from the previous studies, these pathways were found to be related 
with OC. We have discovered target genes of three downregulated 
circulating miRNAs (hsa-miR-1909-5p, hsa-miR-885-5p, and hsa-
let-7d-3p) and also related-pathways of these genes. We propose 
novel mechanisms between miRNAs, target genes and OC that have 
not been elucidated previously using pathfindR. Our findings can be 
used as a diagnostic tool in OC. Our perspective on ATXN1L, 
KAT2B, SRSF2, SRSF6, TRAF6, UBA7, UBE2N, UBE2K, 
U2SURP, WWP1 and in OC will promote more extensive research 
on the molecular mechanisms of hsa-miR-1909-5p, hsa-miR-885-
5p, and hsa-let-7d-3p and provide a reference for improving the clin-
ical outcome of OC. 

The development of prognostic multigene classification proto-
cols can benefit the understanding of tumor biology as well as the 
prediction of cancer progression and treatment strategies. One 
critical issue is determining the properly combining the genes 
[33]. However, studies on the overall survival-related profiles in 
OC patients have progressed, whereas there have been no large-
scale studies based on multicenter validation of gene expression 
profiles for prediction of disease progression or recurrence in OC 
patients [34]. Furthermore, pathological staging, which can be de-
termined after surgery and examination of the removed tumor tis-
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sue, is likely to be more accurate than clinical staging because it 
provides direct insight into the extent and nature of the disease 
[35]. Additionally, differentially expressed miRNAs’ target genes, 
which were identified as multiple candidate genes in OC, were in-
tegrated our multigene analysis into the overall survival outcomes 
and pathological stage analysis using TCGA and GTEx datasets 
(Table 3). The hsa-miR-885-5p, which was the most gene-target-
ing score (n =  64) and the most associated miRNA with OC, fol-
lowed by the hsa-miR-1909-5p and hsa-let-7d-3p miRNAs which 
were gene-targeting scores (n =  20) and (n =  9), respectively. Af-
ter FDR analysis, no significant differentially expressed target 
genes were found to be associated with overall survival. However, 
we found 24 genes that were targeted by three miRNAs identified 
in the pathological stage of OC (Fig. 4). Notably, ZNF407 and 
UBN2 had the lowest p-values for their association with OC 
pathological stages (p =  0.017856) (Table 3). The molecular role 
and mechanism of ZNF407 and UBN2 in the development and 
progression of OC is not well understood. Missense mutations in 
ZNF407 affect tumor progression in gastrointestinal stromal tu-
mors were reported [36]. Moreover, Tan et al. [37] showed that 
ZNF407 functiones as a promotive factor in colorectal cancer me-
tastasis and accelerates cell proliferation by regulating phospho-
inositide 3-kinase/AKT-mediate pathway. UBN2 is widely ex-
pressed in tumor tissues and encodes a nuclear protein that inter-
acts with viral and cellular transcription factors [38]. Zhao et al. 
[39] suggested that high UBN2 protein expression is an indepen-
dent prognostic marker to identify patients with poor clinical out-
comes in colorectal cancer by affecting the Ras/MAPK pathway. 
Thus, these genes are likely to be facilitated in therapeutic ap-
proaches for OC. 

In conclusion, we offer in-silico evidence that validated circulat-
ing miRNAs’ target genes and enriched pathways are related to 
OC and have potential roles in theranostics applications. Especial-
ly, enrichment pathways and pathological stage-related genes can 
be combined with validated miRNAs, their multiple analysis can 
further enhance the molecular etiology of the OC and also can be 
employed in future research for biomarker and drug development 
related to OC. Further experimental investigations are required to 
validate our results which will ultimately provide a new perspec-
tive for translational applications in OC management. Our study 
will allow a greater understanding of broader clinical application 
prospects. 
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