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A data-driven approach to characterizing the risk of cyanobacteria-based harmful algal blooms 

(cyanoHABs) was undertaken for the Ohio River. Twenty-five years of river discharge data were 

used to develop Bayesian regression models that are currently applicable to 20 sites spread-out 

along the entire 1579 km of the river’s length. Two site-level prediction models were developed 

based on the antecedent flow conditions of the two blooms that occurred on the river in 2015 

and 2019: one predicts if the current year will have a bloom (the occurrence model), and another 

predicts bloom persistence (the persistence model). Predictors for both models were based on 

time-lagged average flow exceedances and a site’s characteristic residence time under low flow 

conditions. Model results are presented in terms of probabilities of occurrence or persistence 

with uncertainty. Although the occurrence of the 2019 bloom was well predicted with the 

modeling approach, the limited number of events constrained formal model validation. However, 

as a measure of performance, leave-one-out cross validation returned low misclassification rates, 

suggesting that future years with flow time series like the previous bloom years will be correctly 

predicted and characterized for persistence potential. The prediction probabilities are served in 

real time as a component of a risk characterization tool/web application. In addition to presenting 

the model’s results, the tool was designed with visualization options for studying water quality 

trends among eight river sites currently collecting data that could be associated with or indicative 

of bloom conditions. The tool is made accessible to river water quality professionals to support 

risk communication to stakeholders, as well as serving as a real-time water data monitoring utility.
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1. Introduction

The intensity, frequency, and duration of harmful cyanobacteria blooms (cyanoHABs) 

appear to be increasing in freshwater habitats across the globe [1,2]. Most attention has 

been focused on blooms in lakes and reservoirs, including the Laurentian Great Lakes [3]. 

CyanoHABs result in significant socio-economic impact [4] and can pose significant risk 

to the safety of drinking water and public health from direct contact with people and their 

pets [5,6]. They can cause taste and odor problems for drinking water treatment [7], but their 

harmful nature is largely attributed to the toxins that many species of the cyanobacteria are 

capable of producing, including neurotoxins, hepatotoxins, and dermatoxins [8].

The expanding awareness, if not actual number, of freshwater cyanoHABs reported over the 

last couple of decades has stimulated an intense amount of research to better understand 

their ecology for management and prevention [9,10]. This research effort has solidified the 

connection between the rise in cyanoHABs in freshwaters and excess loading of nitrogen 

and phosphorus [11–15] (hereafter referred to collectively as nutrients), as well as the 

changing climate [16]. The former has accompanied the cumulative effects of intense 

agricultural activity and increases in runoff from urban areas [9,17–20], while the latter 

is contributing to the warming of surface waters and changing precipitation [3,21–25]. The 

changing climate is producing more optimal growth conditions for cyanobacteria compared 
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to other phytoplankton species [26,27] and is affecting important watershed loading and lake 

biogeochemical processes that control nutrient availability [13,28–33].

CyanoHABs appear to be impacting lentic systems the most, but lotic systems are also 

susceptible [34,35]. Large regulated rivers are vulnerable to cyanobacteria blooms, where 

they are found to concentrate behind flow control structures [36]. However, less is 

understood about cyanobacteria and toxin dynamics in lotic systems [37,38]. Because of 

the relatively higher hydraulic flushing rates of river environments, the susceptibility of most 

of these systems to cyanoHAB events has only recently become a concern [39,40].

An unprecedented bloom event on the Ohio River in 2015 brought the potential risks of 

cyanoHABs in larger rivers of the United States into the spotlight [41–43]. It was first 

observed in the upper river on 19 August, 135 km from the river’s origin at the Pike Island 

Lock and Dam (L&D), just upstream of Wheeling, WV. The bloom reports increased in 

the subsequent days in a downstream direction. Thirty days later, it was first observed near 

the river’s confluence with the Mississippi River at Paducah, KY. By the end of September, 

water recreation advisories or precautionary statements had been posted for 1127 km of the 

1579 km-long river by the States of Illinois, Indiana, Kentucky, Ohio, and West Virginia. 

The last advisory was not lifted until 3 November.

There are 32 municipal drinking water treatment plants (DWTPs) on the Ohio River, serving 

5 million people. Over the course of the 2015 cyanoHAB, 20 of the DWTPs had to 

take precautions by providing additional treatment, increasing monitoring, or closing their 

intakes. The extra treatment cost was estimated at $2 million USD based on a survey 

of utilities conducted by staff of the Ohio River Valley Water Sanitation Commission 

(ORSANCO), which administers the provisions of an interstate compact that includes 

a responsibility of monitoring water quality in the Ohio River. The Greater Cincinnati 

Water Works, alone, reported additional treatment costs of 7000.00 USD per day for two 

months. The 2015 cyanoHAB caught water resource professionals and drinking water 

utility managers off-guard, creating much interest in understanding the cause of the event 

and in implementing risk management procedures and practices to be better prepared for 

subsequent ones. Risk management and mitigation approaches used for larger lakes may not 

easily translate to flowing water systems. For instance, the long and narrow configurations 

of river systems limit the use of satellite-based risk characterization at present [44–47]. This 

means alternative approaches are necessary for managing the risk posed by cyanoHABs in 

flowing waters.

This research was initiated in response to this HABs risk management need. The study goal 

was to produce a tool that could be used by ORSANCO for assessing the potential for 

cyanoHABs in real time and at multiple locations along the river’s length. When the project 

started, the effort was constrained by the fact that there was only one cyanoHAB event ever 

documented on the Ohio River. However, in 2019, the river experienced another bloom. 

This event was smaller (ca. 482 km) and did not last quite as long: it was first reported 

on 11 September and lasted about 30 days. Prior to the 2015 and 2019 events, the largest 

algal bloom on the Ohio River was believed to have occurred in 2008, covering 48 km 

and lasting about 10 days. However, this event could not be verified as a cyanoHAB based 
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on the available grab sampling data [41]. We hypothesized that we could take advantage 

of the physiography of the Ohio River along with its dense hydrologic sensing network to 

develop a risk characterization tool applicable to the entire river in support of ORSANCO’s 

cyanoHABs risk management goals. The central science question was how to best model the 

risk given the available data and the urgent need.

2. Materials and Methods

2.1. Ohio River State and Water Data Sources

The Ohio River receives direct discharges of nutrients from 182 wastewater treatment plants 

that are permitted for a combined daily load of nearly 1 billion gallons, although typically 

individual plants operate lower than their permitted level. There are forty-nine communities 

along the river with combined sewers, which may release untreated wastewater during large 

rainfall/runoff events through 965 outfalls. Additionally, there are 69 communities with 

municipal separate storm sewer systems draining urban runoff to the river. Furthermore, 

nutrients enter the river from the roughly 40% agricultural land cover of the 528,204 km2 

watershed. The river is also strongly impacted by industrial discharges [48].

The model development component of the risk characterization tool needed to be tied to 

current and actively maintained water data acquisition. However, it would have to depend 

on historic data of the same type as that currently acquired, as both current and older 

data would be used to test assumptions and hypotheses about the controlling factors and 

ecological responses related to the river’s major cyanoHAB events. Several entities have 

water monitoring stations on the mainstem of the Ohio River. Of these, we focused attention 

on sources that were likely to have consistent, long-term, and current information available. 

These included the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers 

(USACE), The Ohio River Forecast Center (OHRFC), ORSANCO, and several drinking 

water treatment utilities. Supplemental text offers an overview of the data from each of these 

sources. In brief, while we found data from ORSANCO’s routine nutrient grab sampling 

and pool volume estimates provided by USACE useful for model development, only the 

data on river flows met both the spatial and temporal criteria of appropriateness for model 

development. No water quality (WQ) and temperature data met the criteria for modeling, 

but a framework, subsequently described, was developed for incorporating these data as 

diagnostics into the risk characterization tool.

2.2. Compiling River Discharge Time Series

Starting with 25 years of river stage data, we focused our attention on identifying locations 

where discharge estimates over the whole range of stages were likely to be the most 

accurate. There were 18 L&D locations that met the data requirements (Figure S1). Each 

one had stage data for the upstream-pool and tailwater of the dams. Additionally, nine non-

L&D, mid-pool stage gauging stations were evaluated (Table 1, Figure 1). For all river stage 

gauges, we verified that using stage as a proxy for flow would provide reasonable estimates 

over the range of low and high river flows and be minimally impacted by backwater 

and tributary influences (see supplemental text and Figure S2). This discharge estimation 

filter, applied at each of the 27 sites with stage data, disqualified upper pool stations and 
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eliminated one L&D and mid-pool site entirely (J.T. Meyers and Pittsburgh, respectively). 

Discharge estimates from five other mid-pool gauges were considered less accurate in the 

lower flow ranges. These were useful for model development because their inclusion made it 

so there was not complete separation (i.e., a bloom occurs under different flow conditions). 

However, we do not include these five sites in the real-time reporting of model predictions 

(Table 1).

2.3 Guiding Conceptual Model of cyanoHAB Ecology

With the time series of discharges, we wanted to determine if the 2015 cyanoHAB could be 

related to unique flow conditions, which, in turn, could be used as a basis for risk modeling. 

We produced a conceptual cause and effect model to guide the analysis of the empirical data 

(Figure 2). The conceptual model postulated that persistent low flow conditions following a 

period of relatively high flows are required for cyanoHAB development. The reasoning was 

that high flows deliver nutrients to the river that are needed to fuel cyanobacteria growth. 

After flows have decreased significantly for an extended period, this allows the increased 

growth to concentrate before being flushed down river. Thus, we propose that an increase 

in water residence time in the pools behind the L&Ds under presumably high nutrient 

availability is key to CyanoHAB formation. This logic derives from the 2015 summer flow 

dynamics, during which a relatively late period of high flows that occurred in June and early 

July was followed immediately by a period of low flows under hot and dry mid and late 

summer ambient conditions. The preceding high flow period was hypothesized as critical 

because there were several instances in previous years during which an extended period 

of low flows occurred, and presumably at water temperatures conducive to cyanobacteria 

proliferation, yet no blooms were reported (Figure 3). We assume seasonal temperature 

patterns and water clarity act as constraints on bloom development, with bloom potential 

only realistic in the summer months and when turbidity does not limit light availability for 

phytoplankton photosynthesis.

2.4 Model Development

First, we had to decide how a bloom would be defined for modeling. When the effort began, 

we had either zero or one bloom occurrence at each site, as only the 2015 event had taken 

place at this time. Defining the precise beginning and end of a bloom anywhere on the 

river is uncertain in practice: Blooms thus far have been first reported by river observers 

on seeing atypically green waters or surface scums. Once reported, the suspected bloom 

is subsequently sampled to verify if toxin-producing cyanobacteria are present and to test 

for toxins. If toxins are detected, then “bloom condition” status remains in effect from a 

risk management perspective until two consecutive samples collected a week apart are toxin-

free. This means that, in practice, bloom status is operationally disconnected from actual 

dynamics of cyanobacteria cell densities. Therefore, we had no choice other than to model 

a binary response (i.e., 1 = bloom, 0 = no bloom), one based on when an observational 

report of a bloom was first received on the front end and the date when river sections were 

considered toxin-free on the back end (Table 1). Therefore, bloom occurrence is defined as 

the report of a bloom event that has been verified as toxic. Each day in a site’s time series of 

flows is categorized with 1 or 0, with 1 signifying the presence of a bloom. Because of the 

lag between the day a bloom was first reported and when the bloom was verified as toxic, 
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we assumed the bloom was toxic on the day of the report, classifying the day the bloom 

report was received with 1. The site’s bloom status remains as 1 until no toxin is detected. 

Because of the limited number of bloom events, any given site’s time series of flows is 

mostly classified with zeros.

Other key modeling considerations including both assumptions and data characteristics 

were the availability of 25 years of flow data at 25 locations on the river; spatial and 

temporal correlations; that there was no “true” replication; and an assumption that years are 

independent. We desired a model that would estimate the probability that the current year 

at a given site would be a bloom year, and that could be quantified as such on any given 

day during the period that a cyanoHAB might occur on the river, which we qualified as 

May through October. We acknowledge that because blooms have occurred so infrequently 

on the Ohio River (i.e., only in 2015 and 2019), this constrains the reliability of the model 

for future occurrences. With this acknowledgment, our approach to model development 

proceeded with the notion that the modeling component of the risk characterization tool 

would be updated annually as more blooms occur in the future.

2.4.1 Predictor Variables—To normalize flow rates across sites, we used 

“exceedances”, which are rankings based on the percentage of maximum flow for the period 

of record. The lowest flow at a site has an exceedance of 100%, and the highest flow has 

an exceedance of 0%, so high flows are associated with low exceedances, and low flows 

are associated with high exceedances. During an exploratory phase, we developed temporal 

lag terms using the exceedances to reflect the hypothesized flow conditions required for a 

cyanoHAB. The first lag term was meant to capture the period of low flows preceding a 

bloom. We started with averaging the previous 30 days of daily average flow exceedances at 

a site for all days in the site’s time series. When average flow rates are very low over this lag 

period, the exceedances are high, and, therefore, the value of this term is high. A second lag 

term was developed to reflect the period of high flows prior to the 30 day low flow period. 

To start, we calculated an average exceedance based on a 30 to 75 day lag period. The lower 

this average exceedance, the higher the average flows would have been for this period 30 

days prior to the bloom. We then took a ratio of these two lag terms to characterize the 

hypothesized prerequisite conditions as one variable. A relatively high value of the ratio of 

the early lag term over the later one indicates a period preceding any given point in the time 

series when very low flows were preceded by very high flows.

Plotting the ratio of lagged exceedance terms suggested that the ratio entered a rapidly 

increasing phase that appeared unique for the 2015 bloom year. We hypothesized that 

producing another predictor variable that quantified the extent the ratio was increasing prior 

to a bloom event would likely improve model fit.

In the preliminary model fitting phase, we used a mixed effects binary logistic regression 

approach for rapid testing. Because the averaging periods of the exploratory phase’s 

lag terms were arbitrary based on visualizing the discharge time series (Figure 3), we 

systematically tested the fit of different averaging windows of time for the combination 

of the two lag terms to determine which would likely provide the best fit. We also tested 

different expressions for the period prior to the bloom when the ratio of lagged exceedances 
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was increasing. A relative rate of increase was computed using linear regression and was 

tested, as was a simple count of the number of days the ratio was increasing in the prior 15 

days. The Akaike Information Criterion (AIC) from a mixed effects model with the same 

predictors as above was used to rate the performance of different lag term windows, which 

differed from 1 to 15 through 25 days for the proximal period and changed from 15 through 

25 to 50 through 60 days prior, with 1 to 5 day gaps considered between the two windows. 

The mixed effects model was fit using R 3.5.1 and the glmer function within the lme4 

package v1.1 [49].

Using the slope rather than a simple count to characterize the ratio’s increasing phase did not 

improve the model fit, and the 1 to 19 day and 21 to 55 day ratio significantly outperformed 

all other lag term combinations (i.e., AIC lower by 2.0 compared to other combinations). 

Figure 4 plots the ratio of the best fit lag terms at the Pike Island site as an example. 

The uniqueness of 2015 is a standout. We refer to the predictor variable “maxratio” as the 

maximum 1–19:21–55 ratio that occurred prior to the 2015 cyanoHAB start date at a site. 

For other years, the maxratio is defined as the maximum ratio that occurred at any time 

during which a cyanoHAB is deemed possible (i.e., May through October). We defined 

the predictor variable “inc15” as the number of days in the 15 days prior to the day the 

maxratio occurred over which the ratio increased. The predictors are summarized yearly, 

but probabilities are estimated daily by using daily 1–19:21–55 day ratio and number of 

increasing ratio days.

We also considered an estimate of a site’s residence time as a potentially important 

predictor. This was based on our conceptual model (Figure 2) and the observation that 

sites upstream of Pike Island, where the bloom was first reported, were not affected by the 

2015 cyanoHAB (Table 1). We hypothesized that residence times at these upriver sites were 

significantly shorter than those in the 19 days prior to when the bloom was reported at Pike 

Island and compared to other sites downstream. Therefore, when a site’s residence time is 

low despite a low flow condition, we’d be less likely to expect a bloom. Residence times 

were computed for each site by estimating the pool volume upstream of the site and the next 

lock and dam. A site’s upstream characteristic pool volume was provided by partners from 

USACE (Erich Emery and Robert Boyer, pers. comm.). Dividing a pool volume by average 

daily discharge resulted in a daily residence time. The variable “meanrt” was calculated 

as the mean residence time during the first (1–19 day) lag period in 2015. It is an integer 

between 0 and 15 and it does not change year to year.

2.4.2. Occurrence Model

We used Bayesian hierarchical regression for modeling. With Bayesian inference, the 

credible interval defines bloom prediction probability. The hierarchy is defined by year and 

site-specific predictors. The occurrence model responses are yearly summaries of whether a 

bloom occurred or not at each location for the years 1995 to 2020. Responses are assumed to 

follow a Bernoulli distribution, and the model is defined with a logit link function. The logit 

is the logarithm of the odds of bloom occurrence where odds are defined by the probability 

of bloom occurrence divided by the probability of bloom absence p
1 − p .
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logit psi = α0s + β0 + α1s + β1 X1 + β2X2 + β3X3 + β4X4
α0s~ Normal  0, σ0
α1s~ Normal  0, σ1
β0~ Cauchy 0, 2.5
β1~ Cauchy 0, 2.5
β2~ Cauchy 0, 2.5
β3~ Cauchy 0, 2.5
β4~ Cauchy 0, 2.5
σ0~ half‐Cauchy 0, 2.5
σ1~ half‐Cauchy 0, 2.5

(1)

where psi is a vector of yearly probabilities of bloom occurrence for location s; s ∈ 1,…, 25, 

X1, …, X4 are the fixed effects; and β0, …, β4 are the associated regression coefficients 

(Table 2). Model-predicted log odds for each location and year are back-transformed to 

probabilities for interpretation of results. The predicted probabilities are calculated using the 

inversion:

ps = elogit ps

1 + elogit ps
(2)

The prior parameter distributions are chosen to be non-informative or weakly informative. 

The Cauchy distribution is a common choice for a non-informative prior because it has 

support over the whole real line, with infinite mean and variance [50]. The 5th and 95th 

percentiles of the Cauchy (0, 2.5) distribution are about 15.8 and 15.8. An effect of −15.8 on 

the log odds of bloom occurrence would indicate that an increase of 1 in the maxratio (with 

all other variables held constant) would increase the odds of occurrence by a factor of e15.8 

or about 7 million. Similarly, an effect of −15.8 translates to a decrease of about 7 million. 

A similar argument applies to the choice of the half-Cauchy for variance parameters, which 

has positive support yet does not restrict the magnitude of the location effect. Markov chain 

Monte Carlo (MCMC) sampling was used to fit the model using R 3.5.1 [51], the STAN 

software and the associated R package, rstan v2.21.1 [52]. Three chains were run, with 8000 

iterations each. The first 2000 iterations of each chain were discarded as warmup. Initial 

values for each chain were obtained from the preliminary mixed effects modeling exercises.

2.4.3. Persistence Model—A second model was developed in response to the 

experiences gained while trying to monitor and manage risks posed from the second 

cyanoHAB occurring in 2019. We realized then that the occurrence model lacked utility 

when a bloom was actively occurring. We desired a predictive model that could produce 

a probability of bloom conditions persisting: the persistence model. The responses of the 

persistence model are daily summaries of whether a bloom is occurring or not at each 

location for the 100 days following the maximum ratio day. Responses are assumed to 

follow a Bernoulli distribution, and the model is defined with a logit link function. The logit 

is the logarithm of the odds of bloom persistence where odds are defined by the probability 

of bloom persistence divided by the probability of bloom absence p
1 − p . The following 

Bayesian model is fit:
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logit ps = α0s + β0 + α1s + β1 X1 + β2X2 + β3X2
2 + β4X3 + β5X4 + β6X5 + β7X6

b0j ~ Normal  0, σ0
b1j ~ Normal  0, σ1
β0~ Cauchy 0,2.5
β1~ Cauchy 0,2.5
β2~ Cauchy 0,2.5
β3~ Cauchy 0,2.5
β4~ Cauchy 0,2.5
β5~ Cauchy 0,2.5
β6~ Cauchy 0,2.5
β7~ Cauchy 0,2.5
σ0 ~ half‐Cauchy 0,2.5
σ1~ half‐Cauchy 0,2.5

(3)

where ps is a vector of daily probabilities of bloom occurrence for location s. X1, …, X6
are the fixed effects, and β0, …, β7 are the associated regression coefficients (Table 2). 

Predictors unique to the persistence model are X2, which represents the number of days 

(0, 1, 2, …, 100) after the date on which the maximum ratio occurred, and X3, which is a 

binary indicator of a sharp increase in flow (1 if the 1–19 day lagged average exceedance has 

decreased by more than 15 in the previous 19 day, and 0 otherwise), providing a mechanism 

for bloom cessation. The selection of 15 and 19 was based on the data during the end of 

the 2015 and 2019 blooms during which a decrease of this magnitude was observed at 

almost all locations. Boundary conditions and prior distributions are the same or similar 

to the occurrence model. As above, MCMC sampling was used to fit the model with four 

chains and 6000 iterations each. The first 2000 iterations of each chain were discarded 

as warmup, and the initial values were again obtained from a preliminary mixed effects 

model. Modeling assumptions are discussed, and convergence statistics are provided in 

Supplemental Materials and Tables S1 and S2 and Figures S3–S8.

2.5. Water Quality Data Visualization

Although WQ data were not used directly in the model development, we incorporated 

visualization and download options for eight sites currently reporting continuous WQ data 

into the same application meant to serve the results of the occurrence and persistence 

models. It varies among sites, but WQ variables generally include water temperature, 

dissolved oxygen, specific conductance, and pH, among others and depending on the site. 

More details on the characteristics of the available WQ data are provided in supplemental 

materials. We had three objectives for the WQ visualization component of the risk 

characterization tool: users should be able to (1) compare data across sites; (2) compare data 

across years at a site; and (3) plot daily differences of at least two WQ variables. The latter 

capability can prove an indicator of the degree of algal activity. To make this integration and 

visualization possible, data needed to be retrieved from different host locations (Table S3), 

and visualization strategies were developed as demonstrated below.

2.6. R Programming and Risk Characterization Tool

Statistical analyses and risk characterization tool development were completed using the 

R programming language [51]. R software was used to support data acquisition, statistical 
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modeling phases, and development of the R Shiny app for this effort. Shiny is an open-

source R package that provides a framework for building web applications using R (https://

shiny.rstudio.com/ accessed on 23 June 2020). The risk characterization tool is a Shiny 

app that was developed under a framework of (1) providing a platform for serving the risk 

probability modeling results and housing supplementary information related to the modeling 

effort, which is meant to be updateable through time; and (2) serving as a source for 

acquiring and visualizing a variety of different water data types from multiple sites and 

multiple years simultaneously in support of real-time water quality management operations.

3. Results

3.1 Supporting Evidence for Key Drivers in the Conceptual Model

We include nutrient loads estimated from the ORSANCO data in tributary and main river 

sites collected during the month of July among 16 years of monitoring as supporting 

evidence of the supposition that excess nutrients in the river in the period just before 

the development of the bloom in 2015 are potentially an important controlling factor for 

cyanoHABs (see Figure S9). Total Nitrogen (TN) load from the tributaries of the upper 

river was higher in July of 2015 than the previous 13 years. At mid-river, the TN and 

total phosphorus (TP) loads for 2015 rated in most cases as the highest observed since the 

nutrient monitoring program began.

Following the period of high nutrient loading, the postulated requisite period of low flows 

begins, which results in higher pool residence time and opportunity for the cyanobacteria 

biomass to build to a bloom condition. We offer supporting evidence for the supposed 

importance of residence time by plotting estimates for L&Ds in the upper river (see Figure 

S10). As the low flow conditions began toward the end of July in 2015, residence times rose 

more sharply in the pools of the downstream sites that bloomed in 2015, with a potential 

threshold suggested of ca. 3 days.

3.2. Occurrence Model Results Demonstration

Model inputs for the bloom occurrence model are location, the current day’s lagged 

exceedance ratio, and the number of days the ratio has been increasing. Model output 

includes the probability that the current year will be a bloom year with 95% credible 

interval. We plot the model results for bloom probability at the Greenup site in Figure 5 

as an example and with the following interpretation: If a user observed 15 August 2019 a 

current-day lagged exceedance ratio of, say, 3.7 that had been increasing for the last 15 days, 

then the model predicts a 23% probability of a bloom occurring at the site in 2019 with a 

95% credible interval of 1.7 to 68%.

The limited number of bloom events constrained formal model validation but results for 

bloom probabilities on the day maxratio was observed for a 10 year period at the Markland 

site, which experienced a cyanoHAB in both 2015 and 2019, suggested the 2019 bloom was 

well-predicted (Figure 6). In addition to these years, notable cyanoHAB risk probabilities 

(i.e., above 20%) occurred in 2011 and 2018, but in each of these cases, the credible interval 

was large, and they occurred earlier and later in the season, respectively, and likely outside 
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of the window of opportunity for cyanobacteria to develop even though flow conditions were 

favorable. Leave-one-out cross validation to evaluate the occurrence model performance 

produced a misclassification rate of 2.8% (refer to Supplemental text and Figure S7).

3.3 Persistence Model Results Demonstration

With the quadratic structure of the persistence model, the resulting risk probability 

prediction is conditioned on the number of days since the maxratio for the year has passed 

at the site for the year predicted. For periods near the day the maxratio is observed, the risk 

of bloom persistence is lower, as are the cases for days further out. Therefore, there is a 

cone shape to the prediction probability with the highest risk occurring at intermediate times 

(days) from when the maxratio occurred (Figure 7). Operationally, the model’s threshold 

indicator term effectively lowers the risk of a bloom occurring if flows have been increasing 

(Figure 7A).

The leave-one-out cross validation of the persistence model had a misclassification rate of 

3.4% (Supplemental Materials text and Figure S8). The risk interpretation of the persistence 

model output is based on the relative proximity the current day of prediction is to the day 

the maxratio occurred. With Figure 7 as an example, a maxratio of 3.68 occurred on 8/15 at 

the Greenup site in 2019. If it was 50 days after the day maxratio occurred and the threshold 

indicator had not been passed, then the probability of a bloom persisting at this site was 

close to 50% (whether one had occurred or not: in this case, it had). In contrast, had we 

estimated the probability 25 days earlier or later, the probability of persistence would have 

dropped to zero.

3.4. Shiny App Real-Time Reporting

The results of the Shiny app development effort are presented as screenshots (Figures 8 and 

S11–S13). The Shiny app is currently accessed through the ORSANCO website at (https://

orsanco-hab.shinyapps.io/shiny-ohio-river/# accessed on 29 December 2021). The landing 

page is an interactive map that serves model results in real time (Figure 8). The functionality 

of the app is dependent on data that are scraped from websites of other organizations (see 

supplemental text and Table S3). There is an embedded window that allows users to make 

site selections and configure data plots. Sites on the entry map are color-coded based on the 

results of the occurrence model for the current day. Current data from the sites with active 

water quality sensors can also be studied. Finally, the header ribbon allows the user to select 

visualization and download options for “Flow Data”, “Water Quality Data, “Model Results”, 

“Supporting Evidence”, and “Application Info”.

The Flow Data tab offers tabular data or plots of historical flow data at a site and functions 

for interacting with this information. A graph view “grid” option presents flow data in the 

manner of Figures 3 and 4, whereas a “stacked” option offers an interactive time series plot 

with multiple years of data (Figure S11).

The Water Quality Data page offers three display options: tabular data, site comparisons, 

and year comparisons. The latter two were designed to provide spatial and temporal context 

for current year trends relevant to the active monitoring of cyanoHAB events. With the site 

comparison display, one or two variables can be visualized at the same time across multiple 
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sites, as can the trend in differences between daily maximum and minimum values (refer 

to supplemental text associated with Figure S12). The “Year Comparison” display allows 

users to visualize and interact with data from multiple years for the same site (Figure S13 

and associated supplemental text explanation). The app design for the WQ visualization 

approach is geared toward indicators of bloom conditions at different locations along the 

river or determining if WQ trends are suggestive of bloom conditions when the occurrence 

or persistence models are returning higher risk probabilities. Hence, the WQ options in 

the app potentially offer a means of validating the risk modeling results at certain sites. 

Likewise, the year comparison display is useful for evaluating whether the current year’s 

water quality data are responding in a similar fashion as previous years.

4. Discussion

Our approach to the development of the cyanoHAB risk characterization tool evolved from 

three primary conditions: (1) the assumed limitations posed by the fact that only one or two 

bloom events had occurred on the river in the past at any of the data reporting locations; 

(2) the limited availability of data directly linked to the phytoplankton community at any 

site; and (3) the expressed need of the end users to be able to assess the risk of cyanoHABs 

over the entire river at once and in real time. These drove the predictive modeling to focus 

on the interpretation of historical flow dynamics and the configuration of the Shiny app 

that reports prediction probabilities with additional diagnostics for interpreting the water 

quality from the limited number of sites with continuously reported data. Here, we offer the 

scientific rationale for why we consider this a sound approach for handling cyanoHAB risk 

characterization in a regulated river like the Ohio.

First, much of the research on cyanoHAB forecasting to date has benefited from satellite-

based data. Good examples of this in the United States come from the Western Basin of 

Lake Erie [53,54] and the CyAN app that offers data on bloom condition from over 2000 

moderate to large-size lakes [47,55]. However, the width of the Ohio River was a barrier to 

using current satellite data to bolster the risk characterization.

Second, while direct measurements of the phytoplankton community are invaluable to 

assessing community structure and the presence of toxin producing taxa, these data come 

from a grab sampling effort that requires a physical presence to take the sample and have 

processing times that can range from several hours to many days before getting the results. 

Nevertheless, we did consider opportunities for incorporating grab sampling data into our 

framework more directly. As described in supplemental text, ORSANCO’s large repository 

of mainstem phytoplankton taxonomy data did not prove beneficial to identifying past 

bloom events that could have been used for model fitting. We also considered the potential 

relevance of allochthonous taxa inputs as predictors of mainstem blooms, reasoning that, if 

important, data from some of the more heavily sampled tributaries and reservoirs therein 

may be useful to making predictions on the river’s mainstem. However, two Ohio River 

studies and one focusing on the Kansas river suggested that mainstem algal community 

dynamics tends to be independent of tributary inflows during low flow periods [56–58], 

respectively. This led to the thinking that strategic low-flow mainstem monitoring may 

yet still prove useful, which was tested during the 2019 bloom at a site in the Markland 
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pool near ORSANCO’s headquarters where the phytoplankton community was assessed via 

microscopy counts on more frequently collected grab samples (see Figure S14).

The results suggested that, even under low flow conditions, the river hydraulics imparted 

variability that would constrain the utility of grab sampling for predictive modeling. While 

cyanobacteria dominated the community coincident with the timing of the Markland bloom 

report in 2019 (Table 1), they had returned to pre-bloom relative abundances over the 

next two weeks of bloom persistence (Figure S14). Furthermore, the taxonomic assessment 

of these samples showed that the toxin producers Planktothrix and Microcystis were the 

most abundant among the cyanobacteria, but two weeks later, while the bloom toxicity 

remained high, neither genus was observed. Then a week after this, Microcystis was again 

a community dominant (see Figure S15). This temporal variability in direct cell counts 

from a single site indicated to us that it would make little sense to base modeling effort on 

direct measures of cyanobacteria abundance, even if they had been available for multiple 

sites along the river. Indeed, this dimension of the cyanoHAB risk management problem 

stimulated the interest in developing the persistence model, whose flow-based predictions 

are meant to inform river sampling strategies when choosing one location vs. another to 

sample for toxins can mean the difference of several hundred kilometers.

Third, we considered the in situ sensing of chlorophyll and phycocyanin pigments as 

more direct and time relevant indicators of cyanobacteria biomass [59]. Indeed, fixed 

location phytoplankton pigment sensing has been used with some success for signaling 

and forecasting risk related to cyanoHABs [59–64]. This strategy can work well when there 

are specific points of public health concerns such as drinking water intakes or swimming 

beaches. Chaffin, et al. [65,66] have studied the performance of these sensors along with the 

suite of other sensed water quality variables that typically accompany the pigment signals. 

They caution that sensor placement guided by stakeholder-specific criteria can render the 

information ineffective for predictive modeling.

As a case in point, we can demonstrate such ineffectual in situ sensor data from a suite 

deployed in the Greenup pool on the Ohio River. The data from the sensors produced 

ambiguous results on bloom status during the 2019 cyanoHAB, with the in situ signals 

of both chlorophyll and phycocyanin suggesting no indications of increasing or excess 

phytoplankton biomass prior to or during the period of the bloom (see Figure S16). This lack 

of sensor response was likely due to significant spatial heterogeneity within the pool. In fact, 

such spatial heterogeneity was mapped both longitudinally and vertically through the water 

column during a survey conducted in the Markland pool, downstream of Greenup, during the 

2019 cyanoHAB event (see Figure S17). Figuring out how to best incorporate such degrees 

of both temporal and spatial variability directly into a predictive modeling framework and 

over such distances as the length and width of the Ohio River is daunting. Instead, the 

ever-growing availability of continuously sensed water quality data were incorporated into 

our risk characterization framework in the form of the diagnostic visualizations built into the 

Shiny app.

Finally, while rare, we note that there are a few examples of cyanoHAB prediction models 

developed for other regulated river systems outside of the United States. Primary examples 
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come from hypereutrophic rivers in South Korea and China, e.g., [39,67–69] and [40,70–

73]. Each of these studies benefited from the availability of sufficiently dense water quality 

data coincident with bloom events. However, none were intent on providing predictions for 

sites spanning such a length of river compared to our study. Furthermore, in common among 

these studies was the significance of flow (or aspects thereof) as a predictor, while there was 

a lack of consistency among them in terms of the significance of other predictors such as 

nutrients and/or other general water quality variables, including temperature and turbidity.

The results from these studies provide supporting evidence that low flow conditions must 

be of long duration for cyanobacteria to concentrate to a bloom status on a large, regulated 

river. However, unique to our treatment was the use of the historical flow time series data 

and accounting for the magnitude and timing of the preceding high flow conditions that was 

necessary to fit a significant model. We hypothesized that the controlling mechanism behind 

the significance of the high flow period had to do with nutrient bioavailability. Even though 

average nutrient concentrations from grab sampling suggest non-limiting conditions for 

phytoplankton growth in the Ohio River (see Figure S18), we know that typical approaches 

to grab sampling or in situ sensing would not capture the reduced forms of nitrogen that 

can be a significant driver of blooms in lakes [14,74]. We suspect that the large loads of 

particle-bound nutrients that come with the high flow events are being detained behind 

the river’s flow control structures as flows decrease. The trapped nutrient loads are then 

made more available by the hydrodynamics of the pool shifting to more stratification-like 

conditions that, in turn, affect nutrient biogeochemistry, as described in Smucker, Beaulieu, 

Nietch and Young [29]. With planktonic cyanobacteria able to control their position in the 

water column with gas vacuoles, nutrient-rich deeper waters become more accessible [26]. 

We suggest this plausible series of ecosystem state transitions to help explain why the 

timing of the high flow period relative to the low flow period appears so critical to bloom 

development.

With the real-time flows among 25 sites used to derive the main predictors in the occurrence 

and persistence models coupled with the configuration of the visualization options for 

the continuous water quality data, the Ohio River cyanoHABs risk characterization tool 

provides a sound framework for assessing river conditions related to cyanoHAB ecology. 

The content organization of the Shiny app was based on the practices used by water 

quality managers to make decisions about when and where samples should be taken and 

to communicate potential risks of river conditions to stakeholders. When a user arrives at 

the Shiny app’s opening page, they can determine the bloom occurrence probability of all 

sites simultaneously. Clicking on a site of interest adjusts the embedded data window and 

provides options for visualizing data trends. If a site on the entry page returns a concerning 

bloom prediction, the “Water Quality” tab can be selected to visualize recent trends at the 

site and relative to what is being reported at other sites or has been observed in previous 

years from the same site. These comparisons offer additional diagnostics for gauging risk 

and help to inform appropriate management actions. Finally, using the Shiny app offers river 

managers a means of studying river conditions within the context of factors known to be 

important to cyanoHAB dynamics. This fosters experiential learning that can be used to 

guide updates and tool improvements over time.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Site locations along the Ohio River where historical and real-time flow data were evaluated 

for modeling.
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Figure 2. 
Conceptual cause and effects model linking cyanoHAB topreceding river flow conditions.
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Figure 3. 
Example visualization approach to identify uniqueness of flow conditions during bloom 

years. Average daily discharge data for the Pike Island site plotted for 1995 through 2021, 

beginning of May to the end of October each year. Bloom first reported at Pike Island in 

2015 (points in red signify bloom period).
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Figure 4. 
Yearly plots of the ratio of the 1 to 19 day and 21 to 55 day average lagged exceedances at 

Pike Island.
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Figure 5. 
Graphical bloom occurrence model results for the Greenup site. Data are yearly 1–19-

day:21–55-day maxratios and number of days increasing (inc15s) for the bloom season 

overlaying gradient in predicted risk probabilities (P) at right. CyanoHABs in 2015 and 2019 

years are identified per the legend at the top.
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Figure 6. 
Daily 1–19day:21–55 day lagged exceedance ratio at Markland Site plotted for each year 

from 2011 through 2020. Text in each graph denotes the day that the maxratio occurred in 

each year and what the occurrence model’s prediction probability would have been with the 

95% credible interval in parentheses. Data in red are the documented bloom periods.
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Figure 7. 
Yearly maxratio for the bloom season computed for the Greenup site plotted vs. the number 

of days since the maxratio occurred for each of the 25 years modeled. Each vertical line of 

points represents a year. Differences between (A,B) demonstrate how persistence probability 

increases if the threshold indicator has not been passed (i.e., cone of high probability shifts 

to the left).
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Figure 8. 
Screen capture of interactive map page of the risk characterization tool. In this image, the 

Pike Island site has been selected, and discharge data are reported for 2020 (a non-bloom 

year) compared to 2015 (a bloom year). The results of the lagged exceedances are computed 

for the day in 2020 that the maxratio occurred and the bloom probability predicted by the 

occurrence model for this year. In real time, during the bloom season, the flow series would 

be up-to-date, and the model results would be reported for the most current date that flow 

had been reported for the site.
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Table 2.

Explanation of parameter in the cyanoHABs predictive models.

Parameter Variable Name Effect Description

Occurrence Model

X1 maxratio fixed maximum 1–19:21–55 day ratio

X2 inc15 fixed Number of days increasing in 15 days prior to maxratio day

X3 meanrt fixed Site’s mean residence time

X4 maxratio × meanrt fixed interaction term

α1 na random maxratio slope adjustment

α0 na random maxratio intercept adjustment

β0, …, β4 na na regression coefficients

Persistence Model

X1 maxratio fixed maximum 1–19:21–55 day ratio

X2 days fixed Number of days after maxratio

X3 binary indicator (1 or 0) fixed indicator of increase in flow

X4 binary indicator × maxratio fixed interaction term

X5 meanrt fixed site’s mean residence time

X6 maxratio × meanrt fixed interaction term

α1 na random maxratio slope adjustment

α0 na random maxratio intercept adjustment

β0, …, β6 na na regression coefficients

na = not applicable.
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