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Abstract The median- effect equation has been widely used to describe the dose- response rela-
tionship and identify compounds that activate or inhibit specific disease targets in contemporary 
drug discovery. However, the experimental data often contain extreme responses, which may signifi-
cantly impair the estimation accuracy and impede valid quantitative assessment in the standard 
estimation procedure. To improve the quantitative estimation of the dose- response relationship, we 
introduce a novel approach based on robust beta regression. Substantive simulation studies under 
various scenarios demonstrate solid evidence that the proposed approach consistently provides 
robust estimation for the median- effect equation, particularly when there are extreme outcome 
observations. Moreover, simulation studies illustrate that the proposed approach also provides a 
narrower confidence interval, suggesting a higher power in statistical testing. Finally, to efficiently 
and conveniently perform common lab data analyses, we develop a freely accessible web- based 
analytic tool to facilitate the quantitative implementation of the proposed approach for the scientific 
community.

Editor's evaluation
This article proposes methodology and accompanying software for robustly fitting dose- response 
curves where response is a number between 0 and 1. When response is transformed using the 
common logistic transformation, values close to 0 or 1 become large in magnitude, unduly influ-
encing the fitted curve after back- transformation and introducing bias in the estimate of certain 
parameters. As demonstrated through simulation and application to real data, the proposed 
approach, called Robust and Efficient Assessment of Potency, is less perturbed by these extreme 
measurements.

Introduction
The median- effect equation is a unified theory in medicine to describe the dose- response relation-
ship and identify agents or their combinations that activate or inhibit specific disease targets (Chou, 
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2006). It is a fundamental method established based on the pharmacological principle of mass- action 
law (Chou, 1976). As the common link for many biomedical systems, it has been used extensively to 
analyze in vitro experimental data and evaluate the potency of related drugs (Chou and Talalay, 1984; 
Chou and Rideout, 1991; Greco et al., 1995; Lee and Kong, 2009).

In practice, the median- effect equation can be estimated for drug efficacy or pathway inhibition 
from normalized data generated from experimental studies. Without knowing the true dose- effect 
curve during the experimental design and data collection, it is common to observe extreme values 
of (un)affected cell fraction that is close to the response of either 0 or 100% in the analytic dataset. 
Quantitatively, it poses a special analytic challenge to estimate the median- effect question in practice. 
The standard estimation approach, often based on a linear regression model after a logit transfor-
mation (Roell et al., 2017; Gadagkar and Call, 2015), could suffer badly from poor estimation in 
such situations. Figure 1 illustrates a preliminary example in that the standard approach is deficient 
in describing the median effect curve with a perturbation in one extreme data point. The variation 
in real experimental data, mostly caused by unavoidable measurement error, often at a much larger 
degree, therefore challenges the reliability of result presentation and interpretation for many drug 
assessment studies.

Additionally, the modeling strategy of deleting extreme values may not be feasible in many situ-
ations (Solzin et  al., 2020). For example, a meaningful drug concentration could consist of high 
inhibition (>90%) or low cell viability (<10%) in cancer research. It is not logical to ignore extreme 
observations when they are indeed biologically relevant for the target effect, not even to mention an 
associated loss of power and accuracy by leaving fewer data points for estimation. As illustrated in 
Figure 2, deleting the extreme values couldn’t eliminate the estimation bias, but only impaired the 
efficiency of interval estimation with wider nominal 95% confidence intervals (C.I.) and harmed the 
estimation accuracy with worse coverage probabilities.

Furthermore, it is dubious to apply the constant error variance, a default assumption in standard 
linear regression modeling, in dose- response estimation. As an assumption can be examined with 
repeated measures, many dose- response data have indicated either a constant variance before logit 
transformation or a positive correlation with drug dose. It is incongruous to apply linear regression if 
the assumption is violated due to error heteroscedasticity (Schmidheiny, 2009; Williams et al., 2007). 
Therefore, it is essential to develop a robust quantitative approach to estimating the median- effect 
equation.

Here, we introduce a novel approach to improving the quantitative assessment of dose- response 
relationship and drug potency, together with a user- friendly web- based analytic tool to facilitate the 
implementation. The proposed method to estimate the median- effect equation is established in the 
robust beta regression framework, which not only takes the beta law to account for non- normality and 
heteroskedasticity (Ferrari and Cribari- Neto, 2004), but also minimizes the average density power 

eLife digest Finding a new drug which is both safe and efficient is an expensive and time- 
consuming endeavour. In particular, establishing the ‘dose- effect relationship’ – how beneficial a 
drug is at different dosages – can be challenging. Predicting this curve requires gathering experi-
mental data by exposing and recording how cells respond to various levels of the drug. However, 
extreme values are often observed at low and high dosages, potentially introducing errors that are 
hard to correct in the prediction process. Yet, these extreme observations are sometimes genuine so 
researchers cannot just ignore them.

To improve dose- effect estimation, Zhou, Liu, Fang et al. developed a new general- purpose 
approach. It uses advanced statistical modelling to account for extremes in lab data. This strategy 
outperformed other methods when dealing with these observations while also providing higher effi-
ciency in data analysis with more uniform data in experiments.

To facilitate implementation, Zhou, Liu, Fang et al. set up a user- friendly tool baptized ‘REAP’; 
this free online resource allows scientists without advanced statistical experience to harness the new 
approach and to perform dose- effect analysis more easily and accurately. This could boost research 
across many different disciplines that examine the effects of chemicals on cells.

https://doi.org/10.7554/eLife.78634
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divergence (DPD) using a tuning parameter (Ghosh, 2019). We apply a data- driven approach to opti-
mizing the tuning parameter, which further compensates for the lack of robustness against outliers. 
In the simulation studies, we compare the robust beta regression framework with linear regression 
models either in the standard normal distribution error, or in the heavy- tailed t distribution error with 
3 degrees of freedom hopefully to downweigh the influence of extreme observations. Results from 
simulation studies under various scenarios confirm that the proposed approach consistently gives 
robust estimation for the median- effect equation. Particularly, we examine two important measures 
for drug binding affinity: the Hill coefficient, which signifies the sigmoidicity of the curve, and the 
overall effect, indicated by dose concentration for a specified (e.g. 50%) response (Shen et al., 2008; 
Sampah et al., 2011). When there are extreme outcome observations, the improvement of robust 
beta regression in estimation accuracy could be substantial. Moreover, simulation studies further illus-
trate that the proposed approach provides a narrower confidence interval, which in turn suggests 
a higher efficiency to achieve better power in statistical testing even without acquiring additional 
experimental data. Illustrative examples using real- world data for cancer research and SARS- CoV- 2 
treatment are provided. The analyses are implemented using the freely accessible web- based applica-
tion REAP, developed based on the Shiny package of R language, with which research scientists could 
conveniently upload their drug experiment dataset and perform the data analysis.

Results
REAP Shiny App
We developed a user- friendly analytic tool, coined ‘REAP’ (Robust and Efficient Assessment of Potency), 
for convenient application of the robust dose- response estimation to real- world data analysis. It is 

Figure 1. Dose- response curve fitting with extreme observations. The original data points are on the true curve. 
The leftmost data point is changed from 0.005 to 1e- 6, referring to a small white noise that cannot be visually 
recognized. The change leads to the obvious departure between the estimated curve by linear regression model 
(dotted) and the true curve (solid), which demonstrates that standard regression is sensitive to extreme values. 
The response at the true IC50 (dotdashed, vertical, left) is only 22% from the estimated curve; the estimated IC50 
(dotdashed, vertical, right) corresponds to the 70% fraction of cell affected, effecting a substantive 20% inflation 
(50% ->70%) in estimation error. In contrast, the estimated curve by beta regression model (dashed) is almost 
overlapped with the true curve (solid), which shows that BRM is much more robust to extreme values. LRM: linear 
regression model; BRM: robust beta regression model. Detailed model descriptions of LRM and BRM are provided 
in Materials and methods section.

https://doi.org/10.7554/eLife.78634
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established in an agile modeling framework under the parameterization of the beta law to describe a 
continuous response variable with values in a standard unit interval (0.1). We further exploited a robust 
estimation method of the beta regression, named the minimum density power divergence estimators 
(MDPDE) (Ghosh, 2019), for dose- response estimation, with the tuning parameter optimized by a 
data- driven method (Ribeiro and Ferrari, 2020). The technical details are provided in the Materials 
and methods.

REAP presents a straightforward analytic environment for robust estimation of dose- response 
curve and assessment of key statistics, including implementation of statistical comparisons and 
delivery of customized output for graphic presentation (Figure 3). The dose- response curve is a time- 
honored tool to convey the pharmacological activity of a compound. Through dose- response curves, 
we can compare the relative activity of a compound on different assays or the sensitivity of different 
compounds on an assay. REAP aims to make this job simple, estimation efficient, and results robust.

There are three sections in REAP: Introduction, Dataset and Output. Users can have both overview 
and instruction of REAP in the Introduction. Dataset is uploaded in the Dataset section. The input 
dataset is mandated to be in a csv file format and contains three columns of data respectively for 
drug concentration, response effect and group name, in a specific order. It is recommended that users 
normalize the response variable to the range of (0,1) by themselves. Otherwise, REAP automatically 
will truncate the values exceeding the boundaries to (0,1) using a truncation algorithm (see Appendix 
1 - Truncation Strategy). In the Output section, it generates a dose- response plot, along with tabu-
lation for effect and model estimations. A special feature of REAP is that it conveniently allows the 
users to specify the target effect level, rather than fixed at the common median effect (i.e., 50%), in 
dose estimation. We also enable hypothesis testing for comparisons of effect estimations, slopes and 
models (i.e. comparing both intercepts and slopes; see Materials and methods). By default, the x- axis 
of the dose- response plot is log- scaled. In the plot, users can choose to add mean values and sample 
standard deviations for data points under the same agent and dose level. Both plots and estimation 
tables are downloadable on REAP to plug in presentations and manuscripts for result dissemination.

Figure 2. Comparison of estimation efficiency and accuracy using linear regression model and beta regression model. Deleting the extreme values 
could not eliminate the bias (panel A), but only harmed the accuracy with worse coverage probabilities (panel B) and impaired the efficiency of interval 
estimation with wider nominal 95% confidence intervals (panel C). A total of 1000 data sets were generated following the data simulating process 
described in Appendix 1, using the dose sets and true dose- response curve under 7 dose setting with a precision parameter of 100. Responses ≤5% or 
≥95% were considered extreme responses. Dashed line in panel B denotes 95% nominal coverage probability. BRM: beta regression with extreme data 
points; LRM: linear regression model with extreme data points; LRM(t): linear regression model with truncated dataset after deleting extreme values. 
Detailed model descriptions of LRM and BRM are provided in Materials and methods section.

https://doi.org/10.7554/eLife.78634
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The open- sourced REAP is freely available and accessible at https://xinying-fang.shinyapps.io/ 
REAP/. We demonstrated it in two real- world examples, after presenting the simulation results, to 
illustrate the functionality of REAP.

Simulations
We conducted simulation studies to investigate the robust beta regression model, in comparison to 
linear regression models with data transformation, either under a normal distribution error (imple-
mented with R package ‘stats’) or a heavy- tailed t distribution error with 3 degrees of freedom (imple-
mented with R package ‘heavy’), to characterize the median- effect equation under different scenarios. 
The model assessment is established based on both the point estimation and interval estimation 
derived from each method. Details on the simulation setting are described in the Appendix 1 - Data 
simulating process.

With data simulated using normal error terms, the robust beta regression provides sensible esti-
mation of IC50, IC90,  β1 , and  β0  from median- effect equation (Figure 4, Appendix 1—table 1). Partic-
ularly, when there are extreme outcome observations, the robust beta regression manages much 

Figure 3. REAP App interface, with a highlight of Output section. Using the robust beta regression method, REAP produces a dose- response curve plot 
with effect and model estimations. The left panel allows users to specify model features and design plot specifics. REAP also provides hypothesis testing 
results to compare effect estimations, slopes and models.

https://doi.org/10.7554/eLife.78634
https://xinying-fang.shinyapps.io/REAP/
https://xinying-fang.shinyapps.io/REAP/
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Figure 4. Comparison of the point estimates and 95% confidence intervals using linear regression model, heavy- tailed linear regression model and 
robust beta regression model, with data simulated from normal error term. The vertical solid lines indicate the true values. The dots represent the 
averaged point estimates and the bars represent the averaged lower and upper bound of 95% CIs. The point estimation by robust beta regression 
is consistently closer to the true value with a narrower 95% CI compared to the linear regression model. The 95% CI of heavy- tailed linear regression 
underestimates the nominal coverage probability. LRM: linear regression model; LRM- 7: LRM under 7- dose dataset with extreme data points; LRM- 6noL: 
LRM under 6 dose dataset after removing the highest dose data point; LRM- 6noS: LRM under 6- dose dataset after removing the lowest dose data 
point; LRM- 7lessE: LRM under 7- dose dataset with less extreme data points; LRM- 7NCP: LRM under 7- dose dataset with extreme data points and dose- 
dependent precision; HLRM: heavy- tailed linear regression model; HLRM- 7: Heavy- tailed LRM under 7- dose dataset with extreme data points; HLRM- 
6noL: Heavy- tailed LRM under 6- dose dataset after removing the highest dose data point; HLRM- 6noS: Heavy- tailed LRM under 6- dose dataset after 
removing the lowest dose data point; HLRM- 7lessE: Heavy- tailed LRM under 7- dose dataset with less extreme data points; HLRM- 7NCP: Heavy- tailed 
LRM under 7- dose dataset with extreme data points and dose- dependent precision; BRM: robust beta regression model; BRM- 7: BRM under 7- dose 
dataset with extreme data points; BRM- 6noL: BRM under 6- dose dataset after removing the highest dose data point; BRM- 6noS: BRM under 6- dose 
dataset after removing the lowest dose data point; BRM- 7lessE: BRM under 7- dose dataset with less extreme data points; BRM- 7NCP: BRM under 7- 
dose dataset with extreme data points and dose- dependent precision. Detailed model descriptions of LRM, HLRM, and BRM are provided in Materials 
and methods section.

https://doi.org/10.7554/eLife.78634
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lower bias and root- mean- square error (RMSE) for point estimates and better coverage probability 
for interval estimates than the linear regression model with normal distribution error. For data without 
extreme values, their performance is comparable in bias, RMSE and coverage probability, but the 
linear regression model has much wider 95% CIs (Figure 4). Indeed, the wider 95% CIs occur across 
all the scenarios, indicating higher estimation efficiency of the robust beta regression approach. In 
contrast, the heavy- tailed linear regression model demonstrates improved bias and RMSE in point 
estimation from the standard linear regression, but the nominal 95% CIs are significantly underes-
timated with coverage probability below 50% in most cases (Appendix 1—table 1). Therefore, the 
heavy- tailed linear regression model, although sometimes provides good point estimations, cannot 
maintain consistently robust and statistically efficient estimations. Overall, the robust beta regression 
model is the most robust and stable in estimating the median- effect equation with reliable perfor-
mance in both point estimations and 95% CI coverage probabilities.

In parallel, similar results are obtained consistently with data simulated using beta error terms, 
which induces heteroscedasticity (smaller variation on the two ends and bigger in the middle) at 
different dose levels (Appendix 1—figure 1, Appendix 1—table 2). All the results above demon-
strate the sensitivity of regression models in dealing with datasets including extreme values. In addi-
tion, the result comparisons between the seven- dose set and the six- dose set with the largest or 
smallest dose eliminated display the potential worse influence of deleting extreme values directly in 
modeling dose- response using linear regression, which further notarizes the robustness and efficiency 
of the proposed robust beta regression.

Overall, the simulation study suggests that the robust beta regression model produces well- 
calibrated dose- response curves while being more robust and powerful than the standard regression 
model and the heavy- tailed linear regression model in estimating the median effect equation.

B-cell lymphoma data
The first example of REAP application is dose- response curve estimation of the same agent under 
different cell lines. The data was originally from a study on using a drug called auranofin in treating 
B- cell lymphomas such as relapsed or refractory mantle cell lymphoma (MCL) (Wang et al., 2019). 
As an FDA- approved treatment of rheumatoid arthritis, auranofin targets thioredoxin reductase- 1 
(Txnrd1), and was repurposed as a potential antitumor drug to effectively induce DNA damage, 
reactive oxygen species (ROS) production, cell growth inhibition, and apoptosis in aggressive B- cell 
lymphomas, especially in TP53- mutated or PTEN- deleted lymphomas.

In the experiment, the effect of auranofin was evaluated in six MCL cell lines (Z- 138, JVM- 2, Mino, 
Maver- 1, Jeko- 1, and Jeko- R) with auranofin in concentrations ranging from 0 to 5 μM for 72 hr and 
tested cell viability using a luminescent assay. The interval bars of observed dose- response in Figure 5 
show that the sample variance of error from repeated measurements decreased with the increase of 
auranofin concentrations. To account for the heteroscedasticity and asymmetry in the variance, we 
enable a dose- dependent precision (proportional to inverse variance) in REAP, adding  log

(
dose

)
  as an 

Figure 5. Dose- response curve estimation of auranofin (μM) under different MCL cell lines. The dose- response curve was fitted with a dose- dependent 
precision with  log

(
dose

)
  as an additional regressor for the precision estimator. Observed dose effects are displayed with interval bars, which end with 

arrows when estimated intervals exceed (0,1). Triangles at the bottom indicate IC50 values for each MCL cell line. MCL: mantle cell lymphoma.

https://doi.org/10.7554/eLife.78634
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additional regressor for the precision parameter. Figure 5 shows the fitted dose- response curves with 
the dose- dependent precision. The test for homogeneity (p- value <0.0001) suggests distinct dose- 
response between cell lines. The estimation of intercepts, hill coefficients and pairwise comparisons 
of IC50 estimations are provided in Appendix 1—table 3.

SARS-CoV-2 data
The second example is on the dose- response curve estimation in antiviral drug development for coro-
navirus disease 2019 (COVID- 19). At the beginning of 2020, COVID- 19 broke out at an unprecedented 
pace internationally, but there were limited therapeutic options for treating this disease. Therefore, 
many compounds and their combinations were rapidly tested in vitro against the SARS- CoV- 2 virus to 
identify potentially effective treatments and prioritize clinical investigation.

In the data (Bobrowski et al., 2021), the benchmark compound collection consists of five known 
antivirals, including remdesivir, E64d (aloxistatin), chloroquine, calpain Inhibitor IV and hydroxychlo-
roquine. The in vitro experiment was performed using the same biological batch of SARS- CoV- 2 
virus and conducted in biosafety level- 3. In the original publication (Bobrowski et  al., 2021), the 
dose- response curves were fitted by linear regression, which could yield inconclusive estimation (e.g. 
hydroxychloroquine in Figure 1G of Bobrowski et al., 2021), while the estimated inhibition tends to 
exceed 1 when concentration is larger than 10 µM. REAP gives reasonable estimation for the dose- 
response curves (Figure 6). The hypothesis testing results show that at least one slope estimation is 
different from other antivirals (p- value = 0.0003) and at least one EC50 estimation is different from 
others (p- value = 0.003). Calpain Inhibitor IV shows a higher potency than other agents including 
hydroxychloroquine (p- value = 0.0038, Appendix 1—table 4).

Discussion
Quantifying the potency of a compelling substance is always a central topic in life sciences (Schin-
dler, 2017). It is a vital component of research in pharmacology, but also prevalent in the fields of 
toxicology, environmental science, agrochemistry, and medicine, among many others. For instance, 
the description of dose- response curves can provide the initial toxicological risk assessment (National 
Research Council, 2007), and guide in silico modeling of toxic doses to humans and the environment 
(Blaauboer et al., 2012). Based on proper identification of dose- response relationship from in vitro 
assays, studies can successfully predict systemic toxicological effects in vivo without additional in silico 
modelling (Groothuis et al., 2015). Nevertheless, it necessitates accurate and reliable description of 
the dose- response curve, which further demands robust and efficient modeling strategies to account 

Figure 6. Dose- response curve estimation of anti- viral drugs under the same biological batch with SARS- CoV- 2 data. The robust beta regression gives 
reasonable estimations to the dose- response curve of hydroxychloroquine, compared to the inconclusive dose- response curve fitted by linear regression 
in Bobrowski et al. (2020). The plot is generated without selecting the option of mean and confidence interval for observations. Triangles indicate the 
estimated EC50 values for each drug.

https://doi.org/10.7554/eLife.78634
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for embedded variability in observed response and to derive solid inference with valid quantification 
of uncertainty.

The dose- response estimation could be substantially biased by the standard regression modeling. 
In the illustrative example (Figure 1), the estimated IC50 dose indeed effects the 70% fraction of cell 
affected, while the estimated response at the true IC50 dose is only 22%. Such a large discrepancy is 
sourced by a small (<0.5%) single measurement error, which is common and inevitable in any regular 
in vivo experiment, but could engender a profound impact on the assessment of drug potency and 
determination of synergy in drug combinations. In addition, the modeling strategy of deleting those 
extreme values (e.g. Figure 2, or 6noL and 6 noS datasets in Figure 4 and Appendix 1—figure 1) is 
futile to improve the poor performance of standard regression model, but may further impair the esti-
mation efficiency and accuracy. In general, it fails to reduce bias but only introduces larger uncertainty 
in estimation of dose concentration, especially at extreme responses (e.g. IC90). On the other hand, a 
heavy- tailed error distribution may help to stabilize the point estimation, but the interval estimation 
could be largely under- estimated with poor coverage probabilities.

We develop REAP for assessment of drug potency to address concerns in this regard. It has 
substantial advantages over existing methods by reducing the impact of random errors due to implicit 
variations in the experimental data. To our best knowledge, it is also for the first time that beta 
regression is introduced to dose- response estimation. The underlying modified robust beta regres-
sion model estimated by the data- driven tuning parameter is resilient to estimation bias caused by 
extreme observations, which is a routinely encountered situation for deficient dose- response esti-
mation using the standard estimation approach. The proposed approach is also efficient in quantita-
tive characterization of dose- response curves with narrower confidence intervals for key estimators. 
Furthermore, REAP can simultaneously model the data heterogeneity with a dose- dependent preci-
sion component (Figure 5). It is simply different from other dose- response methods, in which a vector 
of weights have to be (possibly mis- )specified externally. REAP is an open- source and user- friendly 
platform, developed for diverse non- computational scientists for hands- on wet- laboratory data anal-
ysis in regular use, and can be hosted within R shiny environment under Windows, Linux, and Mac 
systems or deployed in Docker available as a web server.

Our work potentially can be useful in applications of drug screening. The proposed method and 
the developed REAP App allow for the robust and efficient estimation and accounting for outliers as 
well, making it fitted particularly in a high- throughput setting. As the result of a complex and dynamic 
cascade of events, exposure time is another important factor ultimately affecting the dose- response. 
For in vitro experiments measured at different time points in a choice of cell- lines and expressed by 
a variety of assays (Byrne and Maher, 2019), the proposed modeling framework can be naturally 
extended to model time- dependent cytotoxicity while controlling for fixed or random effects. Further-
more, the application of robust and efficient dose- response estimation can be integrated into methods 
to identify drug interaction effect (Lee and Kong, 2009; Lee et al., 2007). There is a venerable history 
that multi- agent combination therapies demonstrate great advantages in improving therapeutic effi-
cacy and revolutionize patient outcomes in a wide range of diseases. Robust and efficient estimation 
of the dose- response curve would be crucial in investigation of adequate drug combinations.

The developed method has limitations. We presented a model of the median effect equation for 
dose- response curve estimation based on mass action law. While in specific scenarios other laws may 
be considered more suitable to describe the biomedical systems, the current modeling framework 
can be naturally adapted for other dose- response functions like probit (via cumulative normal distri-
bution) and Weibull model (Christensen, 1984), or any other continuous distribution functions. In 
addition, the median- effect equation to characterize pharmacological activity assumes the compound 
can affect all the cells. From a quantitative perspective, a compound that cannot reach high binding 
affinity will yield an over- conservative estimation for median effective dose of a drug. However, in 
comparison to the sensitivity of different compounds in an assay, it is not harmful because the less 
effective compounds will be more easily identified. If it is a concern that the maximal effects of candi-
date compounds are different and the aim is to accurately model the dose- response curve, the Emax 
model could be a better choice (Lee et al., 2010). Furthermore, the robust beta regression approach 
in REAP cannot handle values equal or less than 0, or equal or greater than 1. Thus, we developed a 
sequential data truncation algorithm in REAP to overcome the limitation of the conventional transfor-
mation (y * (n−1)+0.5) / n, which could be too rough in dose- response curve estimation particularly 

https://doi.org/10.7554/eLife.78634
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when the sample size n for each group is relatively small. Although empirically we have validated it 
using simulated data, the algorithm could be improved by future work to retain information more 
efficiently.

In summary, a good modeling strategy must effectively characterize the nature of the observed 
dose- response pattern (Lyles et al., 2008). Rapid advances in novel drug development and consid-
erable deficiency in modeling data with extreme values offer an appealing opportunity for next- 
generation quantitative approaches. While many aspects of the techniques discussed here fit in the 
statistical framework of robust beta regression, our aim is to clearly apply and rigorously customize 
the analytic considerations, to reduce bias and ameliorate efficiency in routinely used dose- effect 
estimation, and to facilitate the convenient analytic implementation and dissemination. Experimental 
conditions and candidate drug potency could inevitably vary in practice, but REAP provides a great 
tolerance for points with extreme values, solid support for accurate and efficient dose- response curve 
estimation, and useful reference to the future development of methodology in drug investigation. 
Overall, we anticipate that our work will contribute more to quantitative analysis in assessment of drug 
potency in preclinical research.

Materials and methods
Median-effect equation and dose-response curve
The median- effect equation describes a popular model of the dose- response relationship based on 
the median effect principle of the mass action law in various biological systems (Chou, 1976). Assume 

 fa  and  fu  are the fractions of the system affected and unaffected by a drug concentration  d . The 
median- effect equation states that

 
fa
fu =

(
d

Dm

)m
,
  (1)

where  m  is the Hill coefficient signifying the sigmoidicity of the dose- effect curve and  Dm  is the 
dose of a drug required to produce the median effect, which is analogous to the more familiar  IC50  
(drug concentration that causes 50% of the maximum inhibitory effect),  ED50  (half- maximum effective 
dose), or  LD50  (median lethal dose) values (Ghosh, 2019). For example, if an inhibitory substance is 
of interest, the parameter  m  measures the cooperativity in the binding of multiple ligands to linked 
binding sites, and the parameter  Dm = IC50  , defined by the concentration that causes 50% of the 
maximum inhibitory effect.

Given  fa + fu = 1 , the median- effect Equation 1 is equivalent to

 logit
(
fa
)

= log fa
fu = −logit

(
fu
)

= − log fu
fa = m

(
log d − log Dm

)
,  (2)

where  logit
(
p
)
  denotes the logit function  log p

1−p  . The Equation 2 shows a log- linear relationship 
between the drug dose  d  and its effect  fa  (or  fu  , if it is, for example, the % survival of interest) after 
a logit transformation. Because from a modeling perspective the identical strategy can be applied to 
model both  fa  and  fu  , for the effect on cell fraction  E , we can rewrite Equation 2 to be:

 logit
(
E
)

= log E
1−E = β1 log d + β0  (3)

where  β0  is the intercept and  β1  the slope of the response curve. A linear regression model (LRM) 
can be applied in the form of Equation 3 with a standard normal distribution error. In simulation 
studies, we also examine Equation 3 with a heavy- tailed t- distribution error, denoted by heavy- tailed 
linear regression model (HLRM).

In this presentation, the median effect dose

 
Dm = exp

(
−β0

β1

)
,
  (4)

the Hill coefficient

 

m=




β1

−β1

if
E = fa
E = fu

  (5)
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and the dose- response curve

 E = logit−1 (β1 log d + β0
)

,  (6)

where 
 
logit−1 (x

)
= exp

(
x
)

1+exp
(

x
)
 
 is the inverse- logit function.

Beta regression model for dose-response curve estimation
We will review the beta regression model which for the first time will be applied in dose- response 
estimation. The effect  E  and the parameters  β =

(
β0,β1

)
  in Equation 3 cannot be directly observed, 

but they can be estimated using experimental data, in which the observed sample cell fraction  y  
produced by the drug dose  d  is a random variable with mean  E . It is clear that effective estimation 
must properly account for random variation and be based upon a model that not only matches the 
nature of the response variable, but adequately characterizes the observed dose- response pattern 
(Lyles et al., 2008).

Among all the unknown quantities, the parameters  β  could be first estimated and play a funda-
mental role in supporting the inference for others. In the standard estimation procedure based on 
linear regression,  logit

(
y
)

= log y
1−y  is regressed on  log d  to get the inference on parameters  β . Subse-

quently, the dose- response curve can be estimated by Equation 6, and  
(
Dm, m

)
  can be derived based 

on Equations (4) and (5) for median- effect Equation 2. Because the extreme values of  y  close to 0 
or 1 could yield very large values of  logit

(
y
)
  (approaching to  −∞  or  +∞ , respectively, if  y → 0  or 1), 

and induce significant bias in estimation of  β , the accuracy of the estimated dose- response curve and 
median- effect equation is in question when there exist extreme values in the dataset.

The beta regression model describes a response variable  y  with continuous values restricted to the 
open standard unit interval (Johnson et al., 1995; Simas et al., 2010). In a classic beta regression 
framework, the beta regression model uses a parameterization of the beta law that is indexed by 
the mean parameter μ, and the precision parameter  ϕ  that controls the overall variation (Ferrari and 
Cribari- Neto, 2004). To model the dose- response relationship for the cell fraction  E , we assume that 
the response  y  is a beta- distributed random variable and its mean  µ = E  has the form of Equation 6, 
where  d  is the dose producing effect  E ,  β1  and  β0  are the regression parameters. Estimation of regres-
sion parameters  β  can be performed using maximum likelihood method to derive point estimate  β  
and covariance matrix  Σ .

Beta regression is resistant to extreme values and provides reliable estimations (Figure 1). Compared 
with the standard approach, which applies a non- linear transformation in the response for an approx-
imation to the normal distribution, the beta density can take on a variety of shapes to account for 
non- normality and skewness (Smithson and Verkuilen, 2006). In the presence of heteroskedasticity 
and asymmetry, two common problems frequently observed in limited range continuous response 
data, an empirical study showed that the beta regression provided the best estimation among several 
alternatives (Kieschnick and McCullough, 2016).

Robust beta regression model with MDPDE
We will present a modified robust beta regression approach in REAP implementation, which is estab-
lished based on density power divergence for robust estimation (Ghosh, 2019), but further improved 
after we introduce a data- driven method to identify the optimal tuning parameter. The standard beta 
regression potentially could still be sensitive against outliers because its inference is based on the 
maximum likelihood estimation. Ghosh, 2019 developed the robust minimum density power diver-
gence estimators (MDPDE) that address the problem by minimizing the average density power diver-
gence (DPD)

 

dα(ĝ, g) =
´

g1+α − 1+α
α

´
ĝgα + 1

α

´
ĝ1+α,

d0(ĝ, g) = lim
α→0

dα(ĝ, g)
´

ĝlog
 ĝ

g

 ,
  

(7)

between the empirical density  g  and the beta model density function  g ≡ Beta
(
µϕ,

(
1 − µ

)
ϕ
)
  with 

 µ = logit−1 (β1 log d + β0
)
  .  α  is a non- negative tuning parameter, smoothly connecting the likelihood 

disparity (at  α  = 0) to the L2- Divergence (at  α  = 1). The parameter of interest  β  is estimated by mini-
mizing the DPD measure between  gi  and the density,  gi  ,
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n−1

n∑
i=1

dα(ĝi(·), gi(·, θ))
  

(8)

where  θ =
(
β,ϕ

)T
 . After mathematically simplifying Equation 8, (Ghosh, 2019),  θ  can be equiva-

lently estimated by minimizing the objective function using the estimation equations:

 
Hn,α

(
θ
)

= n−1
n∑

i=1

[
Ki,α

(
θ
)
− 1+α

α gi
(
yi, θ

)α]
  

(9)

where 
 
Ki,α

(
θ
)

= B
((

1+α
)
µiϕ,

(
1+α

)(
1−µi

)
ϕ−α

)
B
(
µiϕ,

(
1−µi

)
ϕ
)α

 
.

MDPDE improves the standard beta regression with the DPD measure and a fixed tuning param-
eter. The recommended α is around 0.3 to 0.4, but simply assigning a fixed α in [0.3, 0.4] is not appli-
cable in many cases. Here we adopted a data- driven method (Ribeiro and Ferrari, 2020) to identify 
the optimal α. The search for the optimal α starts with a grid of α, a pre- defined αmax and grid size  ρ , 
which generates a sequence of equally spaced  {αk}m

k=0 (0 = α0 < α1 < · · αm ≤ αmax) . MDPDE calcu-
lates the corresponding θ and se(θ) with each α so that we get a vector of standardized estimates:

 
zαk =

(
�θ1
αk√

nse
(�θ1

αk

) , . . . ,
�θp
αk√

nse
(�θp

αk

)
)T

  

The standardized quadratic variations (SQV) are defined by:

 SQVαk = p−1||zαk − zαk+1 ||.  

We compare each  SQVαk  with a pre- defined threshold  L
(
L > 0

)
 . If all  αk  satisfy the stability condi-

tion of  SQVαk < L , then the optimal  α  equals the minimal  α  in  αk  . Otherwise, restart the search with 
a new grid of  αk  . The new grid of the same size  p  is picked from the sequence  

{
αk

}m
k=0  starting from 

the largest  αk  that fails the stability condition. Repeat searching until all  αk  in the current grid satisfy 
the stability condition or  αmax  is reached. If the stability condition is satisfied before  αmax  is reached 
then optimal  α  equals the minimal value in the grid of  αk  . If  αmax  is reached, then optimal α equals 0, 
which is equivalent to the maximum likelihood estimation. We denote this approach by robust beta 
regression model (BRM) in the simulation study.

Point estimate and its confidence interval for drug activity 
measurements
The objective of analysis is to characterize the dose- response curves in equation (2) and quantify in 
vitro drug potency. Popular drug activity measurements include Hill coefficient  m  and median effect 
dose  Dm  . In some circumstances, other measurements such as instantaneous inhibitory potential (IIP), 
which directly quantifies the log decrease in single- round infection events caused by a drug at a clini-
cally relevant concentration, are of special interest (Shen et al., 2009).

The MDPDE for beta regression model provides a robust strategy to estimate  β , from which the 
point estimates and confidence intervals of relevant drug activity measurements can be derived. 
Mathematically, those drug activity quantities can be written as functions of parameters  β  with an 
explicit form. Subsequently, their point estimates and confidence intervals can be derived based on 
the inference of  β . For example, given a point estimate  ̂β = (β̂0, β̂1) , the point estimate for  ̂m  ,  ̂Dm  as 
a single value, and  ̂E  as a function of dose  d  can be computed using Equations 4–6.

It is important to construct the confidence interval around the point estimate to gauge the estima-
tion uncertainty. With different levels of measurement error from either well- managed or lousy exper-
iments, the levels of evidence vary for statistical inference, even if it derives the same point estimates 
for the intercept  β0  , slope  β1  and the corresponding dose- response curve. Given the point estimate  ̂β  
and its positive- definite covariance matrix  Σ  to account for variability in observed response, we apply 
the multivariate delta method and approximate the variance estimate after assuming asymptotic 
normality (Bickel and Doksum, 2015). As demonstrated in our simulation studies, the constructed 

 
(
1 − α

)
× 100%  confidence interval consistently provides better results to quantify the  

(
1 − α

)
× 100%  

coverage probability. More importantly, the width of the constructed confidence interval was narrower 
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than that from a linear regression model, suggesting that our approach is more efficient with a higher 
statistical power (Appendix 1—tables 1 and 2).

Comparison of the dose-response curves
When we estimate multiple dose- response curves with the data collection experiments conducted 
in a similar setting, it is often of interest to statistically compare the drug potency and/or Hill coef-
ficients. A typical comparison may occur when we examine the similarity of response from different 
drugs, explore the additional effect of a drug combined with certain monotherapy, or assess the 
homogeneity of a drug to different patient samples or cell lines. In the beta regression framework, 
the statistical comparison can be conducted by first comparing independent fits for each curve with 
a global fit that shares the common parameters among different groups. Subsequently, the likelihood 
ratio test can be applied to examine whether the same Hill coefficient or one dose- response curve 
can adequately fit all the data. The only exception is to assess whether median effect doses are the 
same in different groups, while an F test is used for the single parameter testing. If the global test for 
potency shows a significant p- value, a pairwise comparison can be conducted using two- sided t- test 
for the ordered groups with Benjamini- Hochberg correction for multiplicity.
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Appendix 1
Truncation strategy
Based on the median- effect equation method by Chou TC, the software “CompuSyn” was published. 
In the data entry illustration of this software, they pointed out the sensitivity limits of data points, for 
example too low (fa <0.02) and too high (fa >0.99) and suggested that such data points out of effect 
may be edited or deleted.

There are some data truncation algorithms in the literature. Two obvious remedies are proportionally 
“shrinking” the range to a sub- range nearly covering the unit interval (e.g., [.00001,.99999]) or 
simply adding a small amount to 0- valued observations and subtracting the same amount from 
1- valued observations while leaving the other observations unchanged. Macmillan and Creelman, 
2005 mentioned a method that is frequently used in practice in areas such as signal detection is to 
add 1/(2n) to a 0 observation and subtract 1/(2n) from a 1 observation, where n is the total number of 
observations. Besides, Smithson and Verkuilen, 2006 demonstrated that a useful transformation in 
practice is (y * (n−1)+0.5) / n, which is also mentioned by the documentation for R Betareg package 
for conditions when data assumes the extremes 0 s and 1 s. In dose- response curve estimation, this 
treatment could be too rough, especially when n is small.

To minimize the impact from truncation of data points, we apply the following algorithm. The 
first step is to shrink the data range to [1e- 9, 1- 1e- 9]. If there still exist abnormal conditions, we will 
sequentially shrink the data range of abnormal ones to [1e- 8, 1- 1e- 8], …, until [1e- 3, 1- 1e- 3] or non- 
exist of abnormal conditions. Then, if it still exists, though rarely, the transformation of (y * (n−1)+0.5) 
/ n, where n is the sample size, in the documentation of R Betareg package would be applied. We 
have conducted simulations to test this algorithm in various scenarios with different errors and it 
achieved reasonable performance in handling all conditions.

Data simulating process
In the simulation study, both robust beta regression and linear regression are applied to estimate 
dose- response curves under different scenarios. The point estimations and 95% confidence intervals 
of IC50, IC90,  β0  and  β1  under each method will be obtained and then, be compared to evaluate the 
model performance.

To generate data for simulation studies, we define the dose set for simulation as 0.1, 0.2, 0.4, 
0.8, 1.6, 3.2 and 6.4  µM  , which consists of 7 doses, and choose the appropriate true curve with 

 β1 = 2.2098  and  β0 = 0.4931  such that the corresponding effects of the smallest and largest dose are 
0.01 and 0.99, respectively. Let’s call the true curve “ E = f

(
log

(
dose

))
 ”. Then, the following equation 

is applied to generate data by inducing random error into effect:

 E = true + error = f
(
log

(
dose

))
+ error  

We simulated data with two types of errors, normal error term and beta error term, to examine 
the accuracy and sensitivity of model performance in general setting. The normal error term is 
implemented with different standard deviations (SDs), for example 0.005, 0.01 and 0.05, while the 
beta error term is under different precision parameter  ϕ , for example 35, 15, 5. Note that the larger 
the  ϕ , the smaller the variance. By implementing under different SD or  ϕ , it allows for generation of 
not only well- controlled data which is assumed for experiments with almost no error, but also noised 
data which is more identical to real- world data. The generated data is 1 replicate given each dose 
level with the total simulation size equal 10,000 for each choice of SD or  ϕ . Since the defined dose 
set is symmetric, we set up several scenarios under both error terms above: (1) full 7- dose set with 
extreme values; (2) 6- dose set after removing the largest dose; (3) 6- dose set after removing the 
smallest dose; (4) full 7- dose set with less extreme values by obtaining the smallest and largest dose 
levels with corresponding effect as 0.1 and 0.9 under the same true curve. The scenarios 1–4 assume 
constant precision parameter during data simulation and modeling process.

To mimic the real- world environment of data collections, the assumption of equal variance doesn’t 
always hold. Thus, we also set up the 5th scenario which uses full 7- dose set with extreme values with 
non- constant SD or precision parameter during data simulation and modeling process, but linearly 
dose- dependent. For normal error term, the modified SDs for data simulation have the form of 

 SD∗ =
(
γ0 + γ1 ∗ log.dose

)
∗ SD ; for beta error term, the modified precisions  ϕ  for data simulation 

https://doi.org/10.7554/eLife.78634
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have the form of  ϕ
∗ =

(
γ0 + γ1 ∗ log.dose

)
∗ ϕ . Assuming the same true dose- response curve as the 

previous simulation, we pre- defined  γ0  and  γ1  as 0.25 and 0.1378 such that the average of  SD∗  is 
close to  SD , and the average of  ϕ

∗
  is close to  ϕ , respectively.

Appendix 1—figure 1. Comparison of the point estimates and 95% confidence intervals using linear regression 
model, heavy- tailed linear regression model and robust beta regression model, with data simulated from beta 
error term. The vertical solid lines indicate the true values. The dots represent the averaged point estimates 
and the bars represent the averaged lower and upper bound of 95% CIs. The point estimation by robust beta 
regression is consistently closer to the true value with a narrower 95% CI compared to the linear regression 
model. The 95% CI of heavy- tailed linear regression underestimates the nominal coverage probability. LRM: 
linear regression model; LRM- 7: LRM under 7 dose dataset with extreme data points; LRM- 6noL: LRM under 6 
dose dataset after removing the highest dose data point; LRM- 6noS: LRM under 6 dose dataset after removing 
the lowest dose data point; LRM- 7lessE: LRM under 7 dose dataset with less extreme data points; LRM- 7NCP: 
LRM under 7 dose dataset with extreme data points and dose- dependent precision; HLRM: heavy- tailed linear 
regression model; HLRM- 7: Heavy- tailed LRM under 7 dose dataset with extreme data points; HLRM- 6noL: Heavy- 
tailed LRM under 6 dose dataset after removing the highest dose data point; HLRM- 6noS: Heavy- tailed LRM under 
6 dose dataset after removing the lowest dose data point; HLRM- 7lessE: Heavy- tailed LRM under 7 dose dataset 
with less extreme data points; HLRM- 7NCP: Heavy- tailed LRM under 7 dose dataset with extreme data points and 
dose- dependent precision; BRM: robust beta regression model; BRM- 7: BRM under 7 dose dataset with extreme 
data points; BRM- 6noL: BRM under 6 dose dataset after removing the highest dose data point; BRM- 6noS: BRM 
Appendix 1—figure 1 continued on next page
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under 6 dose dataset after removing the lowest dose data point; BRM- 7lessE: BRM under 7 dose dataset with 
less extreme data points; BRM- 7NCP: BRM under 7 dose dataset with extreme data points and dose- dependent 
precision.

Appendix 1—table 1. Simulation result of bias, RMSE and 95% CI coverage probability 
corresponding to normal error terms.
Scenario Method Bias RMSE 95% CI Coverage Probability

IC50 IC90  β0  β1 IC50 IC90  β0  β1 IC50 IC90  β0  β1 

(a)data simulated using normal error term with SD = 0.005

7 doses 
with 
extreme 
values

LRM 0.005 –0.047 0.037 0.152 0.098 0.298 0.525 0.557 0.954 0.773 0.943 0.666

HLRM 0.000 0.004 0.002 0.004 0.018 0.102 0.063 0.169 0.468 0.335 0.463 0.225

BRM 0.000 –0.004 0.003 0.011 0.013 0.130 0.044 0.088 0.981 0.927 0.975 0.889

6 doses 
after 
removing 
largest

LRM 0.009 –0.01 –0.024 0.098 0.045 0.184 0.129 0.517 0.967 0.921 0.971 0.691

HLRM –0.001 0.001 0.002 –0.001 0.014 0.063 0.037 0.065 0.453 0.408 0.467 0.250

BRM 0.001 0.005 –0.00 0.005 0.009 0.132 0.024 0.089 0.955 0.892 0.950 0.844

6 doses 
after 
removing 
smallest

LRM –0.007 –0.036 0.070 0.102 0.037 0.306 0.362 0.533 0.969 0.623 0.933 0.695

HLRM 0.001 0.007 –0.002 –0.001 0.014 0.083 0.046 0.064 0.456 0.249 0.400 0.259

BRM –0.001 0.000 0.005 0.005 0.009 0.151 0.039 0.089 0.956 0.872 0.940 0.853

7 doses 
with less 
extreme 
values

LRM 0.000 –0.000 0.000 0.001 0.005 0.030 0.016 0.026 0.891 0.828 0.883 0.799

HLRM 0.000 0.000 0.000 0.000 0.005 0.031 0.016 0.028 0.668 0.599 0.661 0.567

BRM 0.000 0.000 0.000 0.000 0.004 0.026 0.013 0.024 0.864 0.823 0.860 0.800

7 doses 
with 
extreme 
values 
and dose- 
dependent 
precision

LRM –0.016 –0.047 0.137 0.111 0.069 0.409 0.583 0.520 0.965 0.573 0.921 0.685

HLRM 0.000 0.003 –0.001 –0.001 0.008 0.049 0.027 0.036 0.325 0.188 0.290 0.151

BRM 0.000 0.023 –0.003 –0.011 0.003 0.196 0.023 0.095 0.957 0.849 0.931 0.794

(b)data simulated using normal error term with SD = 0.01

7 doses 
with 
extreme 
values

LRM 0.030 –0.200 0.166 0.804 0.224 0.544 1.234 1.305 0.958 0.699 0.950 0.716

HLRM 0.000 0.006 0.025 0.105 0.031 0.238 0.199 0.795 0.408 0.286 0.404 0.194

BRM 0.001 –0.039 0.013 0.060 0.030 0.172 0.094 0.155 0.981 0.931 0.976 0.892

6 doses 
after 
removing 
largest

LRM 0.040 –0.088 –0.125 0.549 0.101 0.280 0.314 1.245 0.966 0.924 0.972 0.734

HLRM –0.004 0.007 0.008 –0.008 0.027 0.125 0.075 0.123 0.424 0.384 0.445 0.241

BRM 0.005 –0.012 –0.007 0.040 0.019 0.140 0.044 0.148 0.954 0.893 0.949 0.850

6 doses 
after 
removing 
smallest

LRM –0.027 –0.172 0.357 0.531 0.080 0.534 0.836 1.220 0.966 0.561 0.937 0.734

HLRM 0.004 0.027 –0.010 –0.005 0.028 0.160 0.089 0.125 0.434 0.247 0.384 0.253

BRM –0.005 –0.035 0.025 0.040 0.018 0.178 0.078 0.143 0.958 0.877 0.943 0.857

7 doses 
with less 
extreme 
values

LRM 0.000 –0.001 0.001 0.004 0.011 0.060 0.032 0.053 0.892 0.826 0.883 0.799

HLRM 0.000 0.000 0.001 0.002 0.011 0.061 0.032 0.056 0.665 0.597 0.657 0.564

BRM 0.000 0.001 0.000 0.001 0.009 0.052 0.026 0.048 0.865 0.822 0.860 0.801

7 doses 
with 
extreme 
values 
and dose- 
dependent 
precision

LRM –0.052 –0.215 0.524 0.462 0.130 0.622 1.123 0.984 0.965 0.521 0.921 0.726

HLRM 0.002 0.011 –0.004 –0.003 0.016 0.096 0.053 0.071 0.303 0.180 0.273 0.148

BRM 0.000 0.012 –0.001 –0.005 0.009 0.142 0.054 0.080 0.957 0.851 0.932 0.798

(c)data simulated using normal error term with SD = 0.05

7 doses 
with 
extreme 
values

LRM 0.079 –0.463 0.560 2.399 0.393 0.924 2.128 1.853 0.948 0.612 0.942 0.591

HLRM 0.024 0.047 0.345 1.524 0.223 1.050 1.600 2.638 0.477 0.258 0.447 0.083

BRM 0.013 0.029 0.010 0.095 0.129 0.524 0.371 0.377 0.857 0.861 0.869 0.855

Appendix 1—figure 1 continued
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Scenario Method Bias RMSE 95% CI Coverage Probability

IC50 IC90  β0  β1 IC50 IC90  β0  β1 IC50 IC90  β0  β1 

6 doses 
after 
removing 
largest

LRM 0.079 –0.338 0.337 2.194 0.276 0.749 2.054 2.239 0.968 0.779 0.975 0.675

HLRM –0.005 0.080 0.260 0.926 0.170 0.820 1.392 2.547 0.407 0.293 0.417 0.146

BRM 0.017 0.001 0.007 0.160 0.124 0.512 0.387 0.430 0.879 0.835 0.912 0.812

6 doses 
after 
removing 
smallest

LRM 0.022 –0.403 0.666 2.232 0.335 0.965 1.936 2.220 0.972 0.610 0.898 0.681

HLRM 0.035 0.244 0.162 0.919 0.158 0.998 1.332 2.526 0.410 0.209 0.320 0.146

BRM 0.009 –0.021 0.030 0.160 0.119 0.511 0.358 0.420 0.874 0.754 0.862 0.819

7 doses 
with less 
extreme 
values

LRM 0.005 –0.077 0.086 0.362 0.084 0.383 0.693 1.215 0.905 0.795 0.895 0.813

HLRM 0.001 0.029 0.009 0.039 0.053 0.327 0.185 0.446 0.619 0.551 0.610 0.520

BRM 0.002 –0.001 0.012 0.062 0.054 0.296 0.187 0.311 0.861 0.810 0.858 0.815

7 doses 
with 
extreme 
values 
and dose- 
dependent 
precision

LRM –0.029 –0.441 0.994 1.679 0.297 0.955 1.840 1.715 0.945 0.444 0.904 0.678

HLRM 0.006 0.037 0.278 0.617 0.106 0.710 1.152 1.781 0.335 0.145 0.295 0.105

BRM –0.005 0.037 0.023 –0.002 0.040 0.323 0.172 0.271 0.954 0.819 0.930 0.758

Appendix 1—table 2. Simulation result of bias, RMSE and 95% CI coverage probability 
corresponding to beta error terms.
Scenario Method Bias RMSE 95% CI Coverage Probability

IC50 IC90  β0  β1 IC50 IC90  β0  β1 IC50 IC90  β0  β1 

(a)data simulated using beta error term with ϕ=35

7 doses 
with 
extreme 
values

LRM 0.017 –0.304 0.142 0.653 0.163 0.481 0.658 0.686 0.924 0.697 0.909 0.566

HLRM 0.008 –0.161 0.085 0.366 0.117 0.478 0.402 0.576 0.581 0.429 0.571 0.313

BRM 0.003 –0.014 0.018 0.073 0.074 0.339 0.219 0.275 0.835 0.818 0.832 0.829

6 doses 
after 
removing 
largest

LRM 0.039 –0.174 –0.027 0.504 0.115 0.402 0.354 0.666 0.933 0.864 0.936 0.666

HLRM 0.015 –0.092 0.026 0.273 0.109 0.463 0.337 0.486 0.581 0.518 0.594 0.368

BRM 0.008 0.005 0.007 0.077 0.077 0.375 0.229 0.298 0.812 0.808 0.811 0.803

6 doses 
after 
removing 
smallest

LRM –0.022 –0.288 0.248 0.502 0.108 0.501 0.499 0.670 0.930 0.620 0.901 0.664

HLRM 0.000 –0.120 0.094 0.274 0.106 0.509 0.366 0.487 0.596 0.383 0.547 0.368

BRM –0.002 –0.020 0.031 0.074 0.075 0.353 0.223 0.298 0.815 0.782 0.805 0.800

7 doses 
with less 
extreme 
values

LRM 0.004 –0.045 0.023 0.117 0.063 0.332 0.195 0.300 0.900 0.828 0.891 0.821

HLRM 0.003 –0.017 0.021 0.096 0.067 0.382 0.205 0.323 0.686 0.630 0.680 0.619

BRM 0.003 0.031 0.004 0.028 0.058 0.331 0.170 0.272 0.845 0.837 0.847 0.838

7 doses 
with 
extreme 
values 
and dose- 
dependent 
precision

LRM 0.080 –0.093 –0.179 0.444 0.147 0.281 0.435 0.548 0.904 0.908 0.927 0.639

HLRM 0.061 –0.200 –0.063 0.753 0.199 0.553 0.676 0.967 0.484 0.447 0.520 0.231

BRM 0.003 0.031 –0.003 0.012 0.067 0.277 0.182 0.236 0.755 0.780 0.768 0.772

(b)data simulated using beta error term with ϕ=15

7 doses 
with 
extreme 
values

LRM 0.029 –0.571 0.373 1.633 0.233 0.555 1.177 1.197 0.941 0.588 0.910 0.406

HLRM 0.016 –0.334 0.225 0.983 0.172 0.657 0.725 1.186 0.561 0.353 0.544 0.213

BRM 0.008 –0.050 0.036 0.174 0.109 0.464 0.324 0.403 0.817 0.790 0.820 0.805

6 doses 
after 
removing 
largest

LRM 0.074 –0.360 –0.043 1.269 0.164 0.516 0.635 1.192 0.942 0.823 0.939 0.556

HLRM 0.029 –0.206 0.086 0.702 0.164 0.715 0.594 0.925 0.552 0.445 0.551 0.272

BRM 0.018 –0.028 0.019 0.203 0.117 0.527 0.355 0.446 0.778 0.783 0.794 0.776

6 doses 
after 
removing 
smallest

LRM –0.042 –0.564 0.620 1.280 0.157 0.596 0.890 1.180 0.939 0.503 0.905 0.555

HLRM –0.001 –0.262 0.237 0.700 0.160 0.712 0.663 0.917 0.546 0.300 0.486 0.268

BRM –0.001 –0.071 0.066 0.192 0.115 0.499 0.345 0.449 0.787 0.733 0.782 0.777

Appendix 1—table 1 Continued
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Scenario Method Bias RMSE 95% CI Coverage Probability

IC50 IC90  β0  β1 IC50 IC90  β0  β1 IC50 IC90  β0  β1 

7 doses 
with less 
extreme 
values

LRM 0.008 –0.104 0.059 0.286 0.096 0.513 0.320 0.489 0.906 0.795 0.884 0.807

HLRM 0.009 –0.030 0.048 0.240 0.103 0.726 0.325 0.517 0.694 0.602 0.678 0.598

BRM 0.006 0.074 0.012 0.062 0.088 0.553 0.260 0.409 0.838 0.836 0.841 0.847

7 doses 
with 
extreme 
values 
and dose- 
dependent 
precision

LRM 0.165 –0.202 –0.425 1.114 0.218 0.374 0.771 0.959 0.916 0.886 0.941 0.534

HLRM 0.141 –0.347 –0.250 2.055 0.291 1.027 1.270 1.798 0.515 0.440 0.576 0.136

BRM 0.010 0.053 –0.008 0.050 0.104 0.423 0.281 0.368 0.763 0.790 0.764 0.769

(c)data simulated using beta error term with ϕ=5

7 doses 
with 
extreme 
values

LRM 0.042 –0.851 0.748 3.414 0.270 0.527 1.611 1.421 0.948 0.423 0.898 0.198

HLRM 0.040 –0.629 0.689 3.147 0.278 1.518 1.480 2.112 0.681 0.241 0.644 0.094

BRM 0.008 –0.011 0.047 0.191 0.161 0.606 0.589 0.767 0.811 0.800 0.815 0.811

6 doses 
after 
removing 
largest

LRM 0.106 –0.636 0.181 2.962 0.234 0.865 1.401 1.604 0.949 0.684 0.938 0.356

HRLM 0.075 –0.098 0.276 2.410 0.274 8.599 1.351 2.082 0.607 0.362 0.600 0.142

BRM 0.007 –0.115 0.112 0.355 0.166 0.643 0.621 0.761 0.762 0.752 0.773 0.769

6 doses 
after 
removing 
smallest

LRM –0.039 –0.871 1.126 2.935 0.231 0.649 1.428 1.620 0.953 0.380 0.883 0.362

HLRM 0.004 –0.371 0.773 2.379 0.261 5.238 1.464 2.068 0.599 0.206 0.492 0.149

BRM 0.008 –0.087 0.070 0.328 0.166 0.588 0.509 0.724 0.766 0.755 0.772 0.773

7 doses 
with less 
extreme 
values

LRM 0.008 –0.456 0.275 1.126 0.152 0.515 0.679 1.041 0.915 0.639 0.874 0.707

HLRM 0.007 –0.315 0.236 0.923 0.164 0.767 0.651 1.047 0.681 0.475 0.644 0.491

BRM 0.002 –0.088 0.093 0.318 0.132 0.588 0.423 0.660 0.839 0.812 0.834 0.835

7 doses 
with 
extreme 
values 
and dose- 
dependent 
precision

LRM 0.245 –0.378 –0.646 2.300 0.274 0.470 1.207 1.262 0.908 0.833 0.947 0.343

HLRM 0.209 –0.578 –0.233 4.982 0.332 6.852 2.016 2.017 0.683 0.381 0.728 0.050

BRM 0.025 0.171 –0.032 0.074 0.161 0.762 0.426 0.549 0.757 0.796 0.761 0.770

Appendix 1—table 3. The first example of REAP application with B- cell lymphoma data, 
corresponding with Figure 5.
IC50 estimations are ranked from low to high. Hypothesis testings on equal potency (i.e., 
concentration for IC50) were conducted pairwise with the group right above (one rank lower). 
Jeko- 1 has the highest potency and the difference of IC50 estimations between Jeko- 1 and Jeko- R is 
significant with a P- value <0.0001. The B- cell lymphoma dataset is available on Github (Fang et al., 
2022).
Model Intercept Slope (m) Std. Err for m P- value for m>1 IC50 estimation Std. Err for IC50 estimation Pairwise comparison

Jeko- 1 –4.807 –1.252 0.155 0.0519 0.021 0.008 -

Jeko- R –4.305 –1.822 0.112 <.0001 0.094 0.006 <0.0001

Rec- 1 –5.304 –2.63 0.091 <.0001 0.133 0.004 <0.0001

Mino –2.684 –1.474 0.141 0.0004 0.162 0.015 0.0656

Jeko- NO #1 –2.012 –1.192 0.135 0.0769 0.185 0.021 0.3755

MAVER- 1 –2.21 –1.37 0.125 0.0015 0.199 0.021 0.6312

Jeko- NO #11 –1.459 –1.267 0.152 0.0398 0.316 0.038 0.0114

JVM2 –1.056 –1.271 0.135 0.0223 0.436 0.055 0.0818

Appendix 1—table 4. The output for the estimated dose- response curve of anti- viral drugs under 
the same biological batch with SARS- CoV- 2 data.
Calpain inhibitor IV has the highest potency (P- value = 0.0038). The reconstructed SARS- CoV- 2 
dataset is available on Github (Fang et al., 2022).
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Model Intercept Slope (m)
Std. Err 
for m

P- value for 
m>1 EC50 estimation

Std. Err for EC50 
estimation Pairwise comparison

CalpainInhibitorIV 0.678 0.725 0.114 0.9918 0.393 0.103 -

Chloroquine –1.013 0.84 0.135 0.8813 3.337 0.88 0.0038

Remdesivir –1.791 0.797 0.12 0.9553 9.469 2.638 0.0282

Hydroxychloroquine –1.485 0.562 0.075 1 14.074 4.994 0.4445

E64d (Aloxistatin) –3.211 0.861 0.129 0.8587 41.61 15.473 0.1242

https://doi.org/10.7554/eLife.78634
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