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ABSTRACT

Background. Despite the great concern triggered by the environmental crisis world-
wide, the loss of temporal key functions and processes involved in biodiversity
maintenance has received little attention. Species are restricted in their life cycles by
environmental variables because of their physiological and behavioral properties; thus,
the timing and duration of species’ presence and their activities vary greatly between
species within a community. Despite the ecological relevance of such variation, there is
currently no measure that summarizes the key temporal aspects of biological diversity
and allows comparisons of community phenological patterns. Here, we propose a
measure that synthesizes variability of phenological patterns using the Hill numbers-
based attribute diversity framework.

Methods. We constructed a new phenological diversity measure based on the aforemen-
tioned framework through pairwise overlapping distances, which was supplemented
with wavelet analysis. The Hill numbers approach was chosen as an adequate way to
define a set of diversity values of different order g, a parameter that determines the
sensitivity of the diversity measure to abundance. Wavelet transform analysis was used
to model continuous variables from incomplete data sets for different phenophases. The
new measure, which we call Phenological Hill numbers (PD), considers the decouplings
of phenophases through an overlapping area value between pairs of species within
the community. PD was first tested through simulations with varying overlap in
phenophase magnitude and intensity and varying number of species, and then by using
one real data set.

Results. PD maintains the diversity patterns of order q as in any other diversity measure
encompassed by the Hill numbers framework. Minimum PD values in the simulated
data sets reflect a lack of differentiation in the phenological curves of the community
over time; by contrast, the maximum PD values reflected the most diverse simulations in
which phenological curves were equally distributed over time. PD values were consistent
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with the homogeneous distribution of the intensity and concurrence of phenophases
over time, both in the simulated and the real data set.

Discussion. PD provides an efficient, readily interpretable and comparable measure
that summarizes the variety of phenological patterns observed in ecological communi-
ties. PD retains the diversity patterns of order q characteristic of all diversity measures
encompassed by the distance-based Hill numbers framework. In addition, wavelet
transform analysis proved useful for constructing a continuous phenological curve.
This methodological approach to quantify phenological diversity produces simple and
intuitive values for the examination of phenological diversity and can be widely applied
to any taxon or community’s phenological traits.

Subjects Biodiversity, Conservation Biology, Ecology, Plant Science, Zoology

Keywords Biodiversity, Dissimilarity, Hill numbers, Overlap index, Phenology, Time series
analysis

INTRODUCTION

The biodiversity crisis involves the loss of species and their functions from all ecosystems
worldwide (Chen ¢ Shen, 2017). The loss of key temporal functions and processes involved
in biodiversity maintenance is a major component of biodiversity loss (Lamy et al., 2015;
Cardinale et al., 2012; Youngflesh et al., 2021). Despite the great concern triggered by this
crisis, a measure for summarizing the diversity of temporal patterns in communities has
received little research (Legendre ¢» Gauthier, 2014; Legendre, 2019). Phenology is defined
as the study of the timing of recurring biological events, their variation within and among
species, and the biotic and abiotic agents responsible for the initiation, duration, and
end of such events (Paranjpe ¢ Sharma, 2005; Liang ¢» Schwartz, 2009; Lieth, 1974; Denny
et al., 2014). The term phenology also refers to the timing of recurrent biological events
themselves (i.e., phenological patterns) (Hudson, 2010; Wolkovich, Cook ¢ Davies, 2014;
Cohen, Lajeunesse ¢ Rohr, 2018). Under this latter conceptualization, phenology has been
interpreted as an expression of the environmental responses of organisms over time.
Species are generally restricted in their life cycle by environmental variables because

of their physiological and behavioral traits. Consequently, the timing and duration of
phenophases (e.g., the distinguishable portion or aspect of an organism’s life cycle)
vary greatly among species within a community (Angus ¢» Moncur, 1977; Bunting, 1975;
Visser ¢ Both, 2005; Cleland et al., 2007; Stange & Ayres, 2010; Gompper et al., 2016; Horne,
2017; Tonkin et al., 2017; Eisenhauer et al., 2018; Li et al., 2018). Despite the high degree of
variation in phenophases among species in a community and the ecological significance of
this variation, a measure summarizing the diversity in the timing of biological events in
communities is still lacking.

Given the differences in the types of phenological events, variation within species, and life
histories, approaches for measuring phenology are many-fold, which makes generalizing
phenology complex (i.e., depending on their life cycle and whether they are unitary or
modular; Vuorisalo & Tuomi, 1986). Phenological data come in numerous forms, and the
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phenophases of organisms are often measured using presence/absence data and intensity
or abundance counts of distinguishable biological processes or activities displayed by
individuals in a particular timeframe (e.g., growing, feeding, courtship, mating, breeding).
Non-sessile organisms may respond rapidly to environmental variation by altering their
behavior and activity patterns over time; in addition, capture and handling may be required
to distinguish the phenophases of these organisms (e.g., Tang et al, 2016; Marra et al., 2005;
Garcia-Cobos, Crawford ¢» Ramirez-Pinilla, 2020). By contrast, in most modular and sessile
organisms (mostly plants but also sessile animals, particularly benthic ones), phenophases
are easily distinguishable among individuals along their life cycle, such as flowering, leaf
abscission, and budding (Denny et al., 2014).

Phenological patterns can be studied at different biological levels of organization,
including individuals, populations, and communities (Denny et al., 2014). The study of
phenology at the individual level usually involves analyses of the relationship between
phenological events and environmental cues (e.g., Marchand et al., 2020). However,
environmental relationships have also been examined at the population level, and
synchronicity indices have been developed to analyze the variation in the timing of
phenophases among individuals within a single population or between populations
(e.g., Hodges & Doraiswamy, 1979; Kharouba et al., 2018; Ghosh et al., 2020; Michel et al.,
2020 Félix-Burruel et al., 2021). At the community level, synchronicity measures have
been used to explore the degree of overlap in the timing of phenophases among few
species or functional groups (e.g., Heithaus, 1979; Herrero, 2003; Bartomeus et al., 2013;
Corredor, 2020; McDevitt-Galles et al., 2020; Ramakers, Gienapp & Visser, 2020). Some
community-level phenological studies have used descriptive approaches to analyze species
phenophases and explore the environmental drivers of phenological patterns (Slagsvold,
1977; Ovaskainen et al., 2013). Phenology has been widely studied, but there is currently no
measure that permits comparisons between communities to be made. Therefore, a measure
is necessary for summarizing the temporal axis of biological diversity is needed to facilitate
comparisons of phenologies between communities and generate new ecological questions.

Within-community phenological variation can be summarized based on the magnitude
of the decouplings between the phenophases displayed by different species within a
community, including their timing, duration and intensity. Thus, a measure of the
differences among the phenological patterns might be indirectly correlated with the
biotic interactions that shape phenological patterns (Walker ¢~ Chapin, 1987; Thorn et
al., 2020; Visser ¢ Both, 2005; Cleland et al., 2007; Stange ¢ Ayres, 2010; Inouye, Ehrlén
& Underwood, 2019; Gompper et al., 2016; Horne, 2017; Tonkin et al., 2017; Eisenhauer et
al., 2018; Li et al., 2018), improving our understanding of how species or communities
respond to both biotic and abiotic environmental cues (Losey ¢ Denno, 1999; McKinney
& Goodell, 2011; Bertness et al., 2014; Chuine & Régniére, 2017). Such a measure that
incorporates phenological shifts between species and indirectly involves positive and
negative interspecific interactions due to temporal niche overlap can provide insight into
processes of facilitation or limitation based on the afforementioned decouplings in the
phenophases of co-occurring species (Bergarmo et al., 2018; Hegland et al., 2009; Jonsson et
al., 2009; Forrest ¢~ Miller-Rushing, 2010). Given that diversity measures summarize key
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ecological aspects of communities, they are the basis for improving our understanding of
more complex and specific ecological phenomena such as the large-scale consequences of
climate change on communities (Pau et al., 2011; Pérez-Ramos et al., 2020; Alp et al., 2016).

Here, we develop a novel measure that summarizes a key aspect of temporal biological
diversity: phenological Hill numbers (PD). We define PD as the variety of phenological
patterns observed in ecological communities over a defined time period. Accordingly, PD
reflects the distribution of temporal niches of the species occurring in the community
and capture its relationship with the environment (including the indirect responses to
biological interactions).

MATERIAL AND METHODS

We constructed our phenological diversity measure using the Hill numbers-based attribute
diversity framework (Chiu ¢ Chao, 2014; Chao, Chiu ¢ Jost, 2014) for phenological
intensity/abundance data. Although this framework is based on pairwise overlapping
distance, long-term phenological sampling often produces information gaps in the estimates
of discrete variables and results in abrupt changes over time. This inconvenience can be
solved through wavelet transform analysis, which is a reliable approach for predicting values
to fill these gaps and model a continuous variable (Jung ¢ Tremayne, 2003; Tuljapurkar
¢ Haridas, 2006; Wei, 2006; Bradshaw & Spies, 1992; Frick, Grossmann & Tchamitchian,
1998; Mondal & Percival, 2010).

Phenology as a continuous variable: wavelet time series analysis
Wavelet transform detects the frequency spectrum of discrete time series data and fits a
smoothed curve to them (Schmidt & Skidmore, 2004; Sifuzzaman, Islam ¢ Ali, 2009). This
analysis is based on the comparison of the similarity between a scaling function (which can
be stretched, shrunk, and shifted in time) and the original time series (Torrence ¢~ Compo,
1998). With these comparisons, a matrix is constructed that contains the fits of the scaling
function to the time series, in which the total sum of each column in the matrix produces
the smoothed curve. In the case of phenological data, we can use such a smooth curve
as an approximation to a continuous phenological pattern, in which the abrupt changes
caused by sampling effort and protocol are smoothed out, in line with the assumption that
phenophases start and finish gradually rather than abruptly (Fig. 1).

Wavelet transform analyses require specifying two parameters. The first parameter
is the scaling function. The most common scaling functions are Morlet, Paul, DOG,
Biorthogonal and Mexican hat, and these differ mainly from each other in the signal
resolution calculation (Gonzdlez-Nuevo et al., 2006; Singh, Singh ¢ Sharma, 2011). For our
purposes, the Morlet scaling function is preferable, as it is optimal for data that cannot
be directly interpreted, and time series with unknown frequencies and scales (Percival ¢
Walden, 2000). The second parameter is the attenuation threshold (), which determines
the phenological curve steepness. Values close to 0 translate into a highly smoothed curve;
conversely, values approaching infinity translate into a wiggly curve, similar to the raw
time series data. A value of 2 is used as a standard for wavelet analysis in mathematics
software (e.g., Matlab and wavScalogram R package). Wavelet analysis must be performed

Sanchez-Ochoa et al. (2022), PeerdJ, DOl 10.7717/peerj.13412 4/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.13412

Peer

Relative Abundance

———

‘ m Raw data
l ‘ Wavelet transform
\

Time

Figure 1 Comparison of two phenological curves for the same data set. The blue curve represents the
raw data, and the red curve represents the smoothed phenological curve through the wavelet transform.
Full-size G DOI: 10.7717/peer;j.13412/fig-1

on the discrete phenological curve or time series of each studied species in the community;
thus, the number of total smoothed phenological curves that must be calculated equals the
number of species in the community (S).

Quantifying Phenological Hill numbers (PD)

Our phenological diversity measure is based on the Hill numbers-based attribute diversity
framework (Jost, 2007; Chiu & Chao, 20145 Chao, Chiu & Jost, 2014). Hill numbers are a set
of metrics that have two major advantages over other diversity indices: (1) the interpretation
of the diversity values are consistently the same, and (2) the sensitivity regarding abundant
and rare species or traits can be regulated with a parameter (q). This q parameter directly
determines the sensitivity of the diversity measure (D) to the relative abundances of
species occurring in the community. Although g can take any non-negative real number,
ecologists typically consider three values: 0, 1 and 2 (Chao, Chiu ¢ Jost, 2014). When q = 0,
the relative abundance of species is overlooked, and the measure simply represents S (i.e.,
D =S). When g = 1, S is weighted by the proportions of the species abundances and can
be interpreted as the effective number of species equally abundant within an assemblage,
which is equivalent to exp(H) (i.e., the exponent of Shannon’s entropy; Jost, 2006). Finally,
when g = 2, the diversity values favor the most abundant species, and the less abundant or
rare species are almost not accounted for; consequently, 2D can be roughly interpreted as
the effective number of dominant or the most abundant species in the community (Jost,
2006). In addition, Hill numbers are consistent with basic diversity concepts like evenness
and dominance (Chiu ¢ Chao, 2014; Chao, Chiu & Jost, 2014). Additionally, Hill numbers
are expressed in intuitive units of effective number of species, and they can be directly
compared across orders of g to gain information on the dominance, community traits
and comparisons among different species assemblages. Finally, Hill numbers theory can
be generalized to taxonomic, phylogenetic, and functional diversities (Chiu ¢» Chao, 2014;
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Chao, Chiu ¢ Jost, 2014; Chao et al., 2019). Here, we use this framework to measure PD in
a community.

Phenological diversity assessment through the species-pairwise
distance framework

The measure that we present here is based on a pairwise overlapping distance, following
the same logic by Chao et al. (2014) in developing their functional diversity measure under
the assumption that each species has specific phenological curves (Chao, Chiu ¢ Jost, 2014;
Chao et al., 2019). The distance we used is based on the Morisita-Horn index modified to
measure the amount of overlap between pairs of phenological curves (Luna-Nieves et al.,
2022). Let O;; be the pairwise overlapping distance between the continuous phenological
curves of the i-th and j-th species, defined as

2 [zi(t)zj(t)dt
[zi(£)2dt + [ zj(t)?dt

where z; and z; are the smoothed continuous-over-time phenological curves of species i

(1)

ojj=1—

and j, respectively and the integral is calculated over the studied time interval. O;; ranges
in the [0, 1] interval, with O;; = 1 when curves fully overlap (Fig. 2C), and O;; = 0 when
curves show no overlap (Fig. 2A). When completely overlapping in time (Fig. 2C), the
species belong to the same phenological group; when they partially overlap, they partially
belong to the same phenological group (Fig. 2B). A third case corresponds to the scenario
in which the phenological curves do not overlap (Fig. 2A), which represents the existence
of completely different phenological groups. Therefore, our approach to measuring
phenological diversity is based on the pairwise overlap distance measured through the
Morisita-Horn index (Horn, 1966; Garratt ¢ Steinhorst, 1976).

Considering that both deterministic and stochastic variables contribute to the
phenomena regulating phenology, similar phenological curves between pairs of species
might suggest that they have similar environmental requirements, a common response to
the same environmental cues, or similar evolutionary constraints. By contrast, dissimilar
phenological curves suggest that the species have different environmental requirements or
might simply reflect historical competitive displacement between species (Slagsvold, 1977;
Baselga, Gémez-Rodriguez ¢ Lobo, 2012). As the phenological curves may vary among
time in position and shape. The overlapping area of the phenophase curves between pairs
of species over the entire time series can provide an indirect and prospective measure
of the interactions between phenophases only in the time frame measured. Because our
framework of phenological diversity is based on the approach of “attribute diversity” (Chao,
Chiu & Jost, 2014; Chao et al., 2019), which is a robust extension of Hill numbers, it can be
applied to measure species traits and their diversity in orders of q. Within this framework,
phenological Hill numbers (PD) can thus be interpreted as the pairwise phenological
distance between species (in units of equally abundant and distinct species with distinct
phenological group) occurring in an assemblage within the time interval over which it was
measured.

To construct our phenological diversity measure we need to consider a standardizing
factor: sum of the relative overlap of phenological curves, denoted as Q. This factor is

Sanchez-Ochoa et al. (2022), PeerdJ, DOl 10.7717/peerj.13412 6/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.13412

Peer

g A B ¢
é / \ Spl
;g.- Sp2

Time

Time

Figure 2 Theoretical overlap scenarios between pairs of phenological curves. (A) Non-overlapping
phenological curves. (B) Phenological curves partially overlapping. (C) Fully overlapping phenological
curves (the blue curve is behind the orange curve), species 1, species 2.

Full-size & DOI: 10.7717/peerj.13412/fig-2

calculated as follows (Chao, Chiu ¢ Jost, 20145 Chao et al., 2019):

Q=YY" Owrin; @

where Oj; is calculated as in Eq. (1), and p; is the relative intensity or abundance of the
phenological event measured on species i, defined as

IS EETO

Finally, the phenological Hill numbers of order g, 1PD, is calculated as

1PD = [Zl 12] % (plp 2*1 =9 (4)

Given that when g = 1 the exponent 5—— is undefined, we decided to use the same

2%(1—q)
approach as Chiu & Chao (2014). Therefore,
1 S S 05
Ipp— _Z /P .
po=ep(~5 30, X Uontoston) ). ©)

Simulations and field data

To illustrate the utility of 9PD, we generated simulated data sets reflecting different
community scenarios and applied our measure to these and one additional real data sets.
Although these simulations are unlikely to occur in nature, they provide a glimpse into
a real community phenological pattern (Fig. 3). Simulations vary in several community
traits, such as: the degree of overlap, differential or even in intensity, and total number of
species (i.e., S) (Fig. 3).

As previously explained, 1PD values represent the “phenological Hill numbers” and
thus quantify the diversity of different phenological curves in a given assemblage. The
contribution of the phenological curve of each species is considered unique and equally
distinct from each other; thus, 1PD values always range from >0 (Fig. 3) to the total
number of phenological curves measured (S, when there is no overlap at all between them).
Therefore, phenological Hill numbers values have lower values when ¢ increases.
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Figure 3 Graphs of the tested phenological diversity simulations. (A) S = 40, all species are equally dis-
tributed over time and the abundances are equal; (B) S = 40, all species are equally distributed over time
and the abundances are unequal; (C) S = 40, all species are present all the time without abundance vari-
ation and abundances are equal; (D) S = 40, all species are present all the time with abundance variation
and abundances are equal; (E) S = 40, all species are present all the time without abundance variation and
abundances are unequal; (F) S = 2, species equally distributed over time with equal abundance; (G) S = 2,
species not equally distributed over time with equal abundance; (H) S = 2, species equally distributed over
time with unequal abundances; (I) S = 2, species not equally distributed over time with unequal abun-
dances. A, B, C, D and E are modifications of the Madagascar amphibian community dataset.

Full-size Gl DOI: 10.7717/peerj.13412/fig-3

In addition to the simulated data sets, we performed an analysis of 1PD based on field
data for the breeding phenological activity of an amphibian community from Madagascar
(Fig. 4; S =40; time period = 360 days; frequency = daily; Heinermann et al., 2015).

All analyses were performed in R v. 4.1.2 (R Core Team, 2021) using the DescTools
(Signorell et al., 2020) and wavScalogram (Benitez, Bolds ¢» Ramirez, 2010) packages. We
provide the script for calculating the phenological diversity measure in the Supplementary
Material.

RESULTS

1PD values are illustrated as phenological Hill numbers profiles in Fig. 5. As expected, there
is a tendency to decrease as g increases in cases with abundance variation (Fig. 5), and there
is no decreasing pattern in simulations a, ¢, d, e, f, g, h and i. The absence of a decreasing

Sanchez-Ochoa et al. (2022), PeerdJ, DOl 10.7717/peerj.13412 8/24


https://peerj.com
https://doi.org/10.7717/peerj.13412/fig-3
http://dx.doi.org/10.7717/peerj.13412#supplemental-information
http://dx.doi.org/10.7717/peerj.13412#supplemental-information
http://dx.doi.org/10.7717/peerj.13412

Peer

0.010

0.006 0.008

Relative intensity

0.002 0.004

0

0 60 120 180 240 300 365
Time (days)

Figure 4 Wavelet transformed data of 120 sample points of an amphibian community in Madagascar
over one year. Each line represents one phenological curve, S = 40.
Full-size 4 DOT: 10.7717/peerj.13412/fig-4

pattern in these simulations corresponds to null variation in the intensity and overlapping
area among species (Fig. 3).

The minimum values in simulations ¢ and d reflect the lack of differentiation in
the community phenological curves over time (Figs. 3C, 3D and 6B). The 9PD values
were consistent with the homogeneous distribution of the intensity and concurrence of
phenophases over time. The most diverse simulation was case a (Fig. 5A), where 40 species
occur once in the year and the intensities of phenological curves are equal. By contrast,
simulations c, d, e were the least diverse; with values of 0, where species occur all year-round
with no differential phenophase intensities. Likewise, simulations f, g, h and i have low 1PD
values because only two phenological curves were analyzed (Fig. 5C), and variation in the
intensity and timing of the phenophases is apparent and the distance between two curves
must be between 0 and 1 (Fig. 3). For simulations ¢, d and e (Fig. 5B), the distribution of
the overlapping area among all phenological curves was the same. Overall, these results
confirm that phenophase intensity is a phenological trait that directly affects 9PD values.

Figure 4 show the data for the phenological Hill numbers of the Madagascar amphibian
community. °PD for Madagascar was 47.5 (S = 40 species, 120-time sample points). There
was a decreasing pattern as q increased, with 2PD values being reduced to 8.4.

DISCUSSION

Here, we propose a phenological diversity measure based on time series analysis and Hill
numbers diversity theory that provides an efficient, readily interpretable and comparable
measure that summarizes a key aspect of temporal biological diversity, namely the mean
variety of phenological patterns observed in ecological communities. An initial step

in developing our phenological diversity measure involves transforming data sets that
are incomplete due to information gaps. Wavelet transform analysis proved useful for
constructing a continuous phenological curve. Several studies have recommended the use of
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Figure 5 Phenological Hill numbers profiles as functions of g (0 <q < 2) for simulated (A-I) data and
real data sets (amphibian community from Madagascar). (A) Case a, all species are equally distributed
over time and have equal abundances; case b, all species are equally distributed over time and have un-
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not equally distributed over time with equal abundances; case h, species equally distributed over time with
unequal abundances; case i, species not equally distributed over time with unequal abundances. (D) Real
data sets from Madagascar. Cases a, b, ¢, d, and e in (A) and (B) are modifications of the data from the

amphibian community in Madagascar.
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time series analysis in ecological and forestry studies (Senf et al., 2017; Li & Wu, 1995; Dale
& Mah, 1998; Cho & Chon, 20065 Cazelles et al., 2008). This approach has been used for
specific purposes such as population dynamics, disease transmission, and animal migration
(Cho & Chon, 2006; Cazelles et al., 2008). Thus, incorporating time series in the study of
phenology enhances our understanding of phenological diversity in communities, as it

captures the continuous nature of phenology. A recent study using the Fourier transform
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showed that this tool can be used to detect periodical patterns in phenological cycles in long-
term data (Bush et al., 2017), and this approach performed better than circular statistics
(Morellato, Alberti ¢ Hudson, 2010). However, these two approaches have not been used to
model continuous phenological data. Likewise, we demonstrated that time series analysis
can be used to model a continuous phenological curve from discrete or not fully continuous
data; thus, there is a need to develop more robust theory aside from Fourier’s approach
given that phenological patterns are not unimodal (e.g., empirical orthogonal function,
wavelets or Hilbert-Huang method; Cho ¢ Chon, 2006; Cazelles et al., 2008; Bowman ¢
Lees, 2013; Huang, 2014). Limitations of Fourier’s approach are primarily related to the
information features of multi-scale functions at dominant intensities through the time
series; in other words, Fourier analysis only provides information on the periods but not
on their distribution over time. Consequently, Fourier transform is less applicable than
wavelet analysis to nonlinear, nonstationary transient and scale-dependent phenomena
such as natural processes characterized by high variability (Cees, 1999; Li ¢> Wi, 1995). The
specific advantage of wavelet analysis is that it considers the frequency of each time interval
in the time series from small to large scales, which enables a more accurate calculation
of nonlinear and nonstationary variables, such as phenological processes. As described in
the Methods section, two parameters need to be specified: the scaling function and the
attenuation threshold (7). The scaling function relates to the nature of the time series
data and the approach of the wavelet transform (Cazelles et al., 2008). Scaling functions
are numerous and each one has a specific use. We used the Morlet function because of
the lack of predictability in the biological data related to phenological traits (Percival ¢
Walden, 2000) and its capacity for high-frequency resolution (Cazelles et al., 2008). The
Daubechies scaling function is used in variables with fractal sequences or even in signal
discontinuities (Akansu, Haddad ¢ Caglar, 1993). The Mexican hat scaling function is
used in seismic signal patterns where variables show strong changes in the beginning
and decrease over time (Zhou ¢ Adeli, 2003). The latter features in temporal data are not
observed in phenological information and therefore the use of these scaling functions is
not warranted for this purpose.

The 1 parameter reflects the rate of occurrence or disappearance of phenological traits
over time. In nature, phenological processes generally occur gradually and continuously
rather than abruptly and discretely; however, because of logistic restrictions, we are
generally limited to collecting discrete records of phenological patterns. For example, the
flowering of some cacti can occur in a single night (Petit, 2001), whereas the flowering
of many tropical rainforest tree species tends to be gradual (Newstrom, Frankie ¢~ Baker,
1994; Brown & Hopkins, 1996). Regardless of the community, both examples take place
in a continuous manner and are time scale-dependent. Therefore, the phenological curve
slope can be adjusted depending on the nature of the phenological process, which directly
affects the area of overlap of the pairwise distance and, consequently, how the phenological
processes share time in the entire community. Although the standard value of us exploration
of different approaches for defining 7 to accurately describe the phenology of species is
necessary given variability in the time and duration of phenophases among species. Until
he standard value of 2 be used to permit comparisons to be made among different systems
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and studies. Changes in T might modify 9PD values but not the diversity patterns in order of
g. Future research on the standardization of values is needed to increase the comparability
of results (see Materials and Methods for explanation; Percival ¢ Walden, 2000).

The Morisita-Horn index was found to be appropriate for measuring the pairwise
overlapping distance between phenological curves (Luna-Nieves et al., 2022). There are two
other widely accepted measures (or metrics) of overlap between curves: the Jaccard overlap
index (Smith, Solow ¢ Preston, 1996; Yue ¢ Clayton, 2005) and the Szymkiewicz-Simpson
overlap coefficient (Ramos-Guajardo, Gonzdlez-Rodriguez ¢ Colubi, 2020); however, these
indices do not represent the intensity and the proportion of overlap of phenological
curves. The Jaccard overlapping area index only accounts for the overlapping area of both
samples but ignores the area outside of the overlapping area. The Szymkiewicz-Simpson
index is based on the overlapping area and the area of the smaller phenological curve.
Unlike these two indices, the Morisita-Horn Index is calculated by including both the
overlapping and non-overlapping areas, thus making it a better tool for our purposes
(Yue & Clayton, 2005). The temporal overlap of phenological curves over time reflects
the temporal niche similarity between species and provides insight into the existence and
magnitude of interactions such as competition, mutualism, and facilitation (Kochmer ¢
Handel, 1986; Murdoch et al., 2002; Hodgson et al., 2011; Bergamo et al., 2018; Lane et al.,
2018; Donohue, 2005).

The proposed measure of phenological diversity is an extended application of the
principle of Hill numbers used to measure phylogenetic (Chao, Chiu ¢ Jost, 2010) and
functional diversity (Chiu ¢» Chao, 2014; Chao, Chiu & Jost, 2014; Scheiner et al., 2017).
The main advantage of our measure is its ability to provide a more objective and easy-to-
interpret way for comparing the mean variety of phenological patterns observed across
different studies (Chiu ¢» Chao, 2014). Our approach retains the diversity patterns of order
q as the rest of diversity measures encompassed by the Hill numbers framework does. In
ecological terms, the phenological Hill numbers values can be interpreted as a quantification
of the mean different ways in which the community displays phenological curves over time.
When g = 0, the measure represents the mean number of phenological curves included in
the analysis (richness) as long as they do not overlap. If they do, this number is reduced
to 0 when they are all identical because the distance between phenological curves is zero.
When g >0, the phenological curves shared by increasingly larger numbers of species are
assigned higher weight in determining the phenological Hill numbers values. In practice,
this means that phenological curves that are highly similar to each other in terms of time and
intensity are grouped together, which ultimately translates into the mean effective number
of phenological curves. Thus, regardless of the value of g, higher values of phenological
Hill numbers represent a more heterogeneous arrangement and lower temporal overlap in
the phenological curves within a community.

The simulations we performed represent the behavior of extreme scenarios of
phenological Hill numbers. Results show that differences in intensity, overlapping area
and variation in the number of phenological curves determine the values of phenological
Hill numbers because this measure is directly linked to both variations in these variables
and g values (Chao, Chiu ¢ Jost, 2014). Specifically, the highest 9PD values correspond to
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data on phenophases evenly distributed over time, as has been shown in other diversity
studies (e.g., De Bello et al., 2009); this result is related to the degree of species evenness in
the community and reflects the degree of concurrence in the phenological curves (Figs.
3A, 3B). Likewise, the lowest 1PD values correspond to the lowest degree of variation
in the intensity of phenological curves and the constant presence of all phenological
curves over time; from a biological perspective, there is no heterogeneity in this case, and
all species have the same intensity in their phenological curves and occur in the same
timeframe (Figs. 3C, 3D, 3E). When the intensity of phenological curves varies and the
concurrence of curves remains constant (e.g., Fig. 3A vs. Figs. 3B and 3C, or 3D vs. 3E),
1PD values decrease when g increases, demonstrating that the measure is sensitive to the
intensity of the different phenological curves. We also demonstrate that 1PD values are
closely related to the number of phenological curves measured (Fig. 3C). Therefore, our
framework does provide a reliable measure of a key community attribute under different
phenological scenarios. Phenological curves are constructed through signal processing by
wavelet analysis and intensity or abundance data is needed; thus, our approach do not
consider the presence/absence data frames and a modification of our framework must be
developed due to the nature of binary data.

1PD can be successfully evaluated in In the case of the Madagascar amphibians data set,
we calculated a maximum °PD value of 47.5 for a group of 40 species monitored over time.
As g increases, the effective number of the phenological curves became greatly reduced,
implying that there are few ways in which phenological curves can occur when abundance
is assigned more weight in estimating 7PD. In other words, there are between a mean of
13 (9 =1) or 8 (q = 2) distinct ways in which species partition their activity temporally
throughout the studied year. This can be explained by the fact that amphibian activity
is highly tied to rainfall patterns, and several species respond similarly to this factor (see
Heinermann et al., 2015). Some amphibian species occur continuously throughout the year,
whereas others only do so during a short period in the rainy season, throughout the entire
rainy season, in the cold dry season, or under hot dry conditions. Overall, our analysis
provided a robust measure that summarizes the diversity of these patterns. Nevertheless,
OPD values (47.5) are slightly larger than taxonomic diversity (40) because Q < 1. Thus,
the distance measure used in this framework can alter diversity values but not the overall
patterns.

The proposed method correctly incorporates the proportion of overlapping area and the
intensity of phenological curves, making our phenological diversity measure consistent with
the Hill numbers unified framework (Chao, Chiu ¢ Jost, 20145 Chao et al., 2019). Moreover,
the proposed framework enables any phenological phenomenon to be examined with any
set of taxa at the community level. Nevertheless, two assumptions require consideration:
(1) long time series data lead to a better modeling of continuous phenological curves (more
than 25 is recommended) (Chamoli, Bansal ¢ Dimri, 2007; Cazelles et al., 2008), and (2)
our analysis assumes, due wavelet analysis, that phenology is a cyclical phenomenon and
does not fit systems with non-cyclic patterns (Percival & Walden, 2000).

There is a need for more studies to examine phenological patterns, including long-term
studies based on records of community phenological diversity patterns, to enhance our
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understanding of the environmental cues that underlie the structure of communities

in different environments and how species share the temporal dimension in infra and
supra annual scales, especially regarding the impacts of climate change and the problems
associated with the increasing mismatch between phenophases of interacting species (Pau
et al., 2011; Pérez-Ramos et al., 2020; Rafferty et al., 2013; Morente-Lépez et al., 2018; Renner
& Zohner, 2018). Specifically, our measure only summarizes the variability of a temporal
trait of communities, and it should be tested and correlated with different environmental
variables and phenophase measurements at different time frames and different taxonomic
levels to further improve our understanding of the factors underlying the phenological
patterns displayed by groups of species. Thus, our approach provides a new tool for
measuring a single temporal attribute (PD) of communities and the correlations of this
attribute with environmental variables can provide important insights that could aid
conservation, restoration and management programs. Time series analysis should also be
conducted under the assumption that the phenological data can be cyclical or not cyclical
over time. Finally, we emphasize that 9PD is suitable for the analysis of massive datasets
associated with the collection of phenological time series data and with any phenological
process within a community.

CONCLUSIONS

The phenological Hill numbers framework presented here produces simple and intuitive
values for phenological diversity evaluation and thus can be widely applied to any taxon
or community phenological traits using long-term data. Therefore, our measure has the
properties of other diversity frameworks, and comparisons among studies using this same
measure are possible. Phenological Hill numbers has important implications for the design
of conservation and restoration programs that consider species and community patterns
for the long-term persistence of biodiversity and ad hoc management.
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