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Abstract: The classification of sleep stages is an important process. However, this process is time-
consuming, subjective, and error-prone. Many automated classification methods use electroen-
cephalogram (EEG) signals for classification. These methods do not classify well enough and perform
poorly in the N1 due to unbalanced data. In this paper, we propose a sleep stage classification
method using EEG spectrogram. We have designed a deep learning model called EEGSNet based on
multi-layer convolutional neural networks (CNNs) to extract time and frequency features from the
EEG spectrogram, and two-layer bi-directional long short-term memory networks (Bi-LSTMs) to learn
the transition rules between features from adjacent epochs and to perform the classification of sleep
stages. In addition, to improve the generalization ability of the model, we have used Gaussian error
linear units (GELUs) as the activation function of CNN. The proposed method was evaluated by four
public databases, the Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78, and SHHS. The accuracy of the
method is 94.17%, 86.82%, 83.02% and 85.12%, respectively, for the four datasets, the MF1 is 87.78%,
81.57%, 77.26% and 78.54%, respectively, and the Kappa is 0.91, 0.82, 0.77 and 0.79, respectively.
In addition, our proposed method achieved better classification results on N1, with an F1-score of
70.16%, 52.41%, 50.03% and 47.26% for the four datasets.

Keywords: sleep stage classification; electroencephalogram spectrogram; deep learning; convolu-
tional neural network; long short-term memory network

1. Introduction

Sleep is a basic physiological need that allows our body and mind to recharge. Good
sleep also helps our body stay healthy and stave off diseases. On average, a person
spends one-third of their life sleeping. It is extremely important to have good sleep. Sleep
specialists assess the quality of a person’s sleep by analyzing the sleep structure, which is
classified into different sleep stages. Since our brain remains active during sleep, we can
observe the activity state of the brain by recording electroencephalogram (EEG) signals.
In practice, sleep specialists use polysomnogram (PSG) to record EEG, electrocardiogram
(ECG), electrooculogram (EOG), electromyography (EMG) [1], and other physiological
signals. Polysomnography is divided into 30-s sampling epochs, each of which is classified
into a sleep stage per defined physiological measures. Adult sleep stages are generally
divided into nighttime wakefulness (Wake), rapid-eye movement (REM) and non-REM
(NREM). The Rechtschaffen and Kales (R&K) rule, an old standard proposed in 1968,
divides the NREM into four stages, S1–S4 [2]. The American Academy of Sleep Medicine
(AASM) as a new standard [3] integrates S3 and S4 into one stage N3. Therefore, the NREM
is divided into N1–N3. Waveform and frequency are important in EEG sleep staging
analysis. Experts determine the sleep stage by observing the specific waveform of each
epoch. If the α (8–13 Hz) duration exceeds 50% of one epoch, it will be determined as
Wake, the low-amplitude mixed-frequency wave (LAMF, 4–7 Hz) exceeds 50% of an epoch,
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it will be determined as N1, and the spindle wave with frequency of 11–16 Hz (most
commonly 12–14 Hz) is the characteristic wave of N2, as shown in Figure 1. Observing
and determining the sleep stages through the traditional method by sleep specialists is a
complex process that requires expert knowledge, and tends to be tedious, time consuming
and prone to error.
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To reduce misclassification and time, many researchers have been trying to develop
new methods or systems to automate the process. These systems can be divided into two
categories: traditional machine learning and deep learning. The traditional machine learn-
ing method extracts artificial features of the signals and then uses the classic classification
algorithms to classify the artificial features to obtain the sleep stages. These features usually
bear clear physical significant impacts, such as sample entropy of signal, maximum signal
amplitude, signal energy, etc. Deep learning, an advanced machine learning, attempts
to use multi-layer neural networks to imitate the thinking of the human brain. With the
increase of the number of layers, the network can extract high-level features for predic-
tion. Compared with traditional machine learning, deep learning can greatly eliminate the
problem of “feature engineering”.

Some researchers have used discrete wavelet transform to decompose EEG signals
into different bands [4], and have calculated the characteristics of different bands, such
as mean, entropy [5], and power spectral density (PSD) [6], which are classified based on
random forest algorithms [7]. Others have used other signals, such as EOG and ECG. First,
EEG and EOG are decomposed by wavelet to generate multi-bands from which various
artificial features are extracted. Then, support vector machine (SVM) and other methods
are used for classification [8].

Recently, deep learning has made major breakthroughs in its classification capability.
The most widely used sleep stage classification method is to use EEG as an input, and then
employ convolutional neural network (CNN) to extract features. Yang et al. [9] proposed
a classification algorithm based on reinforcement learning to determine the model by
designing the search space, optimizing the hyperparameters related to the structure and
kernel, and fine-tuning the number and size of kernels in each volume layer by using a
particle swarm optimization algorithm (PSO). This method simplified the training and
reduced the training time of the model. Many researchers used multi-scale CNNs to
extract features in order to improve the feature extraction capability of their models. These
different scales of CNNs are able to focus on and extract feature information such as specific
waveforms [10,11] and frequencies [12] of the signal. Good feature extraction ability of
CNN allows these methods to obtain better classification performance. However, using
only CNN will lead to missing and ignoring the transition relationship between sleep
stages. Many researchers employ a variety of methods to learn the transition relationship
of sleep stages. Mousavi et al. [13] proposed a new sleep stage classification model, called
SleepEEGNet, which used a CNN to extract the features of the EEG signal and the attention
mechanism to learn the transition relationship between sleep stages, which resulted in better
performance for classification. Zhu et al. [14] proposed a deep learning method combining
CNN and the attention mechanism for automatic sleep staging. It used CNN to learn the
localization features of signals and attention mechanism to learn the feature transition
relationship between epochs. Huang et al. [15] proposed a new sleep staging method that
first used an attention module with improvements to make the initial classification, and
then used the hidden Markov model (HMM) to learn sleep transition rules to form the final
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classification. This method not only achieved good results in overall classification, but also
improved the accuracy of N1. Recently, long short-term memory network (LSTM) is often
used to learn the transition relationship of sequence data [16]. After employing DBN to
extract features, Yulita et al. [17] used one layer Bi-LSTM to learn the transition relationship
of sleep stages, which improved the accuracy of sleep staging. Akara et al. [18] proposed
a deep learning model, DeepSleepNet, which used a combination of CNN and two-layer
bi-directional LSTMs (Bi-LSTM) to achieve automatic classification of sleep stages. Seo
et al. [19] proposed the intra- and inter-epoch temporal context network (IITNet), which
used jump connections for feature extraction, so that the model could learn the features
related to sleep from the original EEG. It also used Bi-LSTMs to analyze the temporal
relationship between sleep epoch features to complete the classification of sleep stages.
Khalili et al. [20] used a data enhancement technique assisted CNN to extract features
from the original EEG, then the temporal CNN to extract temporal features, and finally a
conditional random field (CRF) optimization model to improve the classification accuracy
of sleep staging. The results of these studies show that considering the dependence between
sleep epochs can improve the effect of sleep staging. However, the attention mechanism
has high model complexity. HMM and CRF can only prospectively learn the transition
relationship between sleep stages.

There are some limitations in using machine learning to learn sleep stages. Firstly,
researchers need knowledge of signal- and medical-related domains when extracting
features, and it is difficult for machine learning to learn the transition relationship between
sleep stages. Deep learning methods can learn the transition relationship between sleep
stages, directly carry out end-to-end classification, and avoid the feature extraction of
EEG signals. However, EEG signals do not directly reflect the information of specific
characteristic waves, the above-mentioned deep learning method has an insufficient effect
on the extraction of EEG frequency information, leading to poor classification performance,
especially N1.

Spectrograms can reflect the activity of a specific frequency. When the EEG signal is
stronger, the color of its corresponding spectrogram is brighter (yellow), and the weaker
the signal is, the darker the color (blue), which is difficult to perform with EEG signals. The
three spindle waves in the EEG image in Figure 1 appear in distinct yellow near 13 Hz in
the corresponding time period of the spectrogram, as shown in Figure 2. Figure 3 shows
the EEGs and corresponding spectrograms of the other sleep stages.
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To address the above problems, we propose a new sleep staging method in this paper.
The method consists of a deep learning-based model called EEGSNet. The model uses the
EEG spectrogram for automatic sleep stage classification. Firstly, the CNN network with
multi-layer convolution kernel is used to extract the color, position and contour information
of the spectrogram, and then Bi-LSTM is used to simulate the transition relationship during
sleep to improve the N1 and overall classification performance. The main contributions of
this paper are summarized as follows:

1. An end-to-end classification method that uses only the spectrogram of a single channel
EEG;

2. Method yields superior overall accuracy in the unbalanced data, and good results for
N1;

3. The input size of the model used is fixed and there is no need to change the structure
of the model or any of its parameters when a new set is used.

2. Materials and Methods
2.1. Datasets

In total, three datasets—the public benchmark databases Sleep-EDF Sleep-EDFX and
SHHS were used to evaluate our proposed method.

2.1.1. Sleep-EDF and Sleep-EDFX

The Sleep-EDF [21], and Sleep-EDFX [22] are two public datasets of PhysioBank. Sleep-
EDF dataset contains PSG records of 8 subjects. Sleep-EDFX is an extended version of
Sleep-EDF, which has 197 PSG records after two extensions in 2013 and March 2018. In
both datasets, files with names starting with SC denote healthy subjects and files with
names starting with ST denote subjects with mild difficulty in falling asleep. Each record
in both datasets contains EEG (Pz-Oz, Fpz-Cz) and EOG signals, where the EEG signals
are sampled at 100 Hz. Experts labeled nighttime sleep into six different categories based
on the R&K standard for every 30-s sleep epoch: Wake, S1–S4, and REM. In this study,
we used all 8 records from Sleep-EDF as the Sleep-EDFX-8 dataset and selected a total of
39 data records from 20 subjects from Sleep-EDFX as the Sleep-EDFX-20 dataset. Then,
we selected a total of 153 data records from all 78 healthy subjects as the Sleep-EDFX-78
dataset. Subjects were selected according to [12]. We extracted the Fpz-Cz for each subject,
segmented each record into 30-s sleep stages according to the annotation file. Based on the



Int. J. Environ. Res. Public Health 2022, 19, 6322 5 of 17

AASM rule, S1 and S2 were recorded as N1 and N2. Then, S3 and S4 were merged into one
sleep stage N3. The first three rows of Table 1 show the number of sleep stages in the three
datasets after processing.

Table 1. Number of subjects and sleep stage epochs in Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78
and SHHS datasets.

Dataset Subjects Wake N1 N2 N3 REM Total

Sleep-EDFX-8 8 8037 604 3621 1299 1609 15,170
Sleep-EDFX-20 20 8285 2804 17,799 5703 7717 42,308
Sleep-EDFX-78 78 65,951 21,522 69,132 13,039 25,835 195,479

SHHS 329 46,319 10,304 142,125 60,153 65,953 324,854

2.1.2. SHHS

The SHHS [23] dataset is a multi-center cohort study implemented by the National
Heart Lung and Blood Institute to determine the cardiovascular impacts and other conse-
quences of sleep-disordered breathing. The SHHS data contain 6441 records of men and
women aged 40 years and older with each record containing EEG (C3-A2, C4-A1) and
EOG signals, where the EEG signals are sampled at 125 Hz. To maintain consistency of the
experimental data, we selected 329 datasets following the method of [12] and extracted
the C4-A1 for each subject. The segmentation and sleep staging labeling of the signals
were consistent with Sleep-EDFX. The last row of Table 1 shows the number of SHHS after
processing.

2.2. Methods

Our sleep stage classification method uses EEG spectrograms, which consists of a
deep learning-based automatic sleep staging model called EEGSNet. The model takes EEG
spectrogram as input. First, we preprocess the segmented EEG signal by converting the EEG
into a spectrogram and cropping it. The EEG spectrogram obtained from preprocessing
is applied to the sleep staging model, and then the feature extraction and serialization
learning are utilized for classification. The overall structure is shown in Figure 4.
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2.3. Preprocess

The input used by our deep learning model which we designed is the EEG spectrogram.
The EEG characteristic wave of sleep stage is usually below 30 Hz [24], we set the maximum
frequency of the generated spectrogram to 32 Hz. According to Nyquist theory, the
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sampling frequency of EEG is 64 Hz. For EEG with different sampling rates, we need to
resample the data to 64 Hz.

Step 1. Resample EEG data of different frequencies to 64 Hz.
Step 2. The image size of the spectrogram is set to 1 * 0.8 inches and the dots per inch

(DPI) is 100, that is, the size of the generated spectrogram is 100 * 80 dots.
Step 3. The spectrogram of EEG is obtained by Fourier transform.
Step 4. The spectrogram is cropped to keep the pixel data between the top and bottom

(14, 90) and the left and right (11, 71) of the spectrogram. The purpose of this operation
is to remove the irrelevant data and blank areas around the spectrogram including scale,
coordinates, etc., so as to maximize the proportion of valid data in the input.

The generation, cropping and array transformation of the EEG from signal to spectro-
gram are shown in Figure 5. These operations can be seen in Algorithm 1. After operations,
the processed spectrogram as an image with the size of 76 * 60 * 3 is obtained as the input
of sleep staging model.
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spectrogram.

Algorithm 1 The description of EEG spectrogram produce.

Input:
EEG segment x ∈ Rn×p (Number of EEG segments n, Sample points per 30 s EEG segment p).
Output:
EEG spectrogram y ∈ Rn×w×h×c (Number of EEG segments n, Weight of spectrogram w, Height
of spectrogram h, Channel of EEG spectrogram c).
1: Resample EEG signal into 64 Hz
2: Set spectrogram size = (1 ∗ 0.8) inches
3: for i = 0; i < n do
4: spctl1 = plt.specgram ( Xi) // Generate original size spectrogram.
5: spctl2 = spctl1 [14, 11, 90, 71] // Cut spctl1. The four numbers are the starting position of
the abscissa and ordinate of image, and the ending position of the abscissa and ordinate.
6: end for

2.4. EEGSNet Model

The model EEGSNet proposed in this paper consists of two main parts: the feature
extraction module and the sequence learning module. As shown in Figure 6, the feature
extraction module is to extract the local features of EEG spectrogram using CNN. The
sequence learning module is to use Bi-LSTM to learn the transition relationship between
adjacent sleep stages and classify the sleep stages. We use an auxiliary classifier after the
first part of the model’s feature extraction. The purpose of adding an auxiliary classifier is
to prevent the loss of feature details during the sequence learning process.
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Figure 6. The model EEGSNet structure mainly consists of feature extraction and sequence learning.
Feature extraction is where the model extracts features from the EEG spectrogram by means of
5 convolutional blocks. The features are then transferred to the sequential learning part to obtain
the transition relationships between sleep stages. Auxiliary classifier is also used to help train the
network.

2.4.1. Feature Extraction

CNN, a type of feedforward neural network, is a representative of deep learning.
Different from other deep neural networks, CNNs contain a structure called convolutional
kernels, and CNNs have the ability to extract local features by connecting inputs and
outputs through convolutional kernels, which are suitable for models that use images as
inputs. Each convolutional kernel receives relevant information from a continuous space
as input and does not change the relative position of the input after convolution. The
same kernel is shared by all inputs, which can effectively reduce the number of parameters.
Based on this, our feature extraction module is constructed using 5 convolutional blocks
and a layer of global average pooling (GAP), each convolutional block contains several
convolutional layers, pooling layers, batch normalization layers, and dropout layers. The
connections between the convolutional blocks are shown in Figure 7. We use two residual
connections: the output of block_1 is added to the output of block_2, and the output of
block_3 is added to the output of block_4. This operation allows our model to incorporate
features learned from the low layers into the high layers and makes model training easy.
The hyperparameters inside each convolutional block are shown on the right in Figure 7.
Among them, Conv(16, 3 * 3, 1) denotes the convolution operation with kernel size of
3, the number of kernels and stride are 16 and 1, respectively. After each convolution
operation, we use Gaussian error linear unit (GELU) activation function to nonlinearize
the output. Max-pool(2 * 2, 2) means maximum pooling with both the kernel size and
stride at 2. Avg-pool(3 * 3, 1) means the average pooling operation with kernel size of 3 and
step size of 1. BN stands for the batch normalization, and Drop out(p = 0.5) represents the
probability of retaining neural units is 0.5, which avoids the model over-reliance on certain
features and can make the model more generalizable. GAP means a layer of global average
pooling. After feature extraction of EEG spectrogram (76 * 60 * 3), the feature vector with
the size of (64,) is obtained and output to the next module.
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2.4.2. Sequence Learning

The EEG of N1 is similar to that of REM, and the number of N1 is less than that of
REM, N1 may be misclassified as REM [25]. However, there is a transition relationship
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between sleep stages, compared with N1, REM rarely appears after Wake and before N2,
as shown in Figure 8. Table 2 shows the number of Wake transition to N1 and REM and
transitions from N1 and REM to N2. In order to improve the classification effect of N1, our
method uses the serialization model to learn this transition rule.
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Figure 8. Sleep staging of SC4191E0 in Sleep-EDFX78.

Table 2. Number of transitions from Wake to N1 and REM and transitions from N1 and REM to N2.

Dataset Wake-N1 Wake-REM N1–N2 REM-N2

Sleep-EDFX-8 95 0 157 14
Sleep-EDFX-20 442 32 688 136
Sleep-EDFX-78 3988 86 4269 427

SHHS 4615 623 3585 869

Recurrent neural network (RNN) is a model of serialization learning. RNN can learn
the transition relationship between sequence data. However, RNN has the problem of
gradient vanish during long sequence training. As an improved version of RNN, long
short-term memory network (LSTM) can solve this problem. Unlike RNN, LSTM can filter
out useless information and transmit only useful information to the subsequent unit. LSTM
can perform complex tasks in the longer term, but it can only obtain forward sequence
information. Therefore, we use Bi-LSTM [26], a two-directional LSTM structure which can
obtain both forward and backward information. The sequence length of each layer is 10,
i.e., each layer contains 10 LSTM cells, and the hidden size inside each cell is 128. Figure 9
shows the connection of the auxiliary classifier and the connection details of the two-layer
Bi-LSTM in the module of serialized learning. After two layers of Bi-LSTM learning, the
outputs in two directions of the second layer are concatenated together for sleep staging.
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2.5. Training Detail

We used a 20-fold cross-validation to evaluate our model. For Sleep-EDFX-8, because
there were only 8 subjects, we conducted a 20-fold cross-validation of all sleep epochs
(epoch-wise cross-validation). For Sleep-EDFX-20 with 20 subjects, this was leave-one-
subject-out (LOSO) cross-validation. For the datasets with more than 20 subjects such as
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Sleep-EDFX-78 and SHHS, we divide the data into 20 groups according to subjects, and
the sleep stages of each subject belongs to only one group. One group was used as the
test set, and the other 19 groups were used as the training set each time. The results of
each test set were combined to obtain various performance metrics. Each group of data
were divided into 10 ephemeral length sequences in natural order so that the Bi-LSTM
structure could learn the transition relationships of the sleep sequences. Batch size was set
to 5, which meant that input 5 such sequences were entered at a time, and the number of
training sessions for each group was 150. Meanwhile, we tested every 3 times using the
test set to record the best evaluation results. Finally, all evaluation results were combined
and averaged to obtain the overall results. We used an auxiliary classifier after the first
part of feature extraction of the model. The purpose of adding the auxiliary classifier was
to prevent the loss of feature details during sequence learning, and the loss weight of the
auxiliary classifier was set to 0.5 and added to the final classification loss. The loss function
of the model used a cross-entropy loss function, and the final loss was calculated as follows:

Lossmain = − 1
N

N−1

∑
i=0

C−1

∑
k=0

y(i)k log p(i)k_main (1)

Lossaux = − 1
N

N−1

∑
i=0

C−1

∑
k=0

y(i)k log p(i)k_aux (2)

Loss = Lossmain + 0.5 ∗ Lossaux (3)

where N denoted the total number of samples; C denoted the number of classes; y(i)k

denoted denote the actual label of the i-th sample for class k, and p(i)k_main and p(i)k_aux denoted
the predicted probability of the i-th sample for class k of main classifier and auxiliary
classifier, respectively. In the entire model, the dropout layer usage probability is 0.5. It is
worth noting that these auxiliary classifier and dropout layers are only used for the training
phase. When using the test set, we removed the auxiliary classifier and set the dropout
layer usage probability to 1.

The experiments were performed on a server with four NVIDIA Tesla V100-DGXS
GPUs. The training process was implemented by utilizing Python 3.5 with TensorFlow 1.5
which is a deep learning library.

3. Results
Performance

The performance of our model is evaluated by precision (PR), recall rate (RE) and
F1-score (F1) at each sleep stage. Tables 3–6 show the confusion matrices obtained by
cross-validating the Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78 and SHHS datasets,
respectively. Each row represents the classification of sleep stages by specialists. Each
column represents the classification of sleep stages by our model. The last three columns of
each row represent the performance indicators of each class calculated from the confusion
matrix. The main diagonal marked in bold in each confusion matrix represents the true
positive (TP) value, which represents the number of correct classifications. Figure 10 shows
the result of four confusion matrices after normalization. It is clear from Figure 10 that in
the classification results of the four datasets, all four sleep stages were able to obtain high
classification accuracy except for N1. N1 is more likely to be incorrectly classified to the
three stages of N2, REM and Wake.
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Table 3. Confusion matrix of Sleep-EDFX-8 dataset.

Stage
Predicted Per-Class Metrics

Wake N1 N2 N3 REM PR (%) RE (%) F1 (%)

W 7873 46 13 7 6 99.1 99.1 99.1

N1 50 388 105 4 52 76.5 64.8 70.2

N2 8 49 3230 234 55 91.0 90.3 90.7

N3 3 0 104 1191 1 82.8 91.7 87.0

REM 14 24 96 3 1444 92.7 91.3 90.0

Table 4. Confusion matrix of Sleep-EDFX-20 dataset.

Stage
Predicted Per-Class Metrics

Wake N1 N2 N3 REM PR (%) RE (%) F1 (%)

W 7585 291 102 20 88 89.8 93.8 91.76

N1 363 1291 673 12 429 59.8 46.6 52.41

N2 336 382 15,596 741 554 89 88.6 88.78

N3 29 1 663 4914 2 86.4 87.6 87

REM 133 194 491 0 6860 86.5 89.3 87.89

Table 5. Confusion matrix of Sleep-EDFX-78 dataset.

Stage
Predicted Per-Class Metrics

Wake N1 N2 N3 REM PR (%) RE (%) F1 (%)

W 61,212 3406 506 44 462 93.1 93.3 93.2

N1 3359 9744 6568 133 1683 55.8 45.3 50.0

N2 539 3097 58,825 4259 2276 83.2 85.3 84.2

N3 20 22 2580 10,360 8 69.7 79.8 74.4

REM 608 1199 2263 59 21,618 83.0 84.0 83.5

Table 6. Confusion matrix of Sleep-EDFX-SHHS dataset.

Stage
Predicted Per-Class Metrics

Wake N1 N2 N3 REM PR (%) RE (%) F1 (%)

W 41,458 1222 2261 260 900 87.2 89.9 88.6

N1 1706 4221 2857 24 1460 55.6 41.1 47.3

N2 2397 1534 120,994 11,945 4725 86.5 85.5 86.0

N3 409 2 8896 50,471 230 80.1 84.1 82.0

REM 1562 615 4824 346 58,481 88.9 88.8 88.9
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Figure 10. The normalized confusion matrices obtained from the four datasets in our model experi-
ment: (a) Sleep-EDFX-8, (b) Sleep-EDFX-20, (c) Sleep-EDFX-78, (d) SHHS.

The accuracy and macro F1-score (MF1) of our cross-validation on the Sleep-EDFX-20
dataset for each subject are shown in Figure 11. As shown in the figure, subject SC15
achieves the highest value of 92.7% in accuracy, and subject SC06 has the highest MF1 of
86.69%. Subject SC11 has the lowest accuracy of 69.53% and MF1 of 63.81%, respectively.
We constructed box plots to show the overall accuracy, MF1 and F1 of each sleep stage of
20 subjects, as shown in Figure 12. From the figure, we can see that our model performs
relatively consistently on the Sleep-EDFX-20 dataset.
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4. Discussion
4.1. Comparison with Other Approaches

Tables 7–10 show the comparison of cross accuracy (ACC), MF1, Kappa coefficient
(Kappa) and F1-score for each class between our method and other state-of-the-art sleep
staging methods on the four datasets. As seen in tables, our proposed sleep staging
classification method has achieved better performance than the other methods on four
datasets. Our method yields 94.17%, 86.82%, 83.02% and 85.12% classification accuracy
on Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78 and SHHS datasets, respectively. They
exhibit much higher accuracy than other classification methods. The MF1 and Kappa
obtained by our proposed method have also outperformed the other methods. Our MF1 is
87.78%, 81.57%, 77.26% and 78.54%, respectively, and the Kappa is 0.91, 0.82, 0.77 and 0.79,
respectively.

Table 7. Comparison of performance metrics obtained by our method with other state-of-the-art
algorithms on Sleep-EDFX-8.

Methods Epochs
Overall Metrics Per-Class F1

ACC MF1 Kappa W N1 N2 N3 REM

Ref. [4] 15,199 90.66 76.33 0.85 97.60 31.2 88.17 84.03 80.65
Ref. [11] 15,199 91.74 82.31 0.87 98.51 54.41 89.73 86.47 82.42
Ref. [27] 15,188 93.7 84.5 0.90 98.6 52.5 92.1 87.3 91.80
EEGSNet 15,170 94.17 87.78 0.91 99.08 70.16 90.68 87.00 92.00

Table 8. Comparison of performance metrics obtained by our method with other state-of-the-art
algorithms on Sleep-EDFX-20.

Methods Param Epochs
Overall Metrics Per-Class F1

ACC MF1 Kappa W N1 N2 N3 REM

1D-CNN-HMM [10] - 42,308 83.98 76.9 0.78 87.8 35.1 86.6 90.5 86.8
Ref. [9] - 42,309 84 75.2 0.78 89.4 30.3 88.5 89.2 78.4

Ref. [20] - 41,950 85.39 79.27 0.8 90.5 46.6 88.4 86.1 84.6
AttnSleep [12] - 42,308 84.4 78.1 0.79 89.7 42.6 88.8 90.2 79

Ref. [14] - 42,269 82.83 77.8 0.77 90.3 47.1 86.0 82.1 83.2
IITNet [19] - 42,308 83.6 76.5 0.77 87.1 39.2 87.7 87.7 80.9

SleepEEGNet [13] 2.6 M 42,308 84.26 79.66 0.79 89.19 52.19 86.77 85.13 85.02
DeepSleepNet [18] 24.7 M 41,950 82 76.9 0.76 84.7 46.6 85.9 84.8 82.4
SeqSleepNet+ [27] 0.2 M 42,308 85.2 78.4 0.80 90.5 45.4 88.1 86.4 81.8
TinySleepNet [28] 1.3 M 42,308 85.4 80.5 0.80 90.1 51.4 88.5 88.3 84.3

XSleepNet [29] 5.8 M 42,308 86.3 80.6 0.81 90.2 51.8 88.0 86.8 83.9
EEGSNet 0.6 M 42,308 86.82 81.57 0.82 90.76 52.41 88.78 87.0 87.89
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Table 9. Comparison of performance metrics obtained by our method with other state-of-the-art
algorithms on Sleep-EDFX-78.

Methods Epochs
Overall Metrics Per-Class F1

ACC MF1 Kappa W N1 N2 N3 REM

SleepEEGNet [13] 222,479 80.03 73.55 0.73 91.72 44.05 82.49 73.45 76.06
AttnSleep [12] 195,479 81.3 75.1 0.74 92.0 42.0 85.0 82.1 74.2

Ref. [20] 191,585 82.46 76.14 0.76 92.4 48.1 84.6 73.8 81.6
EEGSNet 195,479 83.02 77.26 0.77 93.19 50.03 84.19 74.41 83.48

Table 10. Comparison of performance metrics obtained by our method with other state-of-the-art
algorithms on SHHS.

Methods Epochs
Overall Metrics Per-Class F1

ACC MF1 Kappa W N1 N2 N3 REM

DeepSleepNet [18] 324,854 81.0 73.9 0.73 85.4 40.5 82.5 79.3 81.9
SleepEEGNet [13] 324,854 73.9 68.4 0.65 81.3 34.4 73.4 75.9 77.0
ResnetLSTM [30] 324,854 83.3 69.4 0.76 85.1 9.4 86.3 87.0 79.1

multitaskCNN [31] 324,854 81.4 71.2 0.74 82.2 25.7 83.9 83.3 81.1
AttnSleep [12] 324,854 84.2 75.3 0.78 86.7 33.2 87.1 87.1 82.1

EEGSNet 324,854 85.12 78.54 0.79 88.55 47.26 85.99 82.03 88.86

The proportion of individual sleep stages during nighttime sleep is highly unbalanced,
as shown in the dataset used in this study. The number of N2 sleep stages accounted for
42.1% of the entire Sleep-EDFX-20 dataset, while the number of N1 sleep stages accounted
for only 6.6% of the overall. In SHHS, the number of N2 sleep stages accounted for 43.7%,
while the number of N1 sleep stages accounted for only 3%. Many classification methods
usually bias the classification results towards a large proportion of classes in order to
achieve a high accuracy. This may impact N1 classification. To solve the problem due to
unbalanced data, [12] adds a cost-sensitive loss function to increase the weighting of small
sample data in the loss function. Researchers in [20] use a data augmentation method,
and [13] designs the algorithm for a two-step training process. Although these methods can
improve the classification performance for small sample sleep stages, the methods can lead
to a lower overall performance due to bias towards small samples. The sequence learning
of our proposed method leverages the transition relationship between adjacent sleep stages
and can effectively improves the classification of small samples—such as N1—without
degrading the overall performance.

Table 8 also compares the number of network parameters used by EEGSNet and some
deep learning methods. Compared with TinySleepNet [28], SleepEEGNet [13], XSleep-
Net [29] and DeepSleepNet [18], the number of parameters of EEGSNet are reduced by 0.7
M–24.1 M, which is a relatively lightweight model. Although the number of parameters of
EEGSNet is 0.4 M more than that of SeqSleepNet+ [27], the number of parameters of both
is the same order of magnitude, and our sleep staging method improves the classification
effect, especially the F1 of N1 which is increased by 7 percentage points.

4.2. Ablation Experiments

To analyze the effectiveness of serialization learning in our model in improving N1
accuracy, we present an ablation research conducted on Sleep-EDFX-8 and Sleep-EDFX-20.
According to the number of Bi-LSTM layers in the model, we derive the following three
models:

1. EEGSNet_0: EEGSNet without Bi-LSTM.
2. EEGSNet_1: EEGSNet with one layer Bi-LSTM.
3. EEGSNet_3: EEGSNet with three layers Bi-LSTM.
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The results of ablation experiments on two datasets are shown in Figure 13. We can
draw the following conclusions based on the ablation research. First, adding Bi-LSTM can
improve the classification effect of sleep staging, especially for N1. Second, the number of
layers of Bi-LSTM does not follow the concept of the more the better. With the increase of
the number of layers, the complexity of the model increases. The model not only has long
training time, but is also difficult to converge, resulting in network degradation. As shown
in Figure 13, the classification performance of Bi-LSTM using three layers is lower than that
using two layers. The classification effect is best when two layers of Bi-LSTM are used.
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5. Conclusions

In this paper, we propose a novel EEG spectrogram-based sleep stage classification
method. The method consists of a deep learning model with the ability to extract features
from the EEG spectrogram and learn transition relations from adjacent epochs. Our experi-
ments on the four datasets, Sleep-EDFX-8, Sleep-EDFX-20, Sleep-EDFX-78 and SHHS, show
that our model outperforms other state-of-the-art methods, especially for N1 which tends
to be more difficult to classify. In addition, we have also performed ablation experiments to
demonstrate that the use of Bi-LSTM can effectively improve the classification of N1. An ac-
curate sleep staging method can analyze sleep quality, and provide important information
and support for the clinical diagnosis and follow-up treatment of sleep related diseases.
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However, there are still some limitations in our research. The recognition accuracy
of N1 is still much lower than that of other stages, most N1 are misclassified to N2. In
addition, the introduction of Bi-LSTM leads to increased complexity of the model. In the
future, we will study the feature extraction of new networks in the spectrogram and a more
efficient and lightweight serialization model.
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