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Abstract As a newly-identified protein post-translational modification, malonylation is involved in

a variety of biological functions. Recognizing malonylation sites in substrates represents an initial

but crucial step in elucidating the molecular mechanisms underlying protein malonylation. In this

study, we constructed a deep learning (DL) network classifier based on long short-term memory

(LSTM) with word embedding (LSTMWE) for the prediction of mammalian malonylation sites.

LSTMWE performs better than traditional classifiers developed with common pre-defined feature

encodings or a DL classifier based on LSTM with a one-hot vector. The performance of LSTMWE

is sensitive to the size of the training set, but this limitation can be overcome by integration with a

traditional machine learning (ML) classifier. Accordingly, an integrated approach called LEMP was

developed, which includes LSTMWE and the random forest classifier with a novel encoding of
nces and
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enhanced amino acid content. LEMP performs not only better than the individual classifiers but

also superior to the currently-available malonylation predictors. Additionally, it demonstrates a

promising performance with a low false positive rate, which is highly useful in the prediction appli-

cation. Overall, LEMP is a useful tool for easily identifying malonylation sites with high confidence.

LEMP is available at http://www.bioinfogo.org/lemp.
Introduction

Various protein post-translational modifications (PTMs), such
as lysine ubiquitination and acetylation, are detected at lysine
residues. Lysine malonylation (Kmal) is a newly identified
PTM type that is evolutionarily conserved in both eukaryotic

and prokaryotic cells [1]. Kmal is associated with various bio-
logical processes. For instance, malonylation on K184 of glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) regulates

the activity of this key metabolic enzyme [2], whereas several
Kmal sites in histone proteins have potential connections with
cancer [3].

Although many efforts have been devoted to investigating
the cellular mechanisms of Kmal, its biological significance
remains poorly understood. To characterize malonylation at

the molecular level, it is important to identify the Kmal sites
of protein substrates [4]. Recent advances in high-throughput
experimental techniques have identified thousands of Kmal-
containing peptides [4,5]. These data have strengthened the

fundamental understanding of the sequence/structural charac-
teristics of Kmal. However, due to the dynamic properties and
low abundance of protein malonylation in vivo and the limita-

tions of experimental investigations (e.g., labor-intensive, time-
consuming, and costly), identifying Kmal sites on a large scale
remains an enormous challenge.

In tandem with the experimental identification of Kmal
sites, there is an urgent need to predict Kmal sites computa-
tionally. Many predictors have been developed using feature
selection strategies. For instance, site-modification network

profile, site-specific modification profile, functional informa-
tion of proteins, and the combination of multiple kernel sup-
port vector machines (SVM) were employed for the

prediction of PTM sites [6–9]. So far, two in silico programs
have been developed for the prediction of Kmal sites. Mal-
Lys is based on SVM incorporated with the features including

protein sequence information, position-specific amino acid
propensity, and physicochemical properties [10]. MaloPred is
also based on SVM integration with the features from

sequence information and evolutionarily-derived information
[11]. Additionally, an SVM algorithm was developed for
the prediction of multiple lysine modifications, including
malonylation [12].

Aside from traditional machine learning (ML) methods
(e.g., SVM), the deep learning (DL) model is an increasingly
promising ML algorithm. DL has a strong capability for learn-

ing sparse representation in a self-taught manner with multiple
hidden layers, whereas the conventional ML algorithms
require experts to pre-define informative features [13]. With

the acceleration of graphics processing units, DL has become
more efficiently trained, and the scope of its application has
therefore been dramatically expanded. DL has been applied

in the field of bioinformatics to predict RNA-binding sites
[14], protein secondary structures [15], protein disorders [16],
protein phosphorylation sites [17], ubiquitination sites [18],
and nitrosylation sites [19]. DL has also been extensively
applied in the field of biomedicine [20].

In this study, we constructed an LSTM-based classifier with
a word embedding approach, dubbed LSTMWE, for the pre-
diction of Kmal sites. We focused on mammalian species
because 98% of known Kmal sites were identified from

humans and mice [21]. LSTMWE outperformed the conven-
tional ML classifiers with different pre-defined feature encod-
ings using both cross-validation and an independent test.

Furthermore, we developed a LSTM-based ensemble malony-
lation predictor, named LEMP, which integrates LSTMWE

and the random forest (RF) classifier with a novel encoding

of enhanced amino acid content (EAAC). LEMP performed
better than individual components as well as the currently
available malonylation predictors. Overall, LEMP is a useful

tool for identifying Kmal sites with high confidence.

Methods

Dataset construction

The Kmal peptides were derived from mice and humans in two

proteomic assays [2,22]. To construct a non-redundant dataset

with high confidence, we referred to the procedure established

by Chen et al. [23] and generated the datasets for training and

test as follows (Figure S1). The 10,368 Kmal sites with high

confidence (i.e., Kmal peptides with Andromeda scores > 50

and localization probability > 0.75 [24]) were collected as pos-

itive sites, and the remaining lysine residues (142,830) on the

Kmal-containing proteins were considered negative sites. (2)

Malonylation-containing proteins with sequence identities

greater than 30% using the CD-HIT tool [25] were clustered

and aligned using ClustalW2 [26]. In every cluster, the protein

with the highest number of Kmal sites was selected as the rep-

resentative, in which lysine sites that were experimentallyveri-

fied to be malonylated were considered as positive sites and

the remaining lysine sites were taken as negative sites. It should

be noted that the lysine sites in the representative were not con-

sidered negative if the aligned counterparts from other mem-

bers of the same cluster can be malonylated. In this step, the

dataset contained 5359 positive sites and 92,980 negative sites

from 2127 representatives. (3) For every site, we extracted 7-

residue peptides (�3 to +3) with the lysine site in the center

from the representatives. If the peptides containing positive

sites (i.e., positive peptides) were identical to the peptides con-

taining negative sites (i.e., negative peptides), both peptides

were removed. As a result, 5288 positive peptides and 88,636

negative peptides were retained for further analyses. (4) To test

the optimal sequence window for model construction, we set

the sequence window to six different sizes (i.e., 15, 19, 23,

27, 31, and 35) and compared their performance via a ten-

fold cross-validation (Figure S2). The window size of 31

showed the largest area under receiver operating characteristic

http://www.bioinfogo.org/lemp
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(ROC) curve (AUC) and was thus selected, which was consis-
tent with the previous analysis of other modifications [23]. It
should be noted that if the central lysine site was located near

the N-terminus or C-terminus of a protein sequence, the gap
symbol ‘-’ was assigned to fill in the corresponding positions
to ensure that the peptides had the same window size. (5)

The dataset was separated into two groups: one for cross-
validation and the other for an independent test. The peptides
from 4/5 of the Kmal-containing proteins (i.e., 1702 proteins

with 4242 positive peptides and 71,809 negative peptides) were
subjected to ten-fold cross-validation, and the peptides from
the remaining proteins (i.e., 405 proteins including 1046 posi-
tive peptides and 16,827 negative peptides) were employed as

the independent test dataset (Figure S1 and Table S1).

Feature encodings and construction of classifiers

EAAC encoding

The AAC encoding that reflects the frequency of 20 amino

acid residues surrounding the modification site has been
widely used in the prediction of various types of PTM sites
[11,27]. Here, based on the AAC encoding, we designed an

EAAC encoding scheme in which the frequency of the 20
amino acid residues was counted in the window continuously
sliding from the N-terminus to C-terminus of each peptide in
the dataset. The sliding window size was selected as 8 via ten-

fold cross-validation (Figure S3). Therefore, a peptide with 31
residues corresponded to 24 (31�8 + 1) sliding windows and
its vector dimension of the EAAC encoding was 24 � 20

(amino acids) = 480.

EAAC-encoding RF classifier RFEAAC

RF, as one of the ML methods, has been used in a variety of

bioinformatics studies, demonstrating stable and effective per-
formance [28–31]. It integrates different decision trees and
chooses the classification with the highest number of votes

from the trees. Each tree depends on the values of a random
vector sampled independently with the same distribution for
all trees in the forest. The margin of error of RF depends on

the strength of the individual trees in the forest and the corre-
lation between them. The EAAC encoding was used as input
to train the RF classifier, resulting in 1000 decision trees by

randomly selecting
ffiffiffi
d

p
number of variables as its candidate

(d is the dimension of input feature vector). The RF classifier
was implemented using the Weka software package (Version

3.8.1).

AAindex encoding RF classifier RFAAindex

AAindex is a database of numerical indices representing vari-
ous physicochemical and biochemical properties of amino

acids and pairs of amino acids (http://www.genome.jp/
aaindex/). We collected 544 physicochemical properties from
the AAindex database and retained 531 properties after the

removal of properties with ‘‘NA” in the amino acid indices.
We calculated the performance for each property using the
RF classifier described above using the ten-fold cross-
validation dataset (Figure S1 and Table S1). We selected the

top 11 properties with AUC > 0.7 (Table S2). Therefore, a
peptide with 31 residues was converted to a vector of 341
(31 � 11) dimensions as the AAindex encoding. The construc-
tion of the RFAAindex was the same as that of RFEAAC.

One-hot encoding

Each peptide with 31 residues was represented as a 31 � 20
matrix, in which each residue of the peptide is represented as
a 20-dimensional vector filled with 19 zeros and a one in the

index corresponding to the specific residue. When the left or
right neighboring amino acid residues cannot fit the window
size of 31, dashes ‘-’ are filled in these positions and encoded

to 0.05 across the 20-dimensional vector [18].

Integration of the classifiers

The prediction score S of LEMP was calculated by integrating
the classifiers (LSTMWE and RFEAAC) according to the follow-
ing equation:

log
S

1 � S

� �
¼

X2

i¼1

wiCi þ b ð1Þ

where b means the bias, wi and Ci refer to the weight and out-
put of the classifier i, respectively. The score S denotes the con-
fidence level of the central lysine to be malonylated. wi and b

were optimized with a ten-fold cross-validation using the logis-
tic regression model based on the ‘glm’ function in the R pack-
age (http://www.r-project.org/).

Performance assessment of the predictors

The performance of each predictor was assessed by ten-fold
cross-validation and an independent test. Four measurements,

i.e., accuracy (Ac), sensitivity (Sn), specificity (Sp), and
Matthew’s correlation coefficient (MCC), were adopted to eval-
uate the prediction performance. They were defined as follows:

Ac ¼ TP þ TN

TP þ FN þ TN þ FP
ð2Þ

Sn ¼ TP

TP þ FN
ð3Þ

Sp ¼ TN

TN þ FP
ð4Þ

MCC¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FNÞ � ðTNþ FPÞp
ð5Þ

where TP, FP, TN, and FN represent the true positives, false

positives, false negatives and true negatives, respectively. Addi-
tionally, we plotted the ROC curves and calculated AUC to
evaluate the performance of the predictors. The AUC with

a < 10% FP rate (AUC01) was also calculated to reflect the
prediction performance when the FP rate is low, which is more
practical for experimental verification.

Statistical methods

Student’s t-test was used to compare the means of two popu-

lations and ANOVA was used for the comparison for more

http://www.genome.jp/aaindex/
http://www.genome.jp/aaindex/
http://www.r-project.org/


Figure 1 Performance comparison of the Kmal predictors

The performance of different RF-based Kmal predictors were compared in terms of AUC (A) and AUC01 (B), respectively, for ten-fold

cross-validation. P values were calculated using a paired Student’s t-test. AUC, area under the receiver operating characteristic; AUC01,

AUC at a false positive rate below 10% (i.e., specificity > 90%). A detailed performance comparison using different measurements is

provided in Table S3.

Figure 2 Informative features in EAAC encoding

A. Sequence pattern surrounding the Kmal sites, including the

significantly enriched and depleted residues based on Kmal

peptides and non-modification peptides (P< 0.05, t-test with

Bonferroni correction). The pattern was generated using the two-

sample-logo method [37]. B. The informative features in EAAC

encoding were ranked using the information gain method, with the

top 30 features listed.
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than two populations. As for multiple comparisons, adjusted

P value with the Benjamini–Hochberg (BH) method was
adopted.

Results and discussion

The EAAC encoding performed the best among the encoding

schemes examined

Many computational approaches have been developed for the

prediction of PTM sites. They are generally based on different
ML algorithms combined with various pre-defined features
encoded from peptide sequences. We reason that although

the accuracy of a prediction approach is affected by the selec-
tion of the ML method, the major determinant likely comes
from the encoding scheme. Accordingly, we constructed RF-
based predictors with different common encoding schemes to

evaluate these encodings for the Kmal prediction. The encod-
ing schemes tested include BLOSUM62 [32], CKSAAP [33,34],
Binary [35], Z-scales [36], AAindex [18], AAC [27], and EAAC

that was newly developed in this study. Among these different
encoding schemes, the EAAC encoding performed the best in
the prediction of Kmal sites for ten-fold cross-validation and

the independent test, in terms of AUC, Ac, Sn, Sp, and
MCC (Figure 1A and Table S3). As prediction performance
at a low false positive rate is highly useful in practice, we esti-
mated these predictors using AUC01, where the specificity was

determined to be >90%. EAAC again showed the best perfor-
mance for both ten-fold cross-validation and the independent
test (Figure 1B and Table S3).

To explore the informative features in the EAAC encoding,
we investigated the enrichment of residues at specific positions.
We calculated the statistical significance of the position-

specific residue frequencies between the positive (5288) and
negative (88,636) peptides (Figure S1) [37]. Figure 2A shows
the significantly enriched or depleted residues ranging from

position �15 to +15. Similar to the previous Kmal analysis
[10], the polar amino acid glycine (G) was generally enriched



Figure 3 The architecture of LSTMWE and classification of the

amino acids based on the information from LSTMWE

A. The LSTM-based DL classifier LSTMWE contained five layers.

The input layer received a peptide sequence of 31 residues with K

in the center. In the embedding layer, each residue of the sequence

was converted into a five-dimension word vector. In the recurrent

layer, each of the 31 word vectors was input sequentially into the

LSTM cell that contained 32 hidden neuron units. In the fully

connected layer, 128 neuron units were built in which the ReLU

was chosen for its activation function. The last layer included a

single unit that output the probability ‘‘y” of Kmal modification.

B. Hierarchical clustering of the 20 residues based on their related

five-dimensional word vectors in the embedding layer and the

calculation of Euclidean distance in average linkage. The residues

were grouped into three major groups: (i) the alkaline residues K

and R (red color), (ii) the aromatic and larger hydrophobic

residues (blue color), and (iii) the remaining residues, including all

acidic residues (green color).
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from position �4 to +2 in positive peptides, and basic lysine
(K) was depleted from position �1 to +2. Different from
the aforementioned study [10], we observed a significant

enrichment of glutamic acid (E) from positions �4 to +4
except at positions �1 and +3 in negative peptides.

To further explore the most informative features, we

ranked the sequence features using the information gain
method [33,38,39] and selected top 30 features (Figure 2B).
Interestingly, these features only involved four types of resi-

dues: three charged residues, (i.e., K, R, and E) and the neutral
residue (G). K and E were found in 13 and 9 features, respec-
tively, and the remaining 8 features were equally divided by R
and G. We compared these features with the sequence pattern

surrounding the Kmal sites (Figure 2A) and found that the
data are consistent. For instance, G was significantly enriched
in the sequence positions �4 to +2. Similarly, this position

range was covered by the top features ‘G[�5, 2]’, ‘G[�4, 3]’,
‘G[�3, 4]’, and ‘G[�2, 5]’. Additionally, K was depleted in
the sequence positions from �1 to +2 and consistently

enclosed by the features ‘K[�5, 2]’, ‘K[�4, 3]’, ‘K[�3, 4]’,
and ‘K[�2, 5]’. Therefore, the performance of an EAAC-
based RF classifier likely depends primarily on the extent to

which the EAAC encoding accurately characterizes the flank-
ing residues around Kmal sites.

The DL approach with word embedding showed superior

performance

The general PTM prediction approaches are based on tradi-
tional ML algorithms where pre-defined features are determined.

In recent years, DL algorithms have been developed and applied
to the field of PTM prediction [17,18]. Here, we developed a DL
classifier based on LSTM with the word embedding approach

[40], named as LSTMWE, for the prediction of Kmal sites. This
classifier contained five layers (Figure 3A). These include (1)
input layer, in which the 31 residues of the peptide sequence

fragments were considered categorical features; (2) embedding
layer, in which each amino acid residue (including the gap ‘-’)
was converted into a five-dimension word vector to represent
amino acid properties, since word vectors have been utilized in

a natural language process by embedment into neural networks
[41]; (3) recurrent layer, in which each of the 31 word vectors was
input sequentially into the LSTM cell that contained 32 hidden

neuron units; (4) fully connected layer, in which 128 neuron
units were built with the rectified linear unit (ReLU) chosen
for its activation function; and (5) output layer, in which a single

unit is activated by the ‘‘sigmoid” function, outputting the prob-
ability score. A peptide was predicted as positive if the probabil-
ity score was larger than a specified threshold (e.g., the threshold
is 0.152 with Sp as 90%).

The parameters in the LSTMWE network was trained and
optimized based on binary cross-entropy loss function using
the Adam algorithm [42]. The maximum of the training cycles

was set as 300 epochs to ensure that the loss function value
converged. In each epoch, the training dataset was separated
with the batch size as 512 and iterated. To avoid overfitting,

the dropout [43] rate of the neuron units was set as 20% after
the recurrent and fully connected layers, respectively. The
entire model was implemented by Tensorflow [44].
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Recurrent neural networks are widely applied to the natural
language process where every word is generally converted into
a low-dimension vector instead of a one-hot vector to dissect

the connotation of contexts [41]. This method avoids having
a sparse vector space and readily infers the semantic similarity
of words. In this study, we applied this concept to peptide

sequences. Each amino acid was converted into a five-
dimension word vector in the embedding layer. Finally, a
21 � 5 matrix was generated after training where every row

represented a five-dimensional word vector of the amino acid.
To investigate the similarity of amino acid residues around the
Kmal sites, the 20 amino acids were hierarchically clustered
using Euclidean distance in average linkage. Figure 3B shows

that the amino acids were distributed into three clusters: (i)
the alkaline residues K and R, (ii) the aromatic and large
hydrophobic residues, and (iii) the remaining residues, includ-

ing all acidic residues. The separation of acidic and alkaline
residues indicated that the acid-base property of residues
played a key role in influencing Kmal, which was in line with

the observation that the distribution of K and R was signifi-
cantly lopsided (Figure 2A). Moreover, all the aromatic resi-
dues and some hydrophobic residues were aggregated into

one cluster, while some residues with a smaller side chain vol-
ume, such as A, G and V, formed a subclass in another cluster.
This implies that the size of a residue might also affect Kmal.
All the results demonstrate that our model is capable of eluci-

dating the significance of the correlation between amino acid
properties and Kmal.

Compared to the traditional classifier RFEAAC described

earlier, the LSTMWE method had the largest AUC, AUC01,
Ac, Sn, Sp, and MCC values for both the ten-fold cross-
validation and the independent test (Figure 4 and Table S3),

suggesting that the DL classifier precisely captured the unique
information from Kmal-containing peptides. LSTM is a self-
taught representation learning algorithm in that it not only

employs the local sequence pattern via short term memory
but, more importantly, also extracts effective information from
the non-local residue correlation via long term memory. This
may explain why LSTM demonstrated superior performance.
Figure 4 Performance comparison of the DL-based Kmal predictors

The performance of different DL-based Kmal predictors were compar

cross-validation. P values were calculated using a paired student’s t-test

is provided in Table S3.
To compare the performance of LSTMWE with other DL
frameworks, we developed the convolution neural network
(CNN)-based classifier named CNNWE, which included an

embedding layer as input, four convolution layers as the hid-
den layer, and an output layer. The same parameter optimiza-
tion strategy used in LSTMWE was adopted for CNNWE.

LSTMWE performed better than CNNWE (Figure 4 and
Table S3). Moreover, we developed the LSTM-based DL clas-
sifier with one-hot encoding, dubbed LSTMone-hot, where the

word embedding layer in LSTMWE was replaced by one-hot
encoding. LSTMWE compared favorably to LSTMone-hot in
terms of AUC and AUC01 values (Figure 4 and Table S3).

Establishment of the LEMP by integrating LSTMWE and

RFEAAC

We showed above that LSTMWE outperformed various classi-

fiers with different feature encodings. Due to the potential
complementary effects in combining different classifiers to
achieve better results, we investigated whether an integration
of two classifiers would be more robust or perform better.

We developed LEMP by integrating LSTMWE and the
EAAC-encoding RF classifier using the logistical regression
approach (Figure 5). LEMP showed outstanding performance

for both cross-validation and the independent test in terms of
AUC01, MCC, and Sn values, although they had similar val-
ues of AUC, Ac, and Sp (Figure 4, Table S3, and Figure S4).

Additionally, we developed LEMP separately for humans and
mice. We found that the individual LEMP models performed
similarly to the integrated models (P > 0.05; data not shown).

Therefore, we integrated both species in this study.

Estimation of the impact of data size on prediction accuracy

The performance of a ML algorithm is generally sensitive to
the size of the training data. To compare the sensitivities of
the algorithms described above, we calculated their perfor-

mances constructed based on an eighth (9506), a quarter
(19,012), a half (38,025) of, and the whole (76,051) training
ed in terms of AUC (A) and AUC01 (B), respectively, for ten-fold

. A detailed performance comparison using different measurements



Figure 5 The framework of LEMP

LEMP was established by integrating LSTMWE and RFEAAC

using the logistical regression approach (see methods for details).

In RFEAAC, Dn represents the n-th decision tree and Rn represents

the result of nth decision tree. The input dataset was pre-processed

to extract 31 amino acid sequences with the Ks to be predicted in

the center. Each sequence was then read by the integrated LEMP

and then the K in the center had the prediction score.
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dataset with ten-fold cross-validation (Figure S1), separately

Figure 6 shows that although the overall performances of all
the approaches increased with the size of the training dataset,
the DL algorithms (i.e., LSTMOne-hot and LSTMWE) per-
Figure 6 Estimation of the impact of data size on prediction accuracy

The average AUC values (A) and average AUC01 values (B) were calc

and the whole dataset (containing 4242 positive peptides and 71,809 ne

algorithm, the AUC or AUC01 values between the adjacent datasets

differences (P < 0.01, P value with BH adjustment), and the dashed l
formed better than the traditional algorithm RFEAAC in terms
of AUC and AUC01 values. The DL algorithms had larger
AUC01 values than RFEAAC for large-sized dataset but not

for small-sized dataset (Figure 6B). The performance of LEMP
was similar to that of LSTMWE when using the whole training
dataset, but the former compared favorably to the latter with

the small size of the training dataset (Figure 6A). This result
indicates that LSTMWE built using the small data size has a
relatively low performance but that the performance could

be improved by integrating RFEAAC. With an increased data
size, the contribution of RFEAAC to the prediction perfor-
mance decreases, while that of LSTMWE increases. A similar
observation was made for the comparison using the AUC01

values (Figure 6B). These results suggest that DL algorithms
built with the small training set performs relatively better than
the traditional ML methods, and their performance is

improved by integrating traditional methods, because as the
dataset increases in size, the accuracy of the DL algorithms
increases at a faster rate. As the performance of LEMP is sig-

nificantly better than LSTMWE in terms of AUC01 (Fig-
ure 4B), we selected LEMP for our following study.

Comparison of LEMP with reported Kmal predictors

We assessed the performance of LEMP by comparing it with
the currently available Kmal predictors, Mal-Lys [10] and
MaloPred [11], based on our independent test dataset (see

Methods for details). MaloPred contained two different pre-
diction algorithms, one for humans (i.e., MaloPred_Human)
and the other for mice (i.e., MaloPred_Mouse). We adjusted

the test dataset (final positive peptides: 183; negative peptides:
4004) by removing the sequences that were used for training
the published algorithms. As a result, LEMP outperformed

the competitors in terms of AUC and AUC01 values (Figure 7).
The independent dataset (containing 1046 positive peptides
and 16,827 negative peptides) was used for comparison with
ulated using four different data sizes: an eighth, a quarter, a half,

gative peptides; Figure S1) for ten-fold cross-validation. For each

were statistically compared. The solid line represents significant

ine represents non-significant differences.



Figure 7 Performance of comparison of LEMP with Mal-Lys and MaloPred

AUC (A) and AUC01 (B) curves were generated for the predictors using the independent test dataset. The values for AUC and AUC01

obtained using different methods were indicated in the parenthesis, respectively.
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Mal-Lys. As a result, LEMP achieved an AUC of 0.827
(AUC01 = 0.026), while the AUC value of Mal-Lys is 0.561

(AUC01 = 0.004).

Conclusions

The currently available PTM prediction approaches are mainly
based on ML that requires experts to pre-define informative
features. Here, we applied the DL methodology to PTM pre-

diction and developed an LSTM-based classifier for predicting
malonylation sites. Despite lacking pre-defined features, the
DL classifier demonstrated a superior performance compared

to the traditional ML methods. This was likely due to the
strong capability of the DL methodology to learn sparse rep-
resentation in a self-taught manner; thus, the DL classifier

could auto-capture the most informative features. The DL
methodology is sensitive to the homogeneity and size of sam-
ples, but this limitation can be overcome by integration with
a traditional ML classifier. The outstanding performance of

DL in the prediction of Kmal sites suggests that DL may be
applied broadly to predicting other types of PTM sites.
Acknowledgments

This work was supported in part by funds from the Young

Scientists Fund of the National Natural Science Foundation
of China (Grant No. 31701142 to ZC; Grant No. 81602621
to NH), the Qingdao Postdoctoral Science Foundation (Grant

No. 2016061 to NH), the Shandong Provincial Natural Science
Foundation (Grant No. ZR2016CM14 to LL), and the
National Natural Science Foundation of China (Grant No.

31770821 to LL); LL is also supported by the ‘‘Distinguished
Expert of Overseas Tai Shan Scholar” program.
Authors’ contributions

ZC, XL, and LL conceived and designed the project. ZC and

XL constructed the algorithms under the supervision of LL;
ZC, NH, and YH analyzed the data. LL, ZC, and WTQ wrote
the manuscript. All authors read and approved the final
manuscript.

Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2018.08.004.

References

[1] Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, et al. The first

identification of lysine malonylation substrates and its regulatory

enzyme. Mol Cell Proteomics 2011;10:M111.012658.

[2] Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, et al.

SIRT5 regulates both cytosolic and mitochondrial protein

malonylation with glycolysis as a major target. Mol Cell

2015;59:321–32.

[3] Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, et al. Lysine

succinylation and lysine malonylation in histones. Mol Cell

Proteomics 2012;11:100–7.

[4] Bao X, Zhao Q, Yang T, Fung YM, Li XD. A chemical probe for

lysine malonylation. Angew Chem Int Ed Engl 2013;52:4883–6.

[5] Hirschey MD, Zhao Y. Metabolic regulation by lysine malony-

lation, succinylation, and glutarylation. Mol Cell Proteomics

2015;14:2308–15.

[6] Wang M, Jiang Y, Xu X. A novel method for predicting post-

translational modifications on serine and threonine sites by using

site-modification network profiles. Mol Biosyst 2015;11:3092–100.

[7] Wang B, Wang M, Li A. Prediction of post-translational

modification sites using multiple kernel support vector machine.

PeerJ 2017;5:e3261.

https://doi.org/10.1016/j.gpb.2018.08.004
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0005
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0005
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0005
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0010
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0010
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0010
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0010
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0015
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0015
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0015
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0020
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0020
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0025
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0025
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0025
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0030
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0030
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0030
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0035
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0035
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0035


Chen Z et al / Prediction of Protein Malonylation Sites 459
[8] Liu Y, Wang M, Xi J, Luo F, Li A. PTM-ssMP: a web server for

predicting different types of post-translational modification sites

using novel site-specific modification profile. Int J Biol Sci

2018;14:946–56.

[9] Fan W, Xu X, Shen Y, Feng H, Li A, Wang M. Prediction of

protein kinase-specific phosphorylation sites in hierarchical struc-

ture using functional information and random forest. Amino

Acids 2014;46:1069–78.

[10] Xu Y, Ding YX, Ding J, Wu LY, Xue Y. Mal-Lys: prediction of

lysine malonylation sites in proteins integrated sequence-based

features with mRMR feature selection. Sci Rep 2016;6:38318.

[11] Wang LN, Shi SP, Xu HD, Wen PP, Qiu JD. Computational

prediction of species-specific malonylation sites via enhanced

characteristic strategy. Bioinformatics 2017;33:1457–63.

[12] Du Y, Zhai Z, Li Y, Lu M, Cai T, Zhou B, et al. Prediction of

protein lysine acylation by integrating primary sequence informa-

tion with multiple functional features. J Proteome Res

2016;15:4234–44.

[13] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature

2015;521:436–44.

[14] Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, et al. A deep

learning framework for modeling structural features of RNA-

binding protein targets. Nucleic Acids Res 2016;44 e32.

[15] Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local

interactions by long short-term memory bidirectional recurrent

neural networks for improving prediction of protein secondary

structure, backbone angles, contact numbers and solvent acces-

sibility. Bioinformatics 2017;33:2842–9.

[16] Hanson J, Yang Y, Paliwal K, Zhou Y. Improving protein

disorder prediction by deep bidirectional long short-term memory

recurrent neural networks. Bioinformatics 2017;33:685–92.

[17] Wang D, Zeng S, Xu C, Qiu W, Liang Y, Joshi T, et al.

MusiteDeep: a deep-learning framework for general and kinase-

specific phosphorylation site prediction. Bioinformatics

2017;33:3909–16.

[18] He F, Bao L, Wang R, Li J, Xu D, Zhao X. A multimodal deep

architecture for large-scale protein ubiquitylation site prediction.

IEEE Int Conf Bioinform Biomed Workshops 2017;2017:

108–13.

[19] Xie Y, Luo X, Li Y, Chen L, Ma W, Huang J, et al. DeepNitro:

prediction of protein nitration and nitrosylation sites by deep

learning. Genomics Proteomics Bioinformatics 2018;16:294–306.

[20] Cao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep learning

and its applications in biomedicine. Genomics Proteomics Bioin-

formatics 2018;16:17–32.

[21] Xu H, Zhou J, Lin S, Deng W, Zhang Y, Xue Y. PLMD: an

updated data resource of protein lysine modifications. J Genet

Genomics 2017;44:243–50.

[22] Colak G, Pougovkina O, Dai L, Tan M, Te Brinke H, Huang H,

et al. Proteomic and biochemical studies of lysine malonylation

suggest its malonic aciduria-associated regulatory role in mito-

chondrial function and fatty acid oxidation. Mol Cell Proteomics

2015;14:3056–71.

[23] Chen Z, Zhou Y, Zhang Z, Song J. Towards more accurate

prediction of ubiquitination sites: a comprehensive review of

current methods, tools and features. Brief Bioinform

2015;16:640–57.
[24] Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P,

et al. Global, in vivo, and site-specific phosphorylation dynamics

in signaling networks. Cell 2006;127:635–48.

[25] Li W, Godzik A. Cd-hit: a fast program for clustering and

comparing large sets of protein or nucleotide sequences. Bioin-

formatics 2006;22:1658–9.

[26] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan

PA, McWilliam H, et al. Clustal W and Clustal X version 2.0.

Bioinformatics 2007;23:2947–8.

[27] Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen

JW, et al. Identification, analysis, and prediction of protein

ubiquitination sites. Proteins 2010;78:365–80.

[28] Chen XW, Liu M. Prediction of protein-protein interactions using

random decision forest framework. Bioinformatics 2005;21:4394–400.

[29] Sikic M, Tomic S, Vlahovicek K. Prediction of protein-protein

interaction sites in sequences and 3D structures by random

forests. PLoS Comput Biol 2009;5 e1000278.

[30] Wang XF, Chen Z, Wang C, Yan RX, Zhang Z, Song J.

Predicting residue-residue contacts and helix-helix interactions in

transmembrane proteins using an integrative feature-based ran-

dom forest approach. PLoS One 2011;6 e26767.

[31] Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of

mammalian N6-methyladenosine (m6A) sites based on sequence-

derived features. Nucleic Acids Res 2016;44 e91.

[32] Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature

2001;411:355–65.

[33] Chen Z, Chen YZ, Wang XF, Wang C, Yan RX, Zhang Z.

Prediction of ubiquitination sites by using the composition of k-

spaced amino acid pairs. PLoS One 2011;6 e22930.

[34] Chen Z, Zhou Y, Song J, Zhang Z. hCKSAAP_UbSite: improved

prediction of human ubiquitination sites by exploiting amino acid

pattern and properties. Biochim Biophys Acta 2013;1834:1461–7.

[35] Downward J. The ins and outs of signalling. Nature

2001;411:759–62.

[36] Chen YZ, Chen Z, Gong YA, Ying G. SUMOhydro: a novel

method for the prediction of sumoylation sites based on

hydrophobic properties. PLoS One 2012;7 e39195.

[37] Vacic V, Iakoucheva LM, Radivojac P. Two Sample Logo: a

graphical representation of the differences between two sets of

sequence alignments. Bioinformatics 2006;22:1536–7.

[38] Chen K, Kurgan L, Rahbari M. Prediction of protein crystalliza-

tion using collocation of amino acid pairs. Biochem Biophys Res

Commun 2007;355:764–9.

[39] Chen K, Kurgan LA, Ruan J. Prediction of flexible/rigid regions

from protein sequences using k-spaced amino acid pairs. BMC

Struct Biol 2007;7:25.

[40] Hochreiter S, Schmidhuber J. Long short-term memory. Neural

Comput 1997;9:1735–80.

[41] Church KW. Word2Vec. Natural Language Engineering

2016;23:155–62.

[42] Kingma DP, Ba J. Adam: a method for stochastic optimization.

ArXiv e-prints 2014;1412.6980.

[43] Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhut-

dinov R. Dropout: a simple way to prevent neural networks from

overfitting. J Mach Learn Res 2014;15:1929–58.

[44] Rampasek L, Goldenberg A. TensorFlow: biology’s gateway to

deep learning? Cell Syst 2016;2:12–4.

http://refhub.elsevier.com/S1672-0229(19)30002-6/h0040
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0040
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0040
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0040
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0045
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0045
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0045
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0045
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0050
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0050
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0050
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0055
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0055
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0055
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0060
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0060
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0060
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0060
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0065
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0065
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0070
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0070
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0070
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0075
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0075
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0075
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0075
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0075
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0080
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0080
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0080
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0085
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0085
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0085
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0085
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0090
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0090
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0090
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0090
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0095
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0095
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0095
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0100
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0100
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0100
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0105
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0105
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0105
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0110
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0110
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0110
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0110
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0110
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0115
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0115
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0115
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0115
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0120
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0120
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0120
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0125
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0125
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0125
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0130
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0130
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0130
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0135
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0135
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0135
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0140
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0140
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0145
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0145
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0145
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0150
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0150
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0150
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0150
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0155
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0155
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0155
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0155
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0155
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0160
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0160
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0165
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0165
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0165
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0170
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0170
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0170
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0175
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0175
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0180
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0180
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0180
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0185
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0185
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0185
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0190
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0190
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0190
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0195
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0195
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0195
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0200
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0200
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0205
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0205
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0215
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0215
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0215
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0220
http://refhub.elsevier.com/S1672-0229(19)30002-6/h0220

	Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites
	Introduction
	Methods
	Dataset construction
	Feature encodings and construction of classifiers
	EAAC encoding
	EAAC-encoding RF classifier RFEAAC
	AAindex encoding RF classifier RFAAindex
	One-hot encoding

	Integration of the classifiers
	Performance assessment of the predictors
	Statistical methods

	Results and discussion
	The EAAC encoding performed the best among the encoding schemes examined
	The DL approach with word embedding showed superior performance
	Establishment of the LEMP by integrating LSTMWE and RFEAAC
	Estimation of the impact of data size on prediction accuracy
	Comparison of LEMP with reported Kmal predictors

	Conclusions
	ack20
	Acknowledgments
	Authors’ contributions
	Supplementary material
	References


