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ABSTRACT
IgA nephropathy (IgAN) is an autoimmune disease characterized by renal glomerular immunodeposits enriched for galactose-deficient IgA1
(Gd-IgA1; autoantigen) with the corresponding IgG autoantibodies. Despite the known contribution of Gd-IgA1 to IgAN, little is known concern-
ing IgA1-secreting subpopulations responsible for autoantigen production. The goal of this study is to identify IgA1-secreting and membrane
subpopulations from single-cell transcriptomic analysis. We developed a novel single-cell analytics workflow to discern cells expressing IgA1
secreted isoform or membrane-bound isoform. Multiple approaches were compared to assess immunoglobulin-isotype identity in single cells,
and multiple immunoglobulin heavy-chain genes expressed in the same cells were found. To better identify specific immunoglobulin heavy-chain
transcripts, we merged a software platform called Alteryx with the existing single-cell R toolkit program Seurat. This process allowed for improved
calls on IgA1-secreting subpopulations based on secreting versus membrane splice-variant expression levels.
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IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide [1]. This autoimmune disease is characterized by
elevated blood levels of abnormally glycosylated IgA1 (galactose-deficient in some O-glycans; Gd-IgA1). Identifying IgA1-secreting sub-
populations responsible for production of Gd-IgA1, and their unique transcriptional profile, would help identify critical mechanisms in
the pathobiology of IgAN. To identify transcriptional mechanisms of Gd-IgA1 production in IgA1-secreting subpopulations, we used a
previously generated biobank of Epstein–Barr virus (EBV)-immortalized B cells from peripheral blood of IgAN patients and healthy con-
trols [2–6].

The aberrant glycosylation of Gd-IgA1 is related to abnormal expression and activity of key glycosyltransferases [2,3,5]. To assess
mechanisms that drive abnormal glycosylation of IgA1 in cells from IgAN patients versus controls, we used high-throughput single-cell
RNA sequencing (scRNA-seq) to map differential transcriptional responses in IgA1-secreting subpopulations. To identify IgA1-secreting
cells, we used the IGHA1 secreted splice variant. The splice variant is located on the 3′ end of the transcript, but the VDJ clonality – also
of interest when discerning immunoglobulin function – is on the 5′ end of the gene. Thus we approached the analysis using scRNA-seq
kits that targeted either the 3′ or the 5′ end (Figure 1). The purpose of this study was to develop a bioinformatic process to identify
individual cells that have the IgA1-secreting isoform, the IgA1 membrane isoform or both isoforms; however, during our analysis of these
IgA1 subpopulations, we found significant expression of other immunoglobulin heavy chains in the same cells, necessitating a process
to identify which isotype class each cell should be called for.

This problem of needing sequence identification at both ends of the transcript is well recognized, and a recent publication has looked
at using 3′ end reverse transcription with targeted capture and nanopore sequencing [7]. This study used both whole-transcriptome
analysis from the 3′ end and long-read sequencing via Oxford Nanopore technology. The advantage was the availability of both whole-
cell transcriptome and VDJ sequences; however, the process required significantly more PCR amplification upstream for hybridization
capture, which can bias expression levels, and the nanopore sequencing technology generally has low recovery rates [7].

For our studies we needed an analysis process that could be hypothesis-driven, allowing for specific subpopulations determined a
priori, and then we needed to perform both hypothesis testing and unbiased analysis on these subpopulations. For this, we turned to
Alteryx, a software package used to handle large databases that allows users to generate unique workflows to quickly analyze data for
gene expression profiles across all their datasets. Coupled with the R single-cell package ‘Seurat’, we generated the curated data sets
from the EBV-immortalized cells derived from human peripheral blood B cells [8].
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Figure 1. Overall scheme for data curation and analysis. (A) Multiple kits targeting the 3′ or 5′ end of mRNA transcripts were used. The 5′ VDJ kit was
used as well to selectively amplify transcripts for sequencing the VDJ region. Sequencing data were aligned in Cell Ranger 3.1, curated and normalized
in Seurat, then subgrouped in Alteryx. Cells were grouped by isotype heavy chain, followed by IGHA1 secretory or membrane form (s/m). The bottom
diagram depicts regions of the IgA1 transcript, from the 3′ to the 5′ end, with the secretory and membrane splice variant on the 3′ end. (B)
IGHA1s-expressing (IgA1s-secreting isoform) cells identified from the workflow were subject to PCA analysis.
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Analysis of the raw and curated data from Seurat and Alteryx indicated that EBV-immortalized cells express multiple isotype classes
of heavy chain genes; however, due to allelic exclusion during isotype switching, this is not biologically possible [9]. After analyzing the
distribution profiles of expression of heavy chain isotypes in each cell, we defined an approach to make more appropriate calls of isotype
heavy chains. With this process, we modified the hg38 reference database to include IGHA1 splice variants for secretory and membrane-
bound antibodies. This approach enabled a more accurate assessment of the immunoglobulin isotype calls and identification of critical
IgA1-secreting subpopulations.

Materials & methods
A previously established biobank of EBV-immortalized peripheral blood mononuclear cells (PBMCs) was used [2,4–6]. Briefly, PBMCs
isolated from patients with IgAN or other renal disease and healthy controls underwent EBV immortalization, a process that only targets
B cells. For the purposes of this study, we only used IgAN donors, but immortalized B cells from healthy controls exhibit similar im-
munoglobulin heavy chain patterns [2]. Heterogenic mixtures (populations secreting multiple isotypes of immunoglobulin heavy chain)
of B cells were grown in RPMI 1640 medium with 10% fetal bovine serum at 5% CO2 [2,4,6]. Cells were centrifuged at 4◦C, stored on ice
for 30 min and, for the purpose of removing clumped and dead cells, were isolated as single live cells by using forward and side scatter
in an Aria II flow cytometer before single-cell transcriptomic analysis. B cells were assessed using 10× Genomics 3′ transcriptome (v2.0,
n = 4) and 5′ VDJ and GEX transcriptome kits (v1.1, n = 5), with target cell numbers of 3000 [10,11]. The target cell number of 3000 was
used as recommended by 10× Genomics and See et al. who found that approximately 2000 cells were sufficient to target isotype sub-
populations [12]. Transcripts were sequenced on an Illumina NextSeq 500, at 50,000 reads per cell. The sequences were called using 10×
Genomics Cell Ranger v3.1. In addition to using the hg38 reference genome, splice variants for IGHA1 secreted (ENSG00000282633.1)
and membrane-bound (ENSG00000211895.5) (IgHA1s and IgHA1m) were added to the reference genome. Raw data were curated and
normalized using Seurat v3.0 and analyzed using Alteryx Designer x64 C© in the following manner (Figure 1; example workflow in Supple-
mentary Figure 1) [13]. Using the 5′ VDJ and GEX 10× Genomics kit, we identified antibody isotypes from the 5′ VDJ results and imported
those barcodes into the 5′ GEX data for further comparison of immunoglobulin heavy chain calls.

Matrix data from Cell Ranger were read into Seurat v3.0 using the open source RStudio (v1.2.1335) [14,15]. Seurat was used to curate
and normalize the data, using the instructions listed on the website (https://satijalab.org/seurat/v3.0/pbmc3k tutorial.html):

• The Seurat object was created, and mitochondrial percentage assessed for each cell.
• Violin plots were created to visualize outliers and distribution characteristics. The EBV-immortalized cells are larger than primary B

cells and have a higher mitochondrial content and gene set than primary cells (for visualization of primary PBMCs, see Vignettes
in [14]). Thus for quality control (QC), minimum and maximum gene features were set at 1000/5000, and mitochondrial percentage at
<20% (Figure 2 & Supplementary Figure 2).

• Data were then normalized using the LogNormalize function at 10,000.
• Normalized data from the Seurat object were copied into a new matrix and saved as an .rds file for future analysis. The following

commands allow pulling out the data from the Seurat object and into an .rds file for further analysis by Alteryx:

◦ normdataset <- pbmc[[“RNA”]]@data
◦ normnames <- normdataset@Dimnames
◦ normdata <- normdataset@x
◦ normmatrix <- matrix(normdata, ncol = “number of cells in object”, nrow = “number of gene in object”, dim-

names = list(normnames[[1]], normnames[[2]]), byrow = TRUE)
◦ normgenenames <- normnames [[1]].

• Both ‘normmatrix’ and ‘normgenenames’ were saved as .rds files.

To compare isotype class calls in Seurat and in our workflow, we identified a subset of IGHA1s-containing cells in Seurat using the
following commands only after the Seurat object had been normalized and scaled using either the standard workflow or ‘SCTransform’
(for SCTransform we also regressed out mitochondrial percentage as suggested):

• IGHA1s sub <- subset(‘SeuratObject’, subset = IGHA1s >0)
• WhichCells(IGHA1s sub)

The cell IDs were then imported into our Alteryx workflow and used to isolate those specific cells identified by Seurat as IGHA1s
expressers. All immunoglobulin heavy chain isotypes for each cell were assessed.

To input the .rds files into Alteryx, we set up a workflow using the R script tool, with the following commands code:

• dat <- as.data.frame(readRDS(“C:/filename/normmatrix.rds”))
• write.Alteryx(dat, 1)
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Figure 2. Mitochondrial percentage in EBV-immortalized cells before and after curation. Generally, these cells have higher expression of mitochondrial
genes than their primary counterparts.

• dat2 <- as.data.frame(readRDS(“C:/filename/normgenenames.rds”))
• write.Alteryx(dat2, 2)

Using the Output Data tool, we copied the new files in Alteryx database format (.yxdb) to the appropriate file.
Using Alteryx, we can query and categorize the data matrices from Seurat to find and analyze subpopulations of cells based on their

gene expression profiles. This is done by creating workflows that employ a suite of tools designed to manage large datasets. Single-
isotype heavy chain-expressing cells were subgrouped based on their expression isotype (IGHM, IGHG1 etc.), and IGHA1 specifically into
IGHA1s and IGHA1m subpopulations. Once specific subpopulations were grouped, either analysis was performed in Alteryx or the data
were exported into a matrix table for further processing in R or other statistics packages.
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Figure 3. IGHA1s expression across all cells in two different samples. One sample of immortalized B cells was analyzed using a 5′ transcriptome kit
(dashed line, 2326 cells), and the other using a 3′ transcriptome kit (solid line, 3233 cells). The Y-axis represents the number of cells that, based on the
x-axis IgHA1s expression level, expressed a specific number of transcripts.

The relative homology of IGHA1s and IGHG1 was assessed using cDNA transcripts from Ensembl (www.eseast.ensembl.org) of
IGHA1 secretory (ENST00000633714.1/ ENSG00000282633.1) and IGHG1-201/202/203 (ENST00000390542.6/ ENST00000390548.6/

ENST00000390549.6). Additional cDNA sequences used for comparison are: IGHG2-202 (ENST00000641095.1), IGHG3-202
(ENST00000641136.1), IGHG4-202 (ENST00000641978.1) and IGHM-202 (ENST00000637539.2).

Results & discussion
Immortalized B cells and IgA1-secreting cell lines derived from peripheral blood of patients with IgAN and healthy controls were used
as model systems for mechanistic studies of Gd-IgA1 production [2]. EBV immortalization targets cells with CD21 receptors and thus
creates a heterogenic mixture of B cells and immunoglobulin-secreting cells [16]. A mature B cell can be activated by a specific antigen
and various cytokines to undergo a class switch from IgM/IgD to express other antibodies (IgA1/IgA2/IgG1-4/IgE). Once this occurs, the
plasma cell or memory B cell does not produce any other antibody isotype [17]. With this in mind, we compared the expression of IGHA1s
across all cells in two tested samples (Figure 3). As expected, we saw a range of expression levels, but we did not expect to see the
IGHA1s gene expressed in all cells. As both samples were from a mixture of B cells that also secrete IgG and/or IgM (data not shown),
we can assume that some or even a majority of the gene calls for IGHA1s were incorrect, and that most of the IGHA1s calls constituted
background noise. These observations appear contradictory to the conventional doctrine of ‘one B cell, one antibody’; however, another
publication found similar results [18]. Using the same 10× Genomics 5′ VDG and GEX platform, Shi et al. found that a significant number of
B cells (∼10–40%) at various stages of differentiation express multiple immunoglobulin heavy chain transcripts [18]. Although the study
did not assess the secretory sequence of the immunoglobulin heavy chain transcripts, the results were consistent with our findings.

To better elucidate the potential for confounding isotype heavy chain calls in the same cell, we compared IGHA1s expression across
all cells with the ratio of other heavy chain isotypes (Figure 4). Figure 4A shows the relationship between IGHA1s and IGHG1 expression
in individual cells from a heterogenic B cell population assessed with a 5′ kit. This figure shows that, while there is some variability, as
cells increase IGHA1s expression the relative amount of IGHG1 also expressed appears stable. Figure 4B, a close-up panel of Figure 4A,
highlights that the majority of cells expressing IGHA1s are low expressers and likely constitute background noise. Figure 4C shows the
exact same cells as in Figure 4A & B, but includes information on expression of all other heavy chain isotypes for every cell. These data
indicate that across all cells, there will be some level of expression of multiple heavy chain isotypes, confounding the ability to make an
isotype-specific designation because the ratio of other isotype heavy chains is variable. This phenomenon is consistent across multiple
cell lines, the only difference being the variability of contaminating heavy chain isotypes in different samples (Supplementary Figure
3A–C). We employed the 5′ VDJ-GEX kit from 10× Genomics, which sequences the VDJ transcripts in the same cells along with 5′ GEX
transcriptomes. Using the Loupe Browser from 10× Genomics, we incorporated the 5′ VDJ data into the 5′ GEX transcriptome data and
exported the cell barcode IDs specific to IGHA1-positive cell calls based on the VDJ analysis [19]. We used this subpopulation of cells to
compare IGHA1s and IGHG1 expression (Figure 5). Although the pattern of IGHG1 expression to IGHA1s was slightly different (the cells
in Figure 5 are the same cells as in Figure 4), we still found significant IGHG1 expression across a significant number of moderate- to
high-expressing IGHA1s cells using the 5′ VDJ scRNA-seq kit. While the power of this approach can yield sequence data on the VDJ
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Figure 4. IGHA1s and all other isotype heavy chain expression levels were assessed across all cells in a sample of immortalized B cells. (A) IGHA1s
expression per cell compared with IGHG1 expression for those same cells. The Y-axis represents the IGHA1s and IGHG1 expression level. (B) Close-up
of the bottom left panel of (A), showing that most of the cells in this heterogenic population have very low IGHA1s and IGHG1 expression. (C) IGHA1s
expression per cell compared with all other heavy chain isotype expression in those same cells. The Y-axis represents the IGHA1s expression level and
the average IGH expression level for every other isotype. Numbers on the X-axis are the number of cells expressing IGHA1s at that specific level. Total
cells = 2326.
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Figure 5. IGHA1s expression level compared with IGHG1 expression level. Single-cell 5′ VDJ PCR was used to identify IGHA1-positive cells. These data
were added to the 5′ GEX transcriptome in 10× Genomics Cell Loupe browser on 2218 immortalized B cells. IGHA1s and IGHG1 expression levels were
derived from the 5′ GEX data. The dotted line shows the IGHA1s expression level and the solid line shows the IGHG1 expression level.

regions when combined with transcriptome profiling, the limitation is the poor coverage at the 3′ end where the secreted/membrane
sequence is located.

Structural homology can be an issue in overlapping calls of similar sequences, but there is limited alignment similarity in the im-
munoglobin heavy chains [20]. Given that we were observing expression of multiple heavy chain isotypes in the same cell, the simplest
answer is that we could be seeing doublets in our capture (i.e., two cells in one droplet), or another mRNA capture overlap from lysed
cells. Therefore we checked whether the initial QC steps performed in Seurat to remove data outliers were sufficient. We compared our
normal QC workflow with another one with a lower nFeature (3500) cutoff, a lower nFeature and nCount (15,000) and the new SCTrans-
form function in Seurat (VlnPlots shown in Supplementary Figure 4). We found that these modified workflows did not affect the multiple
isotype IGH calls in our cells (Supplementary Figure 5).

Given the overlap in calls among the different heavy chain isotypes, we needed to find the best route to assign the appropriate
antibody isotype. A previous publication analyzing transcriptome and VDJ clonality in B cells from breast cancer tissue found similar
issues with assigning isotype class and used a cut-off value of tenfold higher than the next highest expressing heavy chain isotype in
that cell [21]. However, because each cell line likely has a unique proportion of immunoglobulin producers in the total population, using
a predetermined expression cutoff would not work well. Using IGHA1s, we mapped the relative ratio of its expression to the next highest
expressed heavy chain isotype (IGH) for each cell (Figure 6). We can calculate this relationship using the slope of the IGHA1s/IGH, and this
can help determine whether the informatic calls for a positive IGHA1s cell are improving. It is important to note that the expression levels
have been log-normalized, so biological expression differences are much larger. Although we found a significant positive correlation
between cells with higher IGHA1s expression and an increased ratio of IGHA1s/IGH expression, we do not believe we should use a simple
expression cut-off measurement to make appropriate isotype calls, because some cells with IGHA1s expression had low IGHA1s/IGH
expression ratios (Figure 6). This phenomenon held true for three other cell lines assessed (Supplementary Figure 6).

Because we found consistent overlap in the heavy chain isotype calls in the same cell, we assessed expression across multiple
heterogenic cell lines from various donors to determine what may be an appropriate ratio to make for a cell heavy chain isotype call.
The ratio of IGHA1s/next highest IGH expressed was calculated for each cell across multiple cell lines and transcriptome PCR kits (3′

transcriptome, 5′ GEX and 5′ VDJ). The number of cells that met specific IGHA1s/IGH ratio minimums were tabulated and presented
as a percentage of total population (ratios >2, >3, >4; Table 1). Additionally, the average IGHA1s/IGH ratio and standard deviation (SD)
were calculated for the total population and used to find cells that fell within one or two SD higher than the average ratio; these were
presented as a percentage of the total population (1SD, 2SD; Table 1). As shown in Table 1, there were substantial differences between
cell lines in the amount of IGHA1s expression, but also in the relationship between the SD percentage and the hard ratio cutoff numbers.
We did not see a consistent relationship between 1SD or 2SD cell numbers and the hard cutoff ratio numbers (>2, >3, >4), suggesting
that biological variability may confound any attempt to assign isotype based on SD.

To assess the overlap of IGHA1 secreted and membrane splice variants, ratios for IGHA1s/IGHA1m were calculated for every cell
(Figure 7). A pattern similar to that seen in Figure 6 was observed, but with higher ratios associating with higher expression of IGHA1s.
A significant difference between IGHA1s/m splice variants and IGHA1s and other IGH expression is the substantially higher slope value

Vol. 70 No. 2 C© 2020 Colin Reily www.BioTechniques.com95



Reports

0

1

2

3

4

5

IGHA1s expression level

IG
H

A
1s

//G
H

 e
xp

re
ss

io
n

0 6

6

1 2 3 4 5

Slope=0.68
R2=0.65

p < 0.01

Figure 6. Plot of IGHA1s/IGH versus IGHA1s expression. To determine the relationship of IGHA1s expression to other immunoglobulin heavy chains in
the same cell, we calculated the slope of IGHA1s expression versus the ratio of IGHA1s/next highest isotype heavy chain expression in the same cell
using the 5′ GEX transcript data. For each cell, all immunoglobulin heavy chain expressions were assessed, and the ratio of IGHA1s to the highest or
next-highest immunoglobulin heavy chain (IGHG1/2/3/4, IGHM, IGHD, IGHD) was calculated. Total number of cells = 2218. Statistical significance was
calculated using analysis of variance regression.

Table 1. Percentage of cells out of the total population falling within a specific IGHA1s/next-highest isotype heavy chain ex-
pression ratio.
5′ GEX Percentage of total population, IGHA1s/IGH ratio IGHA1s/IGH ratio

>2 >3 >4 1SD† 2SD† Avg SD

Cell line A 1.76 0.54 0.23 11.45 4.24 0.48 0.49

Cell line B 4.26 1.60 0.70 9.46 4.46 0.63 0.67

Cell line C 6.96 3.19 1.84 8.21 3.77 0.86 0.91

5′ VDJ

Cell line A 0.45 0.09 0.09 2.93 1.26 0.46 0.48

Cell line B 3.36 1.31 0.66 7.41 3.48 0.62 0.67

Cell line C 0.48 0.14 0.00 1.21 0.48 0.80 0.64

3′ GEX

Cell line D 8.02 3.66 1.68 9.93 4.50 0.85 0.87

Cell line E 4.06 1.59 0.77 9.72 4.26 0.69 0.63

Cell line F 9.84 4.95 2.72 9.84 4.58 0.93 1.07

Cell line G 3.23 1.44 0.58 9.09 3.69 0.60 0.63

Three cell lines (A, B and C) were analyzed using two different kits: 5′ GEX and 5′ VDJ. Four cell lines (D, E, F and G) were analyzed using the 3′ GEX kit. Each cell was analyzed for
its IGHA1s/IGH ratio using the highest other expressing immunoglobulin heavy chain in that cell. The total number of cells meeting the ratio criteria of >2, >3 and >4 were added
up and presented as a percentage of the total population. The average IGHA1s/IGH ratio for all the cells in the population was calculated, as well as the SD of the total population
(right-hand column). These were used to calculate how many cells had IGHA1s/IGH ratios higher than one or two SD above the average.
†1 or 2 SD higher than the average ratio (Avg + 1*SD or Avg + 2*SD).
Avg: Average; IGH: Immunoglobulin heavy chain isotype; IGHA1s: IgA1-secreting; SD: Standard deviation.

for IGHA1s/IGHA1m ratios (1.95 vs 0.68; Figures 6 & 7). It is unclear whether this greater specificity in calls for IGHA1s versus IGHA1m
versus delineation from other IGH has a technical or biological underpinning. As shown in Table 2, the percentage of cells with high ratios
of IGHA1s/IGHA1m was substantially greater than the comparisons shown in Table 1. This observation further supports the idea that
making the call between IGHA1s and IGHA1m splice variants is easier than for alternative IGH expressers when comparing with IGHA1s.
However, while most antibody-secreting cells do not express cell-surface B cell receptor, there are data suggesting that some antibody-
secreting cells have an active B cell receptor [22]. This means that there will be subpopulations of cells that are only IgA1 secretors,
some that are only IgA1 presenters and some that are both.

Screening for only cells that have a ratio >2 of IGHA1s/IGH, we calculated the IGHA1s/IGHA1m ratio and plotted against IGHA1s
expression level. This approach provided a mechanism to screen cells for IGHA1s specificity versus other IGH expressers and determine
the splice variants for IGHA1 secretion, membrane or both within a cell. Figure 8A shows the relationship between IGHA1s/IGHA1m in
cells where the IGHA1s expression ratio was >2 compared with expression of all other IGH isotypes. The slope (and ratios) in Figure 8A
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Figure 7. Plot of IGHA1s/IGHA1m versus IGHA1s expression. To determine the relationship of IGHA1s expression to IGHA1m in the same cell we
calculated the slope of IGHA1s/IGHA1m versus IGHA1s expression. IGHA1s and IGHA1m expression and their ratios in the same cell were calculated
from 5′ GEX transcript data. For each cell, IGHA1s and IGHA1m expressions were assessed, and the ratio of the two was calculated. Total number of
cells = 2218. Statistical significance was calculated using analysis of variance regression.

Table 2. Percentage of cells out of the total population falling within a specific IGHA1s/IGHA1m ratio.
5′ GEX Percentage of total population, IGHA1s/IGHA1m IGHA1s/IGHA1m ratio

>2 >3 >4 1SD† 2SD† Avg SD

Cell line A 23.22 11.99 4.82 12.17 4.10 0.48 0.49

Cell line B 16.99 10.81 5.94 9.05 4.50 0.63 0.67

Cell line C 56.62 47.20 20.24 9.95 3.29 0.86 0.91

5′ VDJ

Cell line A 6.45 3.25 1.35 3.43 1.22 0.46 0.48

Cell line B 13.55 8.56 4.67 8.56 3.81 0.62 0.67

Cell line C 3.96 3.19 1.35 0.72 0.24 0.80 0.64

3′ GEX

Cell line D 20.09 9.58 5.14 33.71 4.59 0.85 0.87

Cell line E 19.07 7.42 3.92 10.74 4.55 0.69 0.63

Cell line F 16.08 8.23 4.83 9.93 4.83 0.93 1.07

Cell line G 19.94 10.97 6.14 9.92 4.30 0.60 0.63

Three cell lines (A, B and C) were analyzed from two different kits, 5′ GEX and 5′ VDJ. Four cell lines (D, E, F and G) were analyzed from the 3′ GEX kit. Each cell was analyzed for
its IGHA1s/IGHA1m ratio. The total number of cells meeting the ratio criteria of >2, >3 and >4 were added up and presented as a percentage of the total population. The average
IGHA1s/IGHA1m ratio for all the cells in the population was calculated, as well as the SD of the total population (right-hand column). These were used to calculate how many cells
had an IGHA1s/IGHA1m ratio higher than one or two SD above the average.
†1 or 2 SD higher than the average ratio (Avg + 1*SD or Avg + 2*SD).
Avg: Average; IGHA1m: IgA1 membrane-bound; IGHA1s: IgA1-secreting; SD: Standard deviation.

is significantly higher than the slope in the total cell population in IGHA1s/IGHA1m analysis (Figure 7A), indicating that selecting for lower
background of other non-IGHA1 IGH transcripts can increase the specificity for IGHA1s-expressing cells. Figure 8B shows the relationship
of IGHA1s to all other IGH isotypes expressed in the same cell after screening for a ratio >2. This workflow compares well for isotype
specificity (IGHA1s in this case) when viewed against the overall isotype overlap in Figure 4C & Figure 6.

An alternate workflow to assess splice variants at the 3′ end using nanopore technology has also been employed with the 10× Ge-
nomics 3′ kit. The cDNA was split for gene expression analysis and whole sequencing of antibody genes, providing significant coverage
on the 3′ end for secretion versus membrane delineation. This approach requires both nanopore and next-generation sequencing tech-
nologies and has a lower recovery of cell barcodes, but could potentially be used alongside a standard 3′ gene expression workflow [7].

Using a combination of R tools to curate the data and Alteryx to visualize and subcategorize cell populations, we can better identify
critical IgA1-producing cells with more accurate isotype calls. With this bioinformatic and single-cell transcriptome approach, we can
cast a broader net to assess heterogenic populations of IgA1-secreting cells using complex mixtures of immortalized as well as primary
B cells.
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Figure 8. Cells were analyzed for IGHA1s/IGH chain expression ratios, as depicted in Figure 6 and Table 1, and only cells that had a ratio >2 were used.
Those cells were then assessed for IGHA1s/IGHA1m expression ratios and compared with all other IGH isotypes. (A) IGHA1s expression level compared
with IGHA1s/IGHA1m ratio for each cell. The x-axis is the IGHA1s expression level for each cell and the y-axis is the ratio of IGHA1s/IGHA1m expression
level. (B) IGHA1s expression level compared with all other IGH isotypes. The X-axis is the number of cells at a specific IGHA1s expression level and the
y-axis shows IGHA1s and IGH isotype expression level. Both panels depict Cell Line A analysis, consisting of 39 out of 2326 cells that met the criteria of
>2 ratio versus the next-highest IGH expression level. Statistical significance was calculated using analysis of variance regression.

Future perspective
Future work in primary PBMCs is necessary to assess this bioinformatic workflow in nonimmortalized cells to address potential tran-
scriptional variables associated with the immortalization process. EBV does not infect and immortalize all the B cells in a PBMC pool;
thus the immortalized pool only provides a random snapshot of some of the B cells, further highlighting the need for primary cell work.
Additionally, to help validate class identification, we will combine immunoglobulin cell-surface detection and single-cell transcriptomics
when assessing B cells. One of these technologies used by 10× Genomics is CITE-seq (Cellular Indexing and Transcriptomes and Epi-
topes), which combines nucleotide-tagged antibodies for cell-surface targets [23]. This work will help to classify some B cells but may
be problematic in those antibody-secreting cells that do not present with cell-surface antibodies. This limitation can be addressed by
using known subcloned B cells lines that secrete a single isotype.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at: www.future-science.com/doi/suppl/10.
2144/btn-2020-0044
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