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Abstract The median-effect equation has been widely used to describe the dose-response rela-
tionship and identify compounds that activate or inhibit specific disease targets in contemporary
drug discovery. However, the experimental data often contain extreme responses, which may signifi-
cantly impair the estimation accuracy and impede valid quantitative assessment in the standard
estimation procedure. To improve the quantitative estimation of the dose-response relationship, we
introduce a novel approach based on robust beta regression. Substantive simulation studies under
various scenarios demonstrate solid evidence that the proposed approach consistently provides
robust estimation for the median-effect equation, particularly when there are extreme outcome
observations. Moreover, simulation studies illustrate that the proposed approach also provides a
narrower confidence interval, suggesting a higher power in statistical testing. Finally, to efficiently
and conveniently perform common lab data analyses, we develop a freely accessible web-based
analytic tool to facilitate the quantitative implementation of the proposed approach for the scientific
community.

Editor's evaluation

This article proposes methodology and accompanying software for robustly fitting dose-response
curves where response is a number between 0 and 1. When response is transformed using the
common logistic transformation, values close to 0 or 1 become large in magnitude, unduly influ-
encing the fitted curve after back-transformation and introducing bias in the estimate of certain
parameters. As demonstrated through simulation and application to real data, the proposed
approach, called Robust and Efficient Assessment of Potency, is less perturbed by these extreme
measurements.

Introduction

The median-effect equation is a unified theory in medicine to describe the dose-response relation-
ship and identify agents or their combinations that activate or inhibit specific disease targets (Chou,
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elLife digest Finding a new drug which is both safe and efficient is an expensive and time-
consuming endeavour. In particular, establishing the ‘dose-effect relationship’ — how beneficial a
drug is at different dosages — can be challenging. Predicting this curve requires gathering experi-
mental data by exposing and recording how cells respond to various levels of the drug. However,
extreme values are often observed at low and high dosages, potentially introducing errors that are
hard to correct in the prediction process. Yet, these extreme observations are sometimes genuine so
researchers cannot just ignore them.

To improve dose-effect estimation, Zhou, Liu, Fang et al. developed a new general-purpose
approach. It uses advanced statistical modelling to account for extremes in lab data. This strategy
outperformed other methods when dealing with these observations while also providing higher effi-
ciency in data analysis with more uniform data in experiments.

To facilitate implementation, Zhou, Liu, Fang et al. set up a user-friendly tool baptized ‘REAP’;
this free online resource allows scientists without advanced statistical experience to harness the new
approach and to perform dose-effect analysis more easily and accurately. This could boost research
across many different disciplines that examine the effects of chemicals on cells.

2006). It is a fundamental method established based on the pharmacological principle of mass-action
law (Chou, 1976). As the common link for many biomedical systems, it has been used extensively to
analyze in vitro experimental data and evaluate the potency of related drugs (Chou and Talalay, 1984,
Chou and Rideout, 1991; Greco et al., 1995; Lee and Kong, 2009).

In practice, the median-effect equation can be estimated for drug efficacy or pathway inhibition
from normalized data generated from experimental studies. Without knowing the true dose-effect
curve during the experimental design and data collection, it is common to observe extreme values
of (un)affected cell fraction that is close to the response of either 0 or 100% in the analytic dataset.
Quantitatively, it poses a special analytic challenge to estimate the median-effect question in practice.
The standard estimation approach, often based on a linear regression model after a logit transfor-
mation (Roell et al., 2017, Gadagkar and Call, 2015), could suffer badly from poor estimation in
such situations. Figure 1 illustrates a preliminary example in that the standard approach is deficient
in describing the median effect curve with a perturbation in one extreme data point. The variation
in real experimental data, mostly caused by unavoidable measurement error, often at a much larger
degree, therefore challenges the reliability of result presentation and interpretation for many drug
assessment studies.

Additionally, the modeling strategy of deleting extreme values may not be feasible in many situ-
ations (Solzin et al., 2020). For example, a meaningful drug concentration could consist of high
inhibition (>90%) or low cell viability (<10%) in cancer research. It is not logical to ignore extreme
observations when they are indeed biologically relevant for the target effect, not even to mention an
associated loss of power and accuracy by leaving fewer data points for estimation. As illustrated in
Figure 2, deleting the extreme values couldn’t eliminate the estimation bias, but only impaired the
efficiency of interval estimation with wider nominal 95% confidence intervals (C.l.) and harmed the
estimation accuracy with worse coverage probabilities.

Furthermore, it is dubious to apply the constant error variance, a default assumption in standard
linear regression modeling, in dose-response estimation. As an assumption can be examined with
repeated measures, many dose-response data have indicated either a constant variance before logit
transformation or a positive correlation with drug dose. It is incongruous to apply linear regression if
the assumption is violated due to error heteroscedasticity (Schmidheiny, 2009; Williams et al., 2007).
Therefore, it is essential to develop a robust quantitative approach to estimating the median-effect
equation.

Here, we introduce a novel approach to improving the quantitative assessment of dose-response
relationship and drug potency, together with a user-friendly web-based analytic tool to facilitate the
implementation. The proposed method to estimate the median-effect equation is established in the
robust beta regression framework, which not only takes the beta law to account for non-normality and
heteroskedasticity (Ferrari and Cribari-Neto, 2004), but also minimizes the average density power
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Figure 1. Dose-response curve fitting with extreme observations. The original data points are on the true curve.
The leftmost data point is changed from 0.005 to 1e-6, referring to a small white noise that cannot be visually
recognized. The change leads to the obvious departure between the estimated curve by linear regression model
(dotted) and the true curve (solid), which demonstrates that standard regression is sensitive to extreme values.

The response at the true ICy, (dotdashed, vertical, left) is only 22% from the estimated curve; the estimated ICs,
(dotdashed, vertical, right) corresponds to the 70% fraction of cell affected, effecting a substantive 20% inflation
(50% ->70%) in estimation error. In contrast, the estimated curve by beta regression model (dashed) is almost
overlapped with the true curve (solid), which shows that BRM is much more robust to extreme values. LRM: linear
regression model; BRM: robust beta regression model. Detailed model descriptions of LRM and BRM are provided
in Materials and methods section.

divergence (DPD) using a tuning parameter (Ghosh, 2019). We apply a data-driven approach to opti-
mizing the tuning parameter, which further compensates for the lack of robustness against outliers.
In the simulation studies, we compare the robust beta regression framework with linear regression
models either in the standard normal distribution error, or in the heavy-tailed t distribution error with
3 degrees of freedom hopefully to downweigh the influence of extreme observations. Results from
simulation studies under various scenarios confirm that the proposed approach consistently gives
robust estimation for the median-effect equation. Particularly, we examine two important measures
for drug binding affinity: the Hill coefficient, which signifies the sigmoidicity of the curve, and the
overall effect, indicated by dose concentration for a specified (e.g. 50%) response (Shen et al., 2008,
Sampah et al., 2011). When there are extreme outcome observations, the improvement of robust
beta regression in estimation accuracy could be substantial. Moreover, simulation studies further illus-
trate that the proposed approach provides a narrower confidence interval, which in turn suggests
a higher efficiency to achieve better power in statistical testing even without acquiring additional
experimental data. lllustrative examples using real-world data for cancer research and SARS-CoV-2
treatment are provided. The analyses are implemented using the freely accessible web-based applica-
tion REAP, developed based on the Shiny package of R language, with which research scientists could
conveniently upload their drug experiment dataset and perform the data analysis.

Results
REAP Shiny App

We developed a user-friendly analytic tool, coined ‘REAP’ (Robust and Efficient Assessment of Potency),
for convenient application of the robust dose-response estimation to real-world data analysis. It is
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Figure 2. Comparison of estimation efficiency and accuracy using linear regression model and beta regression model. Deleting the extreme values
could not eliminate the bias (panel A), but only harmed the accuracy with worse coverage probabilities (panel B) and impaired the efficiency of interval
estimation with wider nominal 95% confidence intervals (panel C). A total of 1000 data sets were generated following the data simulating process
described in Appendix 1, using the dose sets and true dose-response curve under 7 dose setting with a precision parameter of 100. Responses <5% or
>95% were considered extreme responses. Dashed line in panel B denotes 95% nominal coverage probability. BRM: beta regression with extreme data
points; LRM: linear regression model with extreme data points; LRM(t): linear regression model with truncated dataset after deleting extreme values.
Detailed model descriptions of LRM and BRM are provided in Materials and methods section.

established in an agile modeling framework under the parameterization of the beta law to describe a
continuous response variable with values in a standard unit interval (0.1). We further exploited a robust
estimation method of the beta regression, named the minimum density power divergence estimators
(MDPDE) (Ghosh, 2019), for dose-response estimation, with the tuning parameter optimized by a
data-driven method (Ribeiro and Ferrari, 2020). The technical details are provided in the Materials
and methods.

REAP presents a straightforward analytic environment for robust estimation of dose-response
curve and assessment of key statistics, including implementation of statistical comparisons and
delivery of customized output for graphic presentation (Figure 3). The dose-response curve is a time-
honored tool to convey the pharmacological activity of a compound. Through dose-response curves,
we can compare the relative activity of a compound on different assays or the sensitivity of different
compounds on an assay. REAP aims to make this job simple, estimation efficient, and results robust.

There are three sections in REAP: Introduction, Dataset and Output. Users can have both overview
and instruction of REAP in the Introduction. Dataset is uploaded in the Dataset section. The input
dataset is mandated to be in a csv file format and contains three columns of data respectively for
drug concentration, response effect and group name, in a specific order. It is recommended that users
normalize the response variable to the range of (0,1) by themselves. Otherwise, REAP automatically
will truncate the values exceeding the boundaries to (0,1) using a truncation algorithm (see Appendix
1 - Truncation Strategy). In the Output section, it generates a dose-response plot, along with tabu-
lation for effect and model estimations. A special feature of REAP is that it conveniently allows the
users to specify the target effect level, rather than fixed at the common median effect (i.e., 50%), in
dose estimation. We also enable hypothesis testing for comparisons of effect estimations, slopes and
models (i.e. comparing both intercepts and slopes; see Materials and methods). By default, the x-axis
of the dose-response plot is log-scaled. In the plot, users can choose to add mean values and sample
standard deviations for data points under the same agent and dose level. Both plots and estimation
tables are downloadable on REAP to plug in presentations and manuscripts for result dissemination.
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Figure 3. REAP App interface, with a highlight of Output section. Using the robust beta regression method, REAP produces a dose-response curve plot
with effect and model estimations. The left panel allows users to specify model features and design plot specifics. REAP also provides hypothesis testing
results to compare effect estimations, slopes and models.

The open-sourced REAP is freely available and accessible at https://xinying-fang.shinyapps.io/
REAP/. We demonstrated it in two real-world examples, after presenting the simulation results, to
illustrate the functionality of REAP.

Simulations
We conducted simulation studies to investigate the robust beta regression model, in comparison to
linear regression models with data transformation, either under a normal distribution error (imple-
mented with R package ‘stats’) or a heavy-tailed t distribution error with 3 degrees of freedom (imple-
mented with R package 'heavy’), to characterize the median-effect equation under different scenarios.
The model assessment is established based on both the point estimation and interval estimation
derived from each method. Details on the simulation setting are described in the Appendix 1 - Data
simulating process.

With data simulated using normal error terms, the robust beta regression provides sensible esti-
mation of ICs, 1Cs, 31, and Sy from median-effect equation (Figure 4, Appendix 1—table 1). Partic-
ularly, when there are extreme outcome observations, the robust beta regression manages much
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Figure 4. Comparison of the point estimates and 95% confidence intervals using linear regression model, heavy-tailed linear regression model and
robust beta regression model, with data simulated from normal error term. The vertical solid lines indicate the true values. The dots represent the
averaged point estimates and the bars represent the averaged lower and upper bound of 95% Cls. The point estimation by robust beta regression

is consistently closer to the true value with a narrower 95% Cl compared to the linear regression model. The 95% Cl of heavy-tailed linear regression
underestimates the nominal coverage probability. LRM: linear regression model; LRM-7: LRM under 7-dose dataset with extreme data points; LRM-6nolL.:
LRM under 6 dose dataset after removing the highest dose data point; LRM-6noS: LRM under 6-dose dataset after removing the lowest dose data
point; LRM-7lessE: LRM under 7-dose dataset with less extreme data points; LRM-7NCP: LRM under 7-dose dataset with extreme data points and dose-
dependent precision; HLRM: heavy-tailed linear regression model; HLRM-7: Heavy-tailed LRM under 7-dose dataset with extreme data points; HLRM-
6nol: Heavy-tailed LRM under 6-dose dataset after removing the highest dose data point; HLRM-6noS: Heavy-tailed LRM under 6-dose dataset after
removing the lowest dose data point; HLRM-7lessE: Heavy-tailed LRM under 7-dose dataset with less extreme data points; HLRM-7NCP: Heavy-tailed
LRM under 7-dose dataset with extreme data points and dose-dependent precision; BRM: robust beta regression model; BRM-7: BRM under 7-dose
dataset with extreme data points; BRM-6noL: BRM under é-dose dataset after removing the highest dose data point; BRM-6n0S: BRM under 6-dose
dataset after removing the lowest dose data point; BRM-7lessE: BRM under 7-dose dataset with less extreme data points; BRM-7NCP: BRM under 7-
dose dataset with extreme data points and dose-dependent precision. Detailed model descriptions of LRM, HLRM, and BRM are provided in Materials
and methods section.
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lower bias and root-mean-square error (RMSE) for point estimates and better coverage probability
for interval estimates than the linear regression model with normal distribution error. For data without
extreme values, their performance is comparable in bias, RMSE and coverage probability, but the
linear regression model has much wider 95% Cls (Figure 4). Indeed, the wider 95% Cls occur across
all the scenarios, indicating higher estimation efficiency of the robust beta regression approach. In
contrast, the heavy-tailed linear regression model demonstrates improved bias and RMSE in point
estimation from the standard linear regression, but the nominal 95% Cls are significantly underes-
timated with coverage probability below 50% in most cases (Appendix 1—table 1). Therefore, the
heavy-tailed linear regression model, although sometimes provides good point estimations, cannot
maintain consistently robust and statistically efficient estimations. Overall, the robust beta regression
model is the most robust and stable in estimating the median-effect equation with reliable perfor-
mance in both point estimations and 95% Cl coverage probabilities.

In parallel, similar results are obtained consistently with data simulated using beta error terms,
which induces heteroscedasticity (smaller variation on the two ends and bigger in the middle) at
different dose levels (Appendix 1—figure 1, Appendix 1—table 2). All the results above demon-
strate the sensitivity of regression models in dealing with datasets including extreme values. In addi-
tion, the result comparisons between the seven-dose set and the six-dose set with the largest or
smallest dose eliminated display the potential worse influence of deleting extreme values directly in
modeling dose-response using linear regression, which further notarizes the robustness and efficiency
of the proposed robust beta regression.

Overall, the simulation study suggests that the robust beta regression model produces well-
calibrated dose-response curves while being more robust and powerful than the standard regression
model and the heavy-tailed linear regression model in estimating the median effect equation.

B-cell lymphoma data

The first example of REAP application is dose-response curve estimation of the same agent under
different cell lines. The data was originally from a study on using a drug called auranofin in treating
B-cell lymphomas such as relapsed or refractory mantle cell lymphoma (MCL) (Wang et al., 2019).
As an FDA-approved treatment of rheumatoid arthritis, auranofin targets thioredoxin reductase-1
(Txnrd1), and was repurposed as a potential antitumor drug to effectively induce DNA damage,
reactive oxygen species (ROS) production, cell growth inhibition, and apoptosis in aggressive B-cell
lymphomas, especially in TP53-mutated or PTEN-deleted lymphomas.

In the experiment, the effect of auranofin was evaluated in six MCL cell lines (Z-138, JVM-2, Mino,
Maver-1, Jeko-1, and Jeko-R) with auranofin in concentrations ranging from 0 to 5 pM for 72 hr and
tested cell viability using a luminescent assay. The interval bars of observed dose-response in Figure 5
show that the sample variance of error from repeated measurements decreased with the increase of
auranofin concentrations. To account for the heteroscedasticity and asymmetry in the variance, we
enable a dose-dependent precision (proportional to inverse variance) in REAP, adding log (dose) as an

100+

~
o
1

—§> Jeko-1

=§» Jeko-NO #1
4> Jeko-NO #11
=¥ Jeko-R
> JVM2

—§» MAVER-1
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o
o
1

N
a
1

Auranofin

Figure 5. Dose-response curve estimation of auranofin (uM) under different MCL cell lines. The dose-response curve was fitted with a dose-dependent
precision with log (dose) as an additional regressor for the precision estimator. Observed dose effects are displayed with interval bars, which end with
arrows when estimated intervals exceed (0,1). Triangles at the bottom indicate ICy, values for each MCL cell line. MCL: mantle cell lymphoma.
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Figure 6. Dose-response curve estimation of anti-viral drugs under the same biological batch with SARS-CoV-2 data. The robust beta regression gives
reasonable estimations to the dose-response curve of hydroxychloroquine, compared to the inconclusive dose-response curve fitted by linear regression
in Bobrowski et al. (2020). The plot is generated without selecting the option of mean and confidence interval for observations. Triangles indicate the
estimated ECy, values for each drug.

additional regressor for the precision parameter. Figure 5 shows the fitted dose-response curves with
the dose-dependent precision. The test for homogeneity (p-value <0.0001) suggests distinct dose-
response between cell lines. The estimation of intercepts, hill coefficients and pairwise comparisons
of I1Cs, estimations are provided in Appendix 1—table 3.

SARS-CoV-2 data

The second example is on the dose-response curve estimation in antiviral drug development for coro-
navirus disease 2019 (COVID-19). At the beginning of 2020, COVID-19 broke out at an unprecedented
pace internationally, but there were limited therapeutic options for treating this disease. Therefore,
many compounds and their combinations were rapidly tested in vitro against the SARS-CoV-2 virus to
identify potentially effective treatments and prioritize clinical investigation.

In the data (Bobrowski et al., 2021), the benchmark compound collection consists of five known
antivirals, including remdesivir, E64d (aloxistatin), chloroquine, calpain Inhibitor IV and hydroxychlo-
roquine. The in vitro experiment was performed using the same biological batch of SARS-CoV-2
virus and conducted in biosafety level-3. In the original publication (Bobrowski et al., 2021), the
dose-response curves were fitted by linear regression, which could yield inconclusive estimation (e.g.
hydroxychloroquine in Figure 1G of Bobrowski et al., 2021), while the estimated inhibition tends to
exceed 1 when concentration is larger than 10 uM. REAP gives reasonable estimation for the dose-
response curves (Figure 6). The hypothesis testing results show that at least one slope estimation is
different from other antivirals (p-value = 0.0003) and at least one ECy, estimation is different from
others (p-value = 0.003). Calpain Inhibitor IV shows a higher potency than other agents including
hydroxychloroquine (p-value = 0.0038, Appendix 1—table 4).

Discussion

Quantifying the potency of a compelling substance is always a central topic in life sciences (Schin-
dler, 2017). It is a vital component of research in pharmacology, but also prevalent in the fields of
toxicology, environmental science, agrochemistry, and medicine, among many others. For instance,
the description of dose-response curves can provide the initial toxicological risk assessment (National
Research Council, 2007), and guide in silico modeling of toxic doses to humans and the environment
(Blaauboer et al., 2012). Based on proper identification of dose-response relationship from in vitro
assays, studies can successfully predict systemic toxicological effects in vivo without additional in silico
modelling (Groothuis et al., 2015). Nevertheless, it necessitates accurate and reliable description of
the dose-response curve, which further demands robust and efficient modeling strategies to account
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for embedded variability in observed response and to derive solid inference with valid quantification
of uncertainty.

The dose-response estimation could be substantially biased by the standard regression modeling.
In the illustrative example (Figure 1), the estimated ICs, dose indeed effects the 70% fraction of cell
affected, while the estimated response at the true ICs, dose is only 22%. Such a large discrepancy is
sourced by a small (<0.5%) single measurement error, which is common and inevitable in any regular
in vivo experiment, but could engender a profound impact on the assessment of drug potency and
determination of synergy in drug combinations. In addition, the modeling strategy of deleting those
extreme values (e.g. Figure 2, or énolL and 6 noS datasets in Figure 4 and Appendix 1—figure 1) is
futile to improve the poor performance of standard regression model, but may further impair the esti-
mation efficiency and accuracy. In general, it fails to reduce bias but only introduces larger uncertainty
in estimation of dose concentration, especially at extreme responses (e.g. ICq). On the other hand, a
heavy-tailed error distribution may help to stabilize the point estimation, but the interval estimation
could be largely under-estimated with poor coverage probabilities.

We develop REAP for assessment of drug potency to address concerns in this regard. It has
substantial advantages over existing methods by reducing the impact of random errors due to implicit
variations in the experimental data. To our best knowledge, it is also for the first time that beta
regression is introduced to dose-response estimation. The underlying modified robust beta regres-
sion model estimated by the data-driven tuning parameter is resilient to estimation bias caused by
extreme observations, which is a routinely encountered situation for deficient dose-response esti-
mation using the standard estimation approach. The proposed approach is also efficient in quantita-
tive characterization of dose-response curves with narrower confidence intervals for key estimators.
Furthermore, REAP can simultaneously model the data heterogeneity with a dose-dependent preci-
sion component (Figure 5). It is simply different from other dose-response methods, in which a vector
of weights have to be (possibly mis-)specified externally. REAP is an open-source and user-friendly
platform, developed for diverse non-computational scientists for hands-on wet-laboratory data anal-
ysis in regular use, and can be hosted within R shiny environment under Windows, Linux, and Mac
systems or deployed in Docker available as a web server.

Our work potentially can be useful in applications of drug screening. The proposed method and
the developed REAP App allow for the robust and efficient estimation and accounting for outliers as
well, making it fitted particularly in a high-throughput setting. As the result of a complex and dynamic
cascade of events, exposure time is another important factor ultimately affecting the dose-response.
For in vitro experiments measured at different time points in a choice of cell-lines and expressed by
a variety of assays (Byrne and Maher, 2019), the proposed modeling framework can be naturally
extended to model time-dependent cytotoxicity while controlling for fixed or random effects. Further-
more, the application of robust and efficient dose-response estimation can be integrated into methods
to identify drug interaction effect (Lee and Kong, 2009, Lee et al., 2007). There is a venerable history
that multi-agent combination therapies demonstrate great advantages in improving therapeutic effi-
cacy and revolutionize patient outcomes in a wide range of diseases. Robust and efficient estimation
of the dose-response curve would be crucial in investigation of adequate drug combinations.

The developed method has limitations. We presented a model of the median effect equation for
dose-response curve estimation based on mass action law. While in specific scenarios other laws may
be considered more suitable to describe the biomedical systems, the current modeling framework
can be naturally adapted for other dose-response functions like probit (via cumulative normal distri-
bution) and Weibull model (Christensen, 1984), or any other continuous distribution functions. In
addition, the median-effect equation to characterize pharmacological activity assumes the compound
can affect all the cells. From a quantitative perspective, a compound that cannot reach high binding
affinity will yield an over-conservative estimation for median effective dose of a drug. However, in
comparison to the sensitivity of different compounds in an assay, it is not harmful because the less
effective compounds will be more easily identified. If it is a concern that the maximal effects of candi-
date compounds are different and the aim is to accurately model the dose-response curve, the Emax
model could be a better choice (Lee et al., 2010). Furthermore, the robust beta regression approach
in REAP cannot handle values equal or less than 0, or equal or greater than 1. Thus, we developed a
sequential data truncation algorithm in REAP to overcome the limitation of the conventional transfor-
mation (y * (n—1)+0.5) / n, which could be too rough in dose-response curve estimation particularly
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when the sample size n for each group is relatively small. Although empirically we have validated it
using simulated data, the algorithm could be improved by future work to retain information more
efficiently.

In summary, a good modeling strategy must effectively characterize the nature of the observed
dose-response pattern (Lyles et al., 2008). Rapid advances in novel drug development and consid-
erable deficiency in modeling data with extreme values offer an appealing opportunity for next-
generation quantitative approaches. While many aspects of the techniques discussed here fit in the
statistical framework of robust beta regression, our aim is to clearly apply and rigorously customize
the analytic considerations, to reduce bias and ameliorate efficiency in routinely used dose-effect
estimation, and to facilitate the convenient analytic implementation and dissemination. Experimental
conditions and candidate drug potency could inevitably vary in practice, but REAP provides a great
tolerance for points with extreme values, solid support for accurate and efficient dose-response curve
estimation, and useful reference to the future development of methodology in drug investigation.
Overall, we anticipate that our work will contribute more to quantitative analysis in assessment of drug
potency in preclinical research.

Materials and methods

Median-effect equation and dose-response curve

The median-effect equation describes a popular model of the dose-response relationship based on
the median effect principle of the mass action law in various biological systems (Chou, 1976). Assume
fa and fy are the fractions of the system affected and unaffected by a drug concentration d. The
median-effect equation states that

= ()" g

where m is the Hill coefficient signifying the sigmoidicity of the dose-effect curve and D, is the
dose of a drug required to produce the median effect, which is analogous to the more familiar ICsq
(drug concentration that causes 50% of the maximum inhibitory effect), EDs (half-maximum effective
dose), or LDs (median lethal dose) values (Ghosh, 2019). For example, if an inhibitory substance is
of interest, the parameter m measures the cooperativity in the binding of multiple ligands to linked
binding sites, and the parameter D,, = IC5y , defined by the concentration that causes 50% of the
maximum inhibitory effect.

Given f; +fu = 1, the median-effect Equation 1 is equivalent to

logit (fa) = log% = —logit (fu) = — log% =m (logd — log Dp), )

where logit (p) denotes the logit function log l’%p . The Equation 2 shows a log-linear relationship
between the drug dose d and its effect f, (or f. , if itis, for example, the % survival of interest) after
a logit transformation. Because from a modeling perspective the identical strategy can be applied to
model both f; and f, , for the effect on cell fraction E, we can rewrite Equation 2 to be:

logit (E) = log £5 = By logd + o ©)

where 3y is the intercept and 3 the slope of the response curve. A linear regression model (LRM)
can be applied in the form of Equation 3 with a standard normal distribution error. In simulation
studies, we also examine Equation 3 with a heavy-tailed t-distribution error, denoted by heavy-tailed
linear regression model (HLRM).

In this presentation, the median effect dose

Dy = exp (5. (4)
the Hill coefficient
ﬁl . E =fa
m= if
—B1 E=fu

()
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and the dose-response curve
E =logit™" (51 logd + fh) . ()

exp(x)

is the inverse-logit function.
1+exp (x)

where logit™! (x) =

Beta regression model for dose-response curve estimation

We will review the beta regression model which for the first time will be applied in dose-response
estimation. The effect E and the parameters 8 = (8, 81) in Equation 3 cannot be directly observed,
but they can be estimated using experimental data, in which the observed sample cell fraction y
produced by the drug dose d is a random variable with mean E. It is clear that effective estimation
must properly account for random variation and be based upon a model that not only matches the
nature of the response variable, but adequately characterizes the observed dose-response pattern
(Lyles et al., 2008).

Among all the unknown quantities, the parameters 3 could be first estimated and play a funda-
mental role in supporting the inference for others. In the standard estimation procedure based on
linear regression, logit (y) = log ny is regressed on logd to get the inference on parameters 3. Subse-
quently, the dose-response curve can be estimated by Equation 6, and (Dm,m) can be derived based
on Equations (4) and (5) for median-effect Equation 2. Because the extreme values of y close to 0
or 1 could yield very large values of logit (y) (approaching to —oco or 400, respectively, if y — 0 or 1),
and induce significant bias in estimation of 3, the accuracy of the estimated dose-response curve and
median-effect equation is in question when there exist extreme values in the dataset.

The beta regression model describes a response variable y with continuous values restricted to the
open standard unit interval (Johnson et al., 1995; Simas et al., 2010). In a classic beta regression
framework, the beta regression model uses a parameterization of the beta law that is indexed by
the mean parameter p, and the precision parameter ¢ that controls the overall variation (Ferrari and
Cribari-Neto, 2004). To model the dose-response relationship for the cell fraction E, we assume that
the response y is a beta-distributed random variable and its mean p = E has the form of Equation 6,
where d is the dose producing effect E, 8; and 3y are the regression parameters. Estimation of regres-
sion parameters 3 can be performed using maximum likelihood method to derive point estimate 3
and covariance matrix X.

Betaregression s resistant to extreme values and provides reliable estimations (Figure 1). Compared
with the standard approach, which applies a non-linear transformation in the response for an approx-
imation to the normal distribution, the beta density can take on a variety of shapes to account for
non-normality and skewness (Smithson and Verkuilen, 2006). In the presence of heteroskedasticity
and asymmetry, two common problems frequently observed in limited range continuous response
data, an empirical study showed that the beta regression provided the best estimation among several
alternatives (Kieschnick and McCullough, 2016).

Robust beta regression model with MDPDE

We will present a modified robust beta regression approach in REAP implementation, which is estab-
lished based on density power divergence for robust estimation (Ghosh, 2019), but further improved
after we introduce a data-driven method to identify the optimal tuning parameter. The standard beta
regression potentially could still be sensitive against outliers because its inference is based on the
maximum likelihood estimation. Ghosh, 2019 developed the robust minimum density power diver-
gence estimators (MDPDE) that address the problem by minimizing the average density power diver-
gence (DPD)

da(g, g) — fg1+04 _ HETQ fgga + é fgl+04,
AN . . 2 (7)
do(@, §) = lim da(@.8) [ glog ( g] ,
between the empirical density g and the beta model density function g = Beta (u¢, (1 — u) ¢) with
p = logit™! (Bilogd + f) . e is a non-negative tuning parameter, smoothly connecting the likelihood
disparity (at a = 0) to the L,-Divergence (at « = 1). The parameter of interest 3 is estimated by mini-
mizing the DPD measure between g; and the density, g; ,
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n! éda(gic), 4i(-.0) ®)

where 0 = (5, ¢)T. After mathematically simplifying Equation 8, (Ghosh, 2019), 6 can be equiva-
lently estimated by minimizing the objective function using the estimation equations:

Huo () =" 3 [Kia (6) — 5281 (.0)°] o)

whereK;, (0) = B((Halgl(fé),(gi)”()l@@)¢ «,

MDPDE improves the standard beta regression with the DPD measure and a fixed tuning param-
eter. The recommended a is around 0.3 to 0.4, but simply assigning a fixed o in [0.3, 0.4] is not appli-
cable in many cases. Here we adopted a data-driven method (Ribeiro and Ferrari, 2020) to identify
the optimal a. The search for the optimal o starts with a grid of a, a pre-defined «,,., and grid size p,
which generates a sequence of equally spaced {4}y (0 = ap < ) < - - am < unax). MDPDE calcu-
lates the corresponding 0 and se(0) with each o so that we get a vector of standardized estimates:

7, Y
Zoy = —, ...,
o \/ﬁse<0}1k) \/ﬁse(@;k)
The standardized quadratic variations (SQV) are defined by:

SOVa, = p Mzay — zog, -

We compare each SOV, with a pre-defined threshold L (L > 0). If all o satisfy the stability condi-
tion of SQV4, < L, then the optimal a equals the minimal a in oy . Otherwise, restart the search with
a new grid of oy . The new grid of the same size p is picked from the sequence {ak}zlzo starting from
the largest oy that fails the stability condition. Repeat searching until all oy in the current grid satisfy
the stability condition or aumax is reached. If the stability condition is satisfied before amax is reached
then optimal a equals the minimal value in the grid of oy . If aunax is reached, then optimal o equals O,
which is equivalent to the maximum likelihood estimation. We denote this approach by robust beta
regression model (BRM) in the simulation study.

Point estimate and its confidence interval for drug activity
measurements

The objective of analysis is to characterize the dose-response curves in equation (2) and quantify in
vitro drug potency. Popular drug activity measurements include Hill coefficient m and median effect
dose D . In some circumstances, other measurements such as instantaneous inhibitory potential (IIP),
which directly quantifies the log decrease in single-round infection events caused by a drug at a clini-
cally relevant concentration, are of special interest (Shen et al., 2009).

The MDPDE for beta regression model provides a robust strategy to estimate 3, from which the
point estimates and confidence intervals of relevant drug activity measurements can be derived.
Mathematically, those drug activity quantities can be written as functions of parameters 8 with an
explicit form. Subsequently, their point estimates and confidence intervals can be derived based on
the inference of 3. For example, given a point estimate B = (B, B1), the point estimate for 7, Dy, as
a single value, and E as a function of dose d can be computed using Equations 4-6.

It is important to construct the confidence interval around the point estimate to gauge the estima-
tion uncertainty. With different levels of measurement error from either well-managed or lousy exper-
iments, the levels of evidence vary for statistical inference, even if it derives the same point estimates
for the intercept By , slope ) and the corresponding dose-response curve. Given the point estimate 3
and its positive-definite covariance matrix ¥ to account for variability in observed response, we apply
the multivariate delta method and approximate the variance estimate after assuming asymptotic
normality (Bickel and Doksum, 2015). As demonstrated in our simulation studies, the constructed
(1 — a) x 100% confidence interval consistently provides better results to quantify the (1 — a) x 100%
coverage probability. More importantly, the width of the constructed confidence interval was narrower
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than that from a linear regression model, suggesting that our approach is more efficient with a higher
statistical power (Appendix 1—tables 1 and 2).

Comparison of the dose-response curves

When we estimate multiple dose-response curves with the data collection experiments conducted
in a similar setting, it is often of interest to statistically compare the drug potency and/or Hill coef-
ficients. A typical comparison may occur when we examine the similarity of response from different
drugs, explore the additional effect of a drug combined with certain monotherapy, or assess the
homogeneity of a drug to different patient samples or cell lines. In the beta regression framework,
the statistical comparison can be conducted by first comparing independent fits for each curve with
a global fit that shares the common parameters among different groups. Subsequently, the likelihood
ratio test can be applied to examine whether the same Hill coefficient or one dose-response curve
can adequately fit all the data. The only exception is to assess whether median effect doses are the
same in different groups, while an F test is used for the single parameter testing. If the global test for
potency shows a significant p-value, a pairwise comparison can be conducted using two-sided t-test
for the ordered groups with Benjamini-Hochberg correction for multiplicity.
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Truncation strategy

Based on the median-effect equation method by Chou TC, the software “CompuSyn” was published.
In the data entry illustration of this software, they pointed out the sensitivity limits of data points, for
example too low (fa <0.02) and too high (fa >0.99) and suggested that such data points out of effect
may be edited or deleted.

There are some data truncation algorithmsin the literature. Two obvious remedies are proportionally
“shrinking” the range to a sub-range nearly covering the unit interval (e.g., [.00001,.99999]) or
simply adding a small amount to O-valued observations and subtracting the same amount from
1-valued observations while leaving the other observations unchanged. Macmillan and Creelman,
2005 mentioned a method that is frequently used in practice in areas such as signal detection is to
add 1/(2n) to a 0 observation and subtract 1/(2n) from a 1 observation, where n is the total number of
observations. Besides, Smithson and Verkuilen, 2006 demonstrated that a useful transformation in
practice is (y * (n—1)+0.5) / n, which is also mentioned by the documentation for R Betareg package
for conditions when data assumes the extremes 0 s and 1 s. In dose-response curve estimation, this
treatment could be too rough, especially when n is small.

To minimize the impact from truncation of data points, we apply the following algorithm. The
first step is to shrink the data range to [1e-9, 1-1e-9]. If there still exist abnormal conditions, we will
sequentially shrink the data range of abnormal ones to [1e-8, 1-1e-8], ..., until [1e-3, 1-1e-3] or non-
exist of abnormal conditions. Then, if it still exists, though rarely, the transformation of (y * (n—1)+0.5)
/ n, where n is the sample size, in the documentation of R Betareg package would be applied. We
have conducted simulations to test this algorithm in various scenarios with different errors and it
achieved reasonable performance in handling all conditions.

Data simulating process

In the simulation study, both robust beta regression and linear regression are applied to estimate
dose-response curves under different scenarios. The point estimations and 95% confidence intervals
of 1Cs, 1Cs, By and B; under each method will be obtained and then, be compared to evaluate the
model performance.

To generate data for simulation studies, we define the dose set for simulation as 0.1, 0.2, 0.4,
0.8, 1.6, 3.2 and 6.4 uM, which consists of 7 doses, and choose the appropriate true curve with
B1 = 2.2098 and By = 0.4931 such that the corresponding effects of the smallest and largest dose are
0.01 and 0.99, respectively. Let's call the true curve “E = f (log (dose))". Then, the following equation
is applied to generate data by inducing random error into effect:

E = true + error = f (log (dose)) + error

We simulated data with two types of errors, normal error term and beta error term, to examine
the accuracy and sensitivity of model performance in general setting. The normal error term is
implemented with different standard deviations (SDs), for example 0.005, 0.01 and 0.05, while the
beta error term is under different precision parameter ¢, for example 35, 15, 5. Note that the larger
the ¢, the smaller the variance. By implementing under different SD or ¢, it allows for generation of
not only well-controlled data which is assumed for experiments with almost no error, but also noised
data which is more identical to real-world data. The generated data is 1 replicate given each dose
level with the total simulation size equal 10,000 for each choice of SD or ¢. Since the defined dose
set is symmetric, we set up several scenarios under both error terms above: (1) full 7-dose set with
extreme values; (2) 6-dose set after removing the largest dose; (3) 6-dose set after removing the
smallest dose; (4) full 7-dose set with less extreme values by obtaining the smallest and largest dose
levels with corresponding effect as 0.1 and 0.9 under the same true curve. The scenarios 1-4 assume
constant precision parameter during data simulation and modeling process.

To mimic the real-world environment of data collections, the assumption of equal variance doesn’t
always hold. Thus, we also set up the 5" scenario which uses full 7-dose set with extreme values with
non-constant SD or precision parameter during data simulation and modeling process, but linearly
dose-dependent. For normal error term, the modified SDs for data simulation have the form of
SD* = (v + 1 * log.dose) = SD; for beta error term, the modified precisions ¢ for data simulation
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have the form of ¢* = (o + 71 * log.dose) * ¢. Assuming the same true dose-response curve as the
previous simulation, we pre-defined 79 and ~; as 0.25 and 0.1378 such that the average of SD* is
close to SD, and the average of ¢™ is close to ¢, respectively.
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Appendix 1—figure 1. Comparison of the point estimates and 95% confidence intervals using linear regression

model, heavy-tailed linear regression model and robust beta regression model, with data simulated from beta

error term. The vertical solid lines indicate the true values. The dots represent the averaged point estimates

and the bars represent the averaged lower and upper bound of 95% Cls. The point estimation by robust beta

regression is consistently closer to the true value with a narrower 95% Cl compared to the linear regression

model. The 95% ClI of heavy-tailed linear regression underestimates the nominal coverage probability. LRM:

linear regression model; LRM-7: LRM under 7 dose dataset with extreme data points; LRM-6noL: LRM under 6
dose dataset after removing the highest dose data point; LRM-6noS: LRM under 6 dose dataset after removing
the lowest dose data point; LRM-7lessE: LRM under 7 dose dataset with less extreme data points; LRM-7NCP:

LRM under 7 dose dataset with extreme data points and dose-dependent precision; HLRM: heavy-tailed linear
regression model; HLRM-7: Heavy-tailed LRM under 7 dose dataset with extreme data points; HLRM-6noL: Heavy-
tailed LRM under 6 dose dataset after removing the highest dose data point; HLRM-6noS: Heavy-tailed LRM under
6 dose dataset after removing the lowest dose data point; HLRM-7lessE: Heavy-tailed LRM under 7 dose dataset
with less extreme data points; HLRM-7NCP: Heavy-tailed LRM under 7 dose dataset with extreme data points and
dose-dependent precision; BRM: robust beta regression model; BRM-7: BRM under 7 dose dataset with extreme
data points; BRM-6nol: BRM under 6 dose dataset after removing the highest dose data point; BRM-6noS: BRM
Appendix 1—figure 1 continued on next page
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Appendix T—figure 1 continued

under é dose dataset after removing the lowest dose data point; BRM-7lessE: BRM under 7 dose dataset with
less extreme data points; BRM-7NCP: BRM under 7 dose dataset with extreme data points and dose-dependent
precision.

Appendix 1—table 1. Simulation result of bias, RMSE and 95% CI coverage probability
corresponding to normal error terms.

Scenario Method Bias RMSE 95% Cl Coverage Probability

ICso ICoo Bo B ICso ICoo Bo B4 ICoo Coo Bo Bi

(a)data simulated using normal error term with SD = 0.005

LRM 0.005 -0.047 0.037 0.152 0.098 0.298 0.525 0.557 0.954 0773 0.943 0.666
7 doses
with HLRM 0.000 0.004 0.002 0.004 0.018 0.102 0.063 0.169 0.468 0.335 0.463 0.225
extreme
values BRM 0.000 -0.004 0.003 0.011 0013 0.130 0.044 0.088 0.981 0.927 0.975 0.889
LRM 0.009 -0.01 -0.024 0.098 0.045 0.184 0.129 0.517 0.967 0.921 0.971 0.691
6 doses
after HLRM -0.001 0.001 0.002 -0.001 0.014 0.063 0.037 0.065 0.453 0.408 0.467 0.250
removing
largest BRM 0.001 0.005 -0.00 0.005 0.009 0.132 0.024 0.089 0.955 0.892 0.950 0.844
LRM -0.007 -0.036 0.070 0.102 0.037 0.306 0.362 0.533 0.969 0.623 0.933 0.695
6 doses
after HLRM 0.001 0.007 -0.002 -0.001 0.014 0.083 0.046 0.064 0.456 0.249 0.400 0.259
removing
smallest BRM -0.001 0.000 0.005 0.005 0.009 0.151 0.039 0.089 0.956 0.872 0.940 0.853
LRM 0.000 -0.000 0.000 0.001 0.005 0.030 0.016 0.026 0.891 0.828 0.883 0.799
7 doses
with less  HLRM 0.000 0.000 0.000 0000 0005 0031 0016 0028 0668 0599 0.661 0567
extreme
values BRM 0.000 0.000 0.000 0.000 0.004 0.026 0.013 0.024 0.864 0.823 0.860 0.800
7 doses LRM -0.016 -0.047 0.137 0.111 0.069 0.409 0.583 0.520 0.965 0.573 0.921 0.685
with
exllreme HLRM 0.000 0.003 -0.001 -0.001 0.008 0.049 0.027 0.036 0.325 0.188 0.290 0.151
values
and dose-
dependent
precision  BRM 0.000 0.023 -0.003 -0.011 0.003 0.196 0.023 0.095 0.957 0.849 0931 0.794

(b)data simulated using normal error term with SD = 0.01

LRM 0.030 -0.200 0.166 0.804 0.224 0.544 1.234 1.305 0.958 0.699 0.950 0.716
7 doses
with HLRM 0.000 0.006 0.025 0.105 0.031 0.238 0.199 0.795 0.408 0.286 0.404 0.194
extreme
values BRM 0.001 -0.039 0.013 0.060 0.030 0.172 0.094 0.155 0.981 0.931 0.976 0.892
LRM 0.040 -0.088 -0.125 0.549 0.101 0.280 0.314 1.245 0.966 0.924 0.972 0.734
6 doses
after HLRM -0.004 0.007 0.008 -0.008 0.027 0.125 0.075 0.123 0.424 0.384 0.445 0.241
removing
largest BRM 0.005 -0.012 -0.007 0.040 0.019 0.140 0.044 0.148 0.954 0.893 0.949 0.850
LRM -0.027 -0.172 0.357 0.531 0.080 0.534 0.836 1.220 0.966 0.561 0.937 0734
6 doses
after HLRM 0.004 0.027 -0.010 -0.005 0.028 0.160 0.089 0.125 0.434 0.247 0.384 0.253
removing
smallest BRM -0.005 -0.035 0.025 0.040 0.018 0.178 0.078 0.143 0.958 0.877 0.943 0.857
LRM 0.000 -0.001 0.001 0.004 0.011 0.060 0.032 0.053 0.892 0.826 0.883 0.799
7 doses
with less HLRM 0.000 0.000 0.001 0.002 0.01 0.061 0.032 0.056 0.665 0.597 0.657 0.564
extreme
values BRM 0.000 0.001 0.000 0.001 0.009 0.052 0.026 0.048 0.865 0.822 0.860 0.801
7 doses LRM -0.052 -0.215 0.524 0.462 0.130 0.622 1123 0.984 0.965 0.521 0.921 0.726
with
exltreme HLRM 0.002 0.011 -0.004 -0.003 0.016 0.096 0.053 0.071 0.303 0.180 0.273 0.148
values
and dose-
dependent
precision  BRM 0.000 0012 -0.001 -0.005 0.009 0.142 0.054 0.080 0.957 0.851 0.932 0.798

(c)data simulated using normal error term with SD = 0.05

LRM 0.079 -0.463 0.560 2.399 0.393 0.924 2128 1.853 0.948 0.612 0.942 0.591
7 doses
with HLRM 0.024 0.047 0.345 1.524 0.223 1.050 1.600 2.638 0.477 0.258 0.447 0.083
extreme
values BRM 0.013 0.029 0.010 0.095 0.129 0.524 0.371 0.377 0.857 0.861 0.869 0.855

Appendix 1—table 1 Continued on next page

Zhou, Liu, Fang et al. eLife 2022;11:e78634. DOI: https://doi.org/10.7554/eLife.78634 18 of 21


https://doi.org/10.7554/eLife.78634

ELlfe Tools and resources Cancer Biology

Appendix T—table 1 Continued

Scenario Method Bias RMSE 95% Cl Coverage Probability
ICso ICs0 ,@0 ,@1 ICso 1Cs0 ﬂo ﬁ] ICso 1Cs0 /60 ﬁl
LRM 0.079 -0.338 0.337 2.194 0.276 0.749 2.054 2.239 0.968 0.779 0.975 0.675
6 doses
after HLRM -0.005 0.080 0.260 0.926 0.170 0.820 1.392 2.547 0.407 0.293 0.417 0.146
removing
largest BRM 0.017 0.001 0.007 0.160 0.124 0.512 0.387 0.430 0.879 0.835 0912 0.812
LRM 0.022 -0.403 0.666 2232 0.335 0.965 1.936 2.220 0.972 0.610 0.898 0.681
6 doses
after HLRM 0.035 0.244 0.162 0.919 0.158 0.998 1.332 2.526 0.410 0.209 0.320 0.146
removing
smallest BRM 0.009 -0.021 0.030 0.160 0.119 0.511 0.358 0.420 0.874 0.754 0.862 0.819
LRM 0.005 -0.077 0.086 0.362 0.084 0.383 0.693 1215 0.905 0.795 0.895 0813
7 doses
with less HLRM 0.001 0.029 0.009 0.039 0.053 0.327 0.185 0.446 0.619 0.551 0.610 0.520
extreme
values BRM 0.002 -0.001 0.012 0.062 0.054 0.296 0.187 0.311 0.861 0.810 0.858 0.815
7 doses LRM -0.029 -0.441 0.994 1.679 0.297 0.955 1.840 1.715 0.945 0.444 0.904 0.678
with
exllreme HLRM 0.006 0.037 0.278 0.617 0.106 0.710 1.152 1781 0.335 0.145 0.295 0.105
values
and dose-
dependent
precision  BRM -0.005 0.037 0.023 -0.002 0.040 0.323 0.172 0.271 0.954 0.819 0.930 0.758

Appendix 1—table 2. Simulation result of bias, RMSE and 95% CI coverage probability
corresponding to beta error terms.

Scenario Method Bias RMSE 95% Cl Coverage Probability

ICso ICs0 ﬂo ,31 ICso 1Co0 ﬁo ﬁ 1 1Cso 1Cso ,30 ,31

(a)data simulated using beta error term with ¢=35

LRM 0.017 -0.304 0.142 0.653 0.163 0.481 0.658 0.686 0.924 0.697 0.909 0.566
7 doses
with HLRM 0.008 -0.161 0.085 0.366 0.117 0.478 0.402 0.576 0.581 0.429 0.571 0.313
extreme
values BRM 0.003 -0.014 0.018 0.073 0.074 0.339 0.219 0.275 0.835 0.818 0.832 0.829
LRM 0.039 -0.174 -0.027 0.504 0.115 0.402 0.354 0.666 0.933 0.864 0.936 0.666
6 doses
after HLRM 0.015 -0.092 0.026 0.273 0.109 0.463 0.337 0.486 0.581 0.518 0.594 0.368
removing
largest BRM 0.008 0.005 0.007 0.077 0.077 0.375 0.229 0.298 0.812 0.808 0.811 0.803
LRM -0.022 -0.288 0.248 0.502 0.108 0.501 0.499 0.670 0.930 0.620 0.901 0.664
6 doses
after HLRM 0.000 -0.120 0.094 0.274 0.106 0.509 0.366 0.487 0.596 0.383 0.547 0.368
removing
smallest BRM -0.002 -0.020 0.031 0.074 0.075 0.353 0.223 0.298 0.815 0.782 0.805 0.800
LRM 0.004 -0.045 0.023 0.117 0.063 0.332 0.195 0.300 0.900 0.828 0.891 0.821
7 doses
with less HLRM 0.003 -0.017 0.021 0.096 0.067 0.382 0.205 0.323 0.686 0.630 0.680 0.619
extreme
values BRM 0.003 0.031 0.004 0.028 0.058 0.331 0.170 0.272 0.845 0.837 0.847 0.838
7 doses LRM 0.080 -0.093 -0.179 0.444 0.147 0.281 0.435 0.548 0.904 0.908 0.927 0.639
with
exltreme HLRM 0.061 -0.200 -0.063 0.753 0.199 0.553 0.676 0.967 0.484 0.447 0.520 0.231
values
and dose-
dependent
precision  BRM 0.003 0.031 -0.003 0.012 0.067 0.277 0.182 0.236 0.755 0.780 0.768 0.772

(b)data simulated using beta error term with ¢=15

LRM 0.029 -0.571 0.373 1.633 0.233 0.555 1177 1.197 0.941 0.588 0.910 0.406
7 doses
with HLRM 0.016 -0.334 0.225 0.983 0.172 0.657 0.725 1.186 0.561 0.353 0.544 0.213
extreme
values BRM 0.008 -0.050 0.036 0.174 0.109 0.464 0.324 0.403 0.817 0.790 0.820 0.805
LRM 0.074 -0.360 -0.043 1.269 0.164 0.516 0.635 1.192 0.942 0.823 0.939 0.556
6 doses
after HLRM 0.029 -0.206 0.086 0.702 0.164 0.715 0.594 0.925 0.552 0.445 0.551 0.272
removing
largest BRM 0.018 -0.028 0.019 0.203 0.117 0.527 0.355 0.446 0.778 0.783 0.794 0.776
LRM -0.042 -0.564 0.620 1.280 0.157 0.596 0.890 1.180 0.939 0.503 0.905 0.555
6 doses
after HLRM -0.001 -0.262 0.237 0.700 0.160 0.712 0.663 0.917 0.546 0.300 0.486 0.268
removing
smallest BRM -0.001 -0.071 0.066 0.192 0.115 0.499 0.345 0.449 0.787 0.733 0.782 0.777

Appendix 1—table 2 Continued on next page
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Appendix T—table 2 Continued

Scenario Method Bias RMSE 95% Cl Coverage Probability
ICso ICs0 ,30 ,@1 ICso 1Cs0 ﬂo ﬁ] ICso 1Cs0 /80 ﬁl

LRM 0.008 -0.104 0.059 0.286 0.096 0.513 0.320 0.489 0.906 0.795 0.884 0.807
7 doses
with less HLRM 0.009 -0.030 0.048 0.240 0.103 0.726 0.325 0.517 0.694 0.602 0.678 0.598
extreme
values BRM 0.006 0.074 0.012 0.062 0.088 0.553 0.260 0.409 0.838 0.836 0.841 0.847
7 doses LRM 0.165 -0.202 -0.425 1.114 0.218 0.374 0.771 0.959 0.916 0.886 0.941 0.534
with
exltreme HLRM 0.141 -0.347 -0.250 2.055 0.291 1.027 1.270 1.798 0515 0.440 0576 0.136
values
and dose-
dependent
precision BRM 0.010 0.053 -0.008 0.050 0.104 0.423 0.281 0.368 0.763 0.790 0.764 0.769

(c)data simulated using beta error term with ¢=5

LRM 0.042 -0.851 0.748 3414 0.270 0.527 1611 1.421 0.948 0.423 0.898 0.198
7 doses
with HLRM 0.040 -0.629 0.689 3.147 0.278 1518 1.480 2112 0.681 0.241 0.644 0.094
extreme
values BRM 0.008 -0.011 0.047 0.191 0.161 0.606 0.589 0.767 0.811 0.800 0.815 0.811
LRM 0.106 -0.636 0.181 2.962 0.234 0.865 1.401 1.604 0.949 0.684 0.938 0.356
6 doses
after HRLM 0.075 -0.098 0.276 2410 0.274 8.599 1.351 2.082 0.607 0.362 0.600 0.142
removing
largest BRM 0.007 -0.15 0.112 0.355 0.166 0.643 0.621 0.761 0.762 0.752 0773 0.769
LRM -0.039 -0.871 1126 2.935 0.231 0.649 1.428 1.620 0.953 0.380 0.883 0.362
6 doses
after HLRM 0.004 -0.371 0773 2.379 0.261 5.238 1.464 2.068 0.599 0.206 0.492 0.149
removing
smallest BRM 0.008 -0.087 0.070 0.328 0.166 0.588 0.509 0.724 0.766 0.755 0.772 0.773
LRM 0.008 -0.456 0.275 1.126 0.152 0.515 0.679 1.041 0.915 0.639 0.874 0.707
7 doses
with less HLRM 0.007 -0.315 0.236 0.923 0.164 0.767 0.651 1.047 0.681 0.475 0.644 0.491
extreme
values BRM 0.002 -0.088 0.093 0.318 0.132 0.588 0.423 0.660 0.839 0.812 0.834 0.835
7 doses LRM 0.245 -0.378 -0.646 2.300 0.274 0.470 1.207 1.262 0.908 0.833 0.947 0.343
with
exltreme HLRM 0.209 -0.578 -0.233 4.982 0.332 6.852 2016 2017 0.683 0.381 0728 0.050
values
and dose-
dependent
precision  BRM 0.025 0.171 -0.032 0.074 0.161 0.762 0.426 0.549 0.757 0.796 0761 0.770

Appendix 1—table 3. The first example of REAP application with B-cell ymphoma data,
corresponding with Figure 5.

ICs estimations are ranked from low to high. Hypothesis testings on equal potency (i.e.,
concentration for ICs,) were conducted pairwise with the group right above (one rank lower).

Jeko-1 has the highest potency and the difference of ICs, estimations between Jeko-1 and Jeko-R is
significant with a P-value <0.0001. The B-cell lymphoma dataset is available on Github (Fang et al.,

2022).

Model Intercept Slope (m) Std. Err for m P-value for m>1 IC5, estimation Std. Err for ICs, estimation Pairwise comparison
Jeko-1 -4.807 -1.252 0.155 0.0519 0.021 0.008

Jeko-R -4.305 -1.822 0.112 <.0001 0.094 0.006 <0.0001

Rec-1 -5.304 -2.63 0.091 <.0001 0.133 0.004 <0.0001

Mino —2.684 -1.474 0.141 0.0004 0.162 0.015 0.0656

Jeko-NO #1 -2.012 -1.192 0.135 0.0769 0.185 0.021 0.3755

MAVER-1 -2.21 -1.37 0.125 0.0015 0.199 0.021 0.6312

Jeko-NO #11 -1.459 -1.267 0.152 0.0398 0316 0.038 0.0114

JVM2 -1.056 -1.271 0.135 0.0223 0.436 0.055 0.0818

Appendix 1—table 4. The output for the estimated dose-response curve of anti-viral drugs under
the same biological batch with SARS-CoV-2 data.

Calpain inhibitor IV has the highest potency (P-value = 0.0038). The reconstructed SARS-CoV-2
dataset is available on Github (Fang et al., 2022).
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Std. Err P-value for Std. Err for ECs,
Model Intercept Slope (m) form m>1 ECs, estimation estimation Pairwise comparison
CalpainlnhibitorlV 0.678 0.725 0.114 0.9918 0.393 0.103 -
Chloroquine -1.013 0.84 0.135 0.8813 3.337 0.88 0.0038
Remdesivir -1.791 0.797 0.12 0.9553 9.469 2.638 0.0282
Hydroxychloroquine -1.485 0.562 0.075 1 14.074 4.994 0.4445
Eé4d (Aloxistatin) -3.21 0.861 0.129 0.8587 41.61 15.473 0.1242
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