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Abstract

With the increasing demand for energy, fracturing technology is widely used in oilfield opera-

tions over the last decades. Typically, fracturing fluids contain various additives such as

cross linkers, thickeners and proppants, and so forth, which makes it possess the properties

of considerably complicated components and difficult processing procedure. There are still

some difficult points needing to be explored and resolved in the hydroxypropyl guar gum

(HPG) removal process, e.g., high viscosity and removal of macromolecular organic com-

pounds. Our works provided a facile and economical HPG removal technology for fracturing

fluids by designing a series of processes including gel-breaking, coagulation and precipita-

tion according to the diffusion double layer theory. After this treatment process, the fractur-

ing fluid can meet the requirements of reinjection, and the whole process was environment

friendly without secondary pollution characteristics. In this work, the fracturing fluid were

characterized by scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), X-

ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy technologies,

etc. Further, the micro-stabilization and destabilization mechanisms of HPG in fracturing

fluid were carefully investigated. This study maybe opens up new perspective for HPG

removal technologies, exhibiting a low cost and strong applicability in both fundamental

research and practical applications.

1. Introduction

With the increasing demands of modern industries, energy issues has always been a great con-

cern to humankind [1–4]. What is worthy of more attention is that crude oil as an essential

non-renewable resource occupies a significant meaning in the world’s energy supplies [5, 6].
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To realize the enhancement of crude oil productivity, the fracturing technology has been

widely used in the process of crude oil extraction [7, 8].

From the first use of fracturing fluid to boost crude oil production in 1947 to the present, it

has undergone a huge evolution [9]. Of late, fracturing technology was used in more than 90%

of crude oil recovery operations, which had significant economic benefits in the exploration of

the remaining oil potential and the exploitation of tight oil [10]. As is well-known, the greatest

shortcoming of fracturing fluids is that they will cause serious formation damage, which is an

increasing serious issue with detrimental effects on production enhancement [11]. Moreover,

some hydrophilic organic additives are difficult to remove from wastewater because of the

variety of additives in the fracturing fluid and their complicated structures, such as biocides,

thickeners, corrosion inhibitors, viscosity modifiers and other chemicals [12–14]. Unfortu-

nately, fracturing liquid could also potentially be harmful to the groundwater and human

health, which has become one of the current oilfield water pollution sources, as well as second-

ary pollution [15–17]. More explicitly, the aforementioned issues are the bottlenecks that must

be faced for crude oil production.

The total amount of fracturing flowback fluid generated by the operations has increased

sharply with the large-scale development of oilfields and the frequent industrial fracturing con-

struction operations [18, 19]. More seriously, the fracturing technology always requires copi-

ous amounts of water resources, which is still a potential waste for precious resource [20, 21].

Presently, oxidation and flocculation processes are mostly adopted to the treatment of fractur-

ing fluid throughout the world. For example, Linden et al. demonstrated the potential of an

activated sludge mixed liquor to degrade guar under typical flowback conditions [22]. Lester

et al. proposed a tailored treatment approach of the aeration/precipitation (and/or filtration)

combining with biological treatment (to remove dissolved organic matter) followed by reverse

osmosis desalination for flowback recycling in future fracturing operations [23]. Cath et al.

introduced a novel application of forward osmosis (FO) facilitating water reuse for fracturing

operation and reducing the need for an additional water source [24]. Yet, these examples

revealed that complicated operation, high cost and secondary pollution are difficult points that

could be faced for their practical treatment of fracturing fluid. In addition to these, during the

treatment process of fracturing fluid, the residual guar gum also faced the problem of filters

blocking, which leaded to the failure of the treatment process due to the poor removal effect of

guar gum. Up to now, few works related to the in-depth study of guar gum properties in high-

salt complex water environment have been reported. How to deal with the fracturing fluid has

been a very important and urgent issue, and experts in different fields are committed to solving

above problems.

Guar gum, a kind of environmentally friendly natural occurring polymer, is used as thick-

eners in fracturing fluid [25–27]. Further, physical, chemical and biological properties of guar

gum are determined by its chemical structure present on its backbone [28–30]. Generally,

HPG is modified on the basis of guar gum by nucleophilic substitution reaction to introduce

polar hydroxypropyl with hydrophilicity, which is usually added to the fracturing fluids and

widely used in practical engineering [31]. These fracturing fluids were normally prepared by

mixing in appropriate amounts of surfactants such as anionic, cationic and non-ionic etc.

Among them, polymers, including polyacrylamide (PAM) or polyacrylate polymers, not only

increased the viscosity of wastewater but also enhanced the difficulty of analyzing related char-

acteristics in high-salt complex water environment. In this sense, research on the micro-stabili-

zation mechanism and destabilization technology of HPG is crucial to the treatment of

fracturing fluid. Considering the efforts undertaken so far, there is still an urgent need to come

up with a low-cost, facile and efficient technology for its large-scale treatment of fracturing

fluid.
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Herein, we designed a facile and efficient technology of "gel-breaking, coagulation, precipi-

tation" for effective treatment of fracturing fluids. This novel approach without any further

modification and tedious steps, avoiding the complex process involving in the advanced oxida-

tion process or microbiological method and so on. During the whole experiment, potassium

persulfate (KPS), polyaluminium chloride (PAC) and polyacrylamide (PAM) were used as

breaker, inorganic flocculant and organic flocculant, respectively. These reagents with obvious

advantages of lower-cost and easily available were much more conducive to actual operation

of oilfield. In addition, chemical composition and bonding structures of simulated fracturing

fluid-0 and simulated fracturing fluid were analyzed and studied in more detail. Besides, we

deeply explored and studied the destabilization mechanism of HPG on the basis of DLVO

(Derjaguin–Landau–Verwey–Overbeek) theory in order to explain the aggregation and dis-

persion behavior of colloidal particles in fracturing fluid. Finally, through coagulation and pre-

cipitation process of simulated fracturing fluid, it remarkably indicated that HPG achieved the

great removal effect by analyzing the data of flocculation efficiency and TOC removal effi-

ciency. We believe that the facile and economical method has excellent potential in practical

oilfield application and provided it candidate for comprehensive applicability.

2. Experimental section

2.1. Materials

The original fracturing fluid was collected from the Klamayi oilfield of Xinjiang, China.

Hydroxypropyl guar gum (HPG) was purchased from Shanghai Yuanye Biological Technology

Co., Ltd. PAM (cationic type) was supplied from Xinxiang Jinghua Water Purification Mate-

rial Co., Ltd. Chitosan was provided by Shanghai Qiangshun Chemical Reagent Co., Ltd. Poly-

aluminium chloride (PAC), sodium sulfide (Na2S) and sodium tetraborate decahydrate were

obtained from Aladdin Chemical Co., Ltd, China. Sodium hydroxide (NaOH), potassium

bicarbonate (KHCO3), magnesium chloride (MgCl2), potassium persulfate (KPS) and potas-

sium chloride (KCl) were purchased from Sinopharm Chemical Reagent Co., Ltd. The other

reagents were all of analytical reagent grade.

2.2. Preparation and gel-breaking process of simulated fracturing fluid

The base fluid was prepared by mixing different reagents (0.5 wt% KCl, 0.4 wt% HPG, 0.015

wt% K2S2O8 and 0.005 wt% NaOH) and ionic mother liquor. 4 wt% borax was used as cross-

linker and the crosslinking ratio of base fluid and crosslinker of 10: 1. Of these, the ionic

mother liquor was the simulated ionic environment (Table 1). The specific preparation process

and gel-breaking process were as follows. First, 0.5 wt% KCl was added to the ionic mother

liquor. After that, HPG (0.4 wt%) was added slowly to the mixture under agitation. Then,

0.015 wt% K2S2O8 (150 mg�L−1) and 0.005 wt% NaOH were added to the above-mentioned

Table 1. Formulation of ionic mother liquor.

Reagents Concentration (mg�L−1)

FeCl3�6H2O 340.8

Na2S 60.8

Na2SO4 198.8

Na3PO4 736

MgCl2 74.1

CaCl2 2497.5

KHCO3 271.7

https://doi.org/10.1371/journal.pone.0247948.t001
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solution and then set aside for 15 min. Subsequently, the resulting solution and crosslinker

were mixed homogeneously in a ratio of 10:1 by stirring magnetically. The process was carried

out under the 90˚C water bath condition for about 2 h (S1 Fig). After process was finished, the

mixture was naturally cooled to room temperature. At this stage, pH of the mixture was

approximately 6.5. Finally, the resulting supernatant liquid were named as simulated fractur-

ing fluid (Table 2); that is, simulated fracturing fluid completed the gel-breaking process.

Accordingly, the resulting supernatant liquid were named simulated fracturing fluid-0 if the

breaker (K2S2O8) was not added to the mixed solution.

2.3. Coagulation and precipitation process of simulated fracturing fluid

Firstly, the as-prepared simulated fracturing fluid completed the gel-breaking process through

the specific steps. Subsequently, inorganic flocculant (PAC, 600 mg�L−1) and organic floccu-

lant (PAM, 50 mg�L−1) were added into the same beaker containing simulated fracturing fluid

in turn. Besides, inorganic flocculant (PAC, 800 mg�L−1), organic flocculant (PAM, 50 mg�L−1)

and natural polymer flocculation (chitosan, 500 mg�L−1) were added respectively to simulated

fracturing fluid and mixed according to a set of requirements as the control groups. Then, the

obtained mixture was rapidly stirred at 300 rpm for 1 min and subsequently mix evenly at 100

rpm for 10 min. After stirring, the above mixture was allowed to precipitate around 15 min.

2.4. Characterization

2.4.1. Characterization of original fracturing fluid. The original fracturing fluid was

placed in the refrigerator at −80˚C for more than 24 h until the sample was frozen hard. Then,

the sample was freeze-dried in a high vacuum on the TENLIN FD-1B-80 freeze-drying

machine until the moisture was completely removed. Finally, the sample was placed in a dryer

to get fairly good preservation. The surface microstructures of the sample were observed by

field emission scanning electron microscopy (FE-SEM, FEI Nova Nano SEM 450). The Bruker

EDS QUA�NTAX equipped with an Energy dispersive X-ray (EDX) detector was used to char-

acterize the chemical composition. The change of sample surface properties was investigated

using Fourier transform infrared spectroscopy (FTIR, Nicolet 5700) with the wavenumber

ranging from 1000 to 4000 cm−1.

2.4.2. Other characterization. X-ray photoelectron spectroscopy (XPS, Thermo VG

ESCA LAB 250) was employed to monitor the surface chemical composition of simulated frac-

turing fluid-0 and simulated fracturing fluid. The binding energy at 284.8 eV of C 1s peak was

used to calibrate binding energy of all the spectra. The viscosity was tested by a rotational rhe-

ometer (Mars 60). The molecular weight was performed by High performance liquid chroma-

tography (HPLC, Agilent LC 1100). The pH and alkalinity were measured with a FE-20 pH

detector and FE28-standard apparatus (Mettlertoledo, Switzerland), respectively. The turbidity

was obtained by using a portable turbidimeter (HACH-2100Q). Median particle size was

determined using a Zetasizer Nano S90 (Malvern Instruments Ltd, UK). Total organic content

(TOC) was determined by TOC analyzer (Shimadzu, TOC-4200).

Table 2. Properties of simulated fracturing fluid.

Parameters Values

pH 6.50 ± 0.20

Viscosity (mPa�s) 2.09 ± 0.15

Turbidity (NTU) 81.00 ± 29.30

Median particle size (nm) 3500 ± 500

https://doi.org/10.1371/journal.pone.0247948.t002
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Average values of related research data are obtained through five parallel experiments to

ensure the reliability of data such as flocculation efficiency, TOC content and so on.

The error range of relevant data were also presented in the form of error bars.

3. Results and discussion

3.1. Morphology and chemical composition

The surface morphologies of the original fracturing fluid were characterized by FE-SEM. SEM

images of original fracturing fluid, at different magnifications are shown in Fig 1A–1D. The

overall structure was relatively loose and the particles were unevenly distributed with the mag-

nification of 500 X, as exhibited in Fig 1A. As presented in Fig 1B of 4000 X magnification, the

surface of the sample particles was not porous, presenting a unique structure similar to stalac-

tite. In addition, and some crystal particles can also be seen on the surface of original fracturing

fluid. At higher magnification of 30000 X and 60000 X, it was obviously observed that the guar

gum exhibited a sticky state in Fig 1C and 1D. EDX analysis displayed a presence of high

amounts of Cl, O, Na and Ca within the surface of original fracturing fluid (Fig 1E), and EDX

mapping confirms the homogeneous nature of the specimen by showing the distribution of

each element (Figs 1F and S2).

The FT-IR spectrums of the original fracturing fluid and HPG are exhibited Fig 2A. The

HPG exhibited characteristic broad absorption bands at 3423 cm−1 for O–H stretching, and

the presence of absorption band at 2925 cm−1 was associated with C–H stretching vibrations.

Additionally, the peaks at 1090 cm−1 were assigned to C–OH bending vibrations [32, 33]. In

case of original fracturing fluid, the broad band around 3400 cm−1 was attributed to O–H

stretching vibration [34, 35]. The absorption peaks at 1680 cm−1 and 1550 cm−1 were assigned

to the stretching vibration of C = O and–COO–, respectively. We can also observe the C–OH

stretching in the spectral regions between 1150 and 1000 cm−1. It can be inferred that the

structure of HPG had been destroyed in the original fracturing fluid. Further, a significant

increase in hydroxyl may be due to breaking of the bond of carbon-oxygen bond at position 1

of galactose unit, α-1, 6 glycosidic bond and β-1, 4 glycosidic bond, and some hydroxyl groups

were also oxidized to carbonyl groups, depicted in Fig 2B [36]. The thickener in the original

fracturing fluid was partially decomposed due to the influence of formation temperature and

the presence of breaker. In other words, the HPG no longer existed in the form of cross-linked

macromolecules. Besides, the complex component of original fracturing fluid might cause

some interference to the analysis of the material structures.

Fig 1. FE-SEM images of the original fracturing fluid at (a, b) low and (c, d) high magnifications. EDX Mapping

results of the original fracturing fluid: (e) Mapping of all elements, (f) Mapping of Cl, O, Na and Ca.

https://doi.org/10.1371/journal.pone.0247948.g001

PLOS ONE Design of facile technology for the efficient removal of hydroxypropyl guar gum

PLOS ONE | https://doi.org/10.1371/journal.pone.0247948 March 4, 2021 5 / 13

https://doi.org/10.1371/journal.pone.0247948.g001
https://doi.org/10.1371/journal.pone.0247948


3.2. Analysis of gel-breaking process

The composition of the original fracturing fluid was extremely complicated, and the structure

of HPG will change when it was kept for a long period of time, affecting the properties of the

original fracturing fluid. It was not conducive to the mechanism studies of HPG destabiliza-

tion, etc. In this case, the as-prepared simulated fracturing fluid-0 was taken as the research

object during the following mechanism study and experimental process in order to exclude

some influencing factors. It is noteworthy that only when the cross-linked HPG were decom-

posed into small molecules can it be beneficial to the treatment of fracturing fluid and reduce

formation damage in practical engineering applications. As illustrated in Fig 3, XPS measure-

ment was used to further investigate the chemical components of the simulated fracturing

fluid-0 and simulated fracturing fluid. Fig 3A and 3D display the XPS survey spectrum of the

simulated fracturing fluid-0 and simulated fracturing fluid, respectively. It can be seen that the

elements were detected such as C, O, N, etc. Fig 3B and 3E correspond to the bonding of C 1s

of simulated fracturing fluid-0 and simulated fracturing fluid, respectively. The C 1s spectrum

could be decomposed into three peaks at~284.8, 286.3 and 287.5 eV, corresponding to C–C,

C–O and C = O groups, respectively [37]. After adding the breaker, the peak area ratio of C–C

increased from 38% to 45%, C = O increased from 10% to 18% and C–O decreased from 52%

to 37%. In addition, from the high-solution XPS spectra for N 1s (Fig 3F), whereas a new func-

tional group of C–N at~397.8 eV appeared after the addition of breaker, as compared to that of

simulated fracturing fluid-0 (Fig 3C) [38]. This indicated that the hydroxyl radicals and

Fig 2. (a) FTIR spectra of the original fracturing fluid and pure HPG. (b) Schematic of broken keys for HPG.

https://doi.org/10.1371/journal.pone.0247948.g002

Fig 3. XPS full-scan spectrum of (a) simulated fracturing fluid-0 and (d) simulated fracturing fluid (after gel-

breaking). High-solution C 1s XPS spectra of (b) simulated fracturing fluid-0 and (e) simulated fracturing fluid. High-

solution N 1s XPS spectra of (c) simulated fracturing fluid-0 and (f) simulated fracturing fluid.

https://doi.org/10.1371/journal.pone.0247948.g003
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carbon-oxygen bonds were oxidized in the HPG molecules, leading to cleavage of the HPG

molecular chain, which reduced the viscosity of the simulated fracturing fluid.

Guar gum is a natural high molecular polymer, which is likely to be decomposed under cer-

tain light conditions or the presence of certain microorganisms. Therefore, it is necessary to

investigate the decomposition of guar gum under natural conditions. Fig 4 exhibits the

changes in the MW distributions of soluble organic matter in the pure HPG, simulated fractur-

ing fluid-0 and simulated fracturing fluid, respectively. For a pure HPG solution, the propor-

tion of maximum MW (>1000 kDa) in the soluble organic matter significantly decreased in

the first three hours, which indicated that part of the HPG should be decomposed into small

molecules (Fig 4A). A strange phenomenon apparent from Fig 4A was that the proportion of

maximum MW increased starting from the eighteenth hour, which inferred that samples were

placed overnight resulting in molecular aggregation. As shown in Fig 4B and 4C, the low MW

(1–10 kDa) of organic substance represented the largest proportion for the simulated fractur-

ing fluid-0 and simulated fracturing fluid within 48 h. Notably, there were no maximum MW

(>1000 kDa) of organic substance because of adding breaker in the simulated fracturing fluid.

In general, degradation of soluble organic substance was distinct in 18–48 h in the simulated

fracturing fluid-0. Furthermore, the change of MW distribution was not obvious as a function

of time in the simulated fracturing fluid, and MW of approximately 70% organic substance

was less than 10 kDa.

3.3. E-DLVO model

The wonderful process of simulated fracturing fluid from turbid to clear encouraged us to fur-

ther study the destabilization performance of HPG. As is well known, the DLVO theory was

developed by Derjaguin, Landau, Verwey and Overbeek [39, 40]. The theory reckons that the

interaction of attractive and repulsive forces exits near the surface of a charged colloidal in an

electrolyte solution [41–43]. This theory is relatively perfect in estimating trends in the mobil-

ity of numerous colloidal particles of the environment, especially in the stability of colloidal

particles and the flocculating mechanism of flocculant to colloidal particles [44, 45]. Given

that, we could further study about how HPG maintains a steady state in high-salt environment

of fracturing fluid and seek the method of effective destabilization through the discussion of

the DLVO model. This theory holds that colloidal particles are often mutually attractive and

exclusive due to van der Waals interaction energy and the intersection of electrical double

layer between colloidal particles, respectively [46, 47]. The van der Waals force (VA) among

each particle was defined by the equation [48]:

VA ¼ � A131R=12H ð1Þ

Fig 4. Molecular weight (MW) distributions of organic matter in the (a) pure HPG (b) simulated fracturing fluid-0

and (c) simulated fracturing fluid. Five MW fractions (<1 kDa, 1–10 kDa, 10–100 kDa, 100–1000 kDa, and>1000

kDa) were identified in the pure HPG, simulated fracturing fluid-0 and simulated fracturing fluid.

https://doi.org/10.1371/journal.pone.0247948.g004
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where we had the effective Hamaker constant (A131) given by the equation below:

A131 � ðA
1=2

11
� A

1=2

33
Þ

2
ð2Þ

where H is the operating distance of interfacial forces, R is the median particle size, and A131

represents effective Hamaker constant of particle in medium. A11 and A33 are the Hamaker

constant of particle and medium in a vacuum, respectively. Besides, the electrostatic repulsion

energy (VR) was calculated according to the following equation:

VR ¼ 2pεRF2

0
ln ½1þ expð� kHÞ� ð3Þ

where ε is the permittivity of solution, F0 is the particle surface potential, R is half of the

median particle size, and k is Debye constant whose reciprocal is the thickness of double layer.

Moreover, Debye constant (k) could be defined by the equation below:

k ¼
4e2NAI
εkBT

ð4Þ

where NA is the Avogadro constant, I is the ionic strength, and kB is the Boltzmann constant.

However, the interparticle interactions were far more complicated than ordinary colloidal dis-

persion systems in the actual flocculation process. Classical DLVO theory also cannot explain

the aggregation and dispersion behavior of colloidal particles in these systems. Therefore,

extended DLVO (E-DLVO) theory was proposed on the basis of DLVO theory. On the DLVO

potential curve of particle interaction, the total energy of particles interaction (VT) can be

explained as follows:

VT ¼ VA þ VR ð5Þ

HPG structure was similar to cellulose, and contained a large amount of -OH, -COOH and

other hydrophilic groups. These hydrophilic groups absorbed several times or even dozens of

times water of their own weight through hydration in an aqueous solution form a relatively

stable hydration layer structure and bind water molecules within this range, which have good

water retention property. Evidently, the most effective point that break its stability was damag-

ing its hydration. The hydrophobic attraction energy between the hydrophobic colloidal parti-

cles could be attributed to the interface polar interaction particle between colloidal particles

[49]. For the surface of hydrophilic particles or the surface of hydrophilic particles adsorbing

chemicals, the polarizing effect of surface polar regions to adjacent water molecules formed a

hydration force. The parameters of HPG E-DLVO model were summarized in Table 3.

Table 3. The parameter values of HPG E-DLVO model.

Parameters Values

F0 (mV) 7.00 × 10−3

ε (C�V−1�m−1) 7.08 × 10−10

A11 (J) 6.30 × 10−20

A33 (J) 4.84 × 10−20

R (m) 6.50 × 10−7

kB (J�K−1) 1.38 × 10−23

I (mol�L−1) 0.23

VA −5.03/H

VR 14.16 ln(1 + e−0.0462H)

https://doi.org/10.1371/journal.pone.0247948.t003
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Interaction energy curves between HPG colloidal particles are presented in Fig 5. VA and

VR were all zero when the interparticle distance was far away. VR worked primarily when the

interparticle distance was 20 nm. Furthermore, VA did not work until the particles overcame

VR, and continued to approach a certain distance, at which time VR was much larger than VA.

Therefore, the way to destabilize HPG colloid was that reducing the electrostatic repulsion

energy between the colloidal particles, in which the colloidal particles were aggregated and

agglomerated by van der Waals force, and separated from the fracturing fluid.

3.4. Analysis of coagulation and precipitation process

The flocculation treatment is the most common treatment technology in the area of oilfield

wastewater treatment, because of its easy operation and low cost. To be specific, the flocculants

realized the flocculation and sedimentation of the fracturing fluid containing massive colloidal

particles and other impurities through the compression of the electric double layer, charge

neutralization, adsorption bridging mechanisms and trap precipitation. More explicitly, coag-

ulation was achieved through the flocculation of clever combination of different types of floc-

culants. It is widely believed that adsorption bridging and charge neutralization play a major

role for organic flocculant, and these mechanisms including compression of electric double

layers, adsorption bridging and trap precipitation play an important role for inorganic or natu-

ral polymer flocculant. During the flocculation process, the colloidal particles suspended in the

system were destabilized, collided and condensed into larger flocs which then separated from

the system by precipitation due to the addition of the flocculant. The flocculation efficiency

and TOC removal efficiency of different flocculants for treating the simulated fracturing fluid

are displayed Fig 6A and 6B, respectively. In contrast to other types of flocculants, PAM had

high flocculation effect for the simulated fracturing fluid, which formed larger flocs and pre-

cipitated easily (Fig 6A). In order to further determine the effect of flocculation on the removal

of HPG, TOC content and removal efficiency of HPG after flocculation are shown in Fig 6B.

These results further confirmed that PAM possessed satisfactory flocculation effect, and the

combination of PAC and PAM facilitated to achieve the best flocculation effect. From the

above, it is reasonable to conclude that this flocculation method combining inorganic and

organic flocculant should be selected to achieve a better flocculation effect in the flocculation

process.

Fig 5. Interaction energy curves between HPG colloidal particles.

https://doi.org/10.1371/journal.pone.0247948.g005
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4. Conclusion

In summary, we designed the facile, efficient and economical HPG removal technology

through a series of processes including gel-breaking, coagulation and precipitation towards

the treatment of fracturing fluids. Combination of different types of flocculants achieved the

HPG removal by compressing the electric double layer, charge neutralization, adsorption

bridging mechanisms and trap precipitation, which make colloidal particles form floc to pre-

cipitate and separate from the fracturing fluids. The above approach is facile and low-cost easy

to promote, avoiding the complicated treating process and use of complex equipment. Simul-

taneously, our research extends the knowledge into the explanations of aggregation and dis-

persion behavior between colloidal particles in fracturing fluid on the basis of DLVO theory.

More importantly, this essay has argued that is the best instrument to a combination of PAC

and PAM during the coagulation process. From the above, these studies thus offer a new strat-

egy to treat the removal of HPG from fracturing fluid under the high-salt complex water

environment.
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