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Every conscious cognitive process will show itself to be steeped in theories; full

of hypotheses.

Rupert Riedl [1]

In a provocative editorial, Yanai and Lercher (henceforth Y&L) claim that “a

hypothesis is a liability” [2]. They contend that having a hypothesis is costly

because it causes scientists to miss hidden data and interesting phenomena. Y&L

advocate “hypothesis-free” data exploration, which they argue can yield significant

scientific discoveries.

We disagree. While we concur that a bad hypothesis is a liability, there is no such

thing as hypothesis-free data exploration. Observation and data are always hypothesis-

or theory-laden. Data is meaningless without some form of hypothesis or theory. Any

exploration of data, however informal, is necessarily guided by some form of expecta-

tions. Even informal hunches or conjectures are types of proto-hypothesis. Further-

more, seemingly hypothesis-free statistical tools and computational techniques also

contain latent hypotheses and theories about what is important—what might be inter-

esting, worth measuring or paying attention to. Thus, while Y&L argue that a “hypoth-

esis is a liability,” we argue that hypothesis-free observation is not possible (nor

desirable) and that hypotheses in fact are the primary engine of scientific creativity and

discovery.

The hidden gorilla
To illustrate their point about how a hypothesis is a liability, Y&L present their own

version of the famous gorilla experiment [3]. In their experiment, subjects receive some

made-up data featuring three variables: the BMI of individuals, the number of steps

taken on a particular day, and their gender. One experimental group received three hy-

potheses to consider, while the other was “hypothesis-free.” Subjects in this latter

group were simply asked to address the question “what do you conclude from the

dataset?”
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The “catch” of Y&L’s experiment was that a visual plot of the data showed a waving

gorilla. And the key finding was that subjects in the hypothesis-free group were five

times more likely to see the gorilla, compared with subjects in the hypothesis-focused

group. Y&L concluded from this that hypotheses blind us to hidden patterns and in-

sights in the data. Perhaps ironically, Y&L come to this conclusion based on their own

hypothesis about the dangers of hypotheses.

But how exactly does missing the gorilla generalize to Y&L’s point about a hy-

pothesis being a liability in scientific discovery? They argue that missing the gorilla

is a problem, even though it is hard to see how finding an irrelevant gorilla mimics

making a scientific insight. Now, we understand the gorilla is used as a metaphor

for missing surprising or hidden things in science. But a meteorologist missing a

cloud that looks like a gorilla is roughly equivalent to what Y&L are doing. A

gorilla-shaped cloud has no scientific interest to the meteorologist, just as the

gorilla-shaped data is irrelevant to Y&L’s context (the health data with three vari-

ables: BMI, steps taken and gender). Furthermore, the gorilla example does not

generalize to scientific discovery because a gorilla is something that is universally

recognized, while scientific discovery is essentially about finding new data, estab-

lishing new facts and relationships. New insights and scientific discoveries do not

somehow “pop out” like the gorilla does once one plots the raw data. Hypotheses

are needed. Thus, there is a mismatch between the experiment and what Y&L are

claiming, on a number of levels.

Y&L import some of these problems from the original gorilla study [4]. The

most serious concern is that various versions of the gorilla study can be seen as

a form of attentional misdirection, similar to what is practiced by magicians.

Experimental tasks are artificially constructed and designed to prove a specific

hypothesis: that people are blind and miss large objects in their visual scenes. Ex-

perimenters first hide something in the visual scene, then distract their subjects

with other tasks (whether counting basketball passes or asking them to analyze

specific hypotheses), and then, voilà, reveal to them what they have missed. The

problem is that—whether in science or in everyday life—an indefinite number of

things remain undetected when we interact with data or visual scenes. It is not

obvious what an apple falling means, without the right question, hypothesis, or

theory. Visual scenes and data teem with possibilities, uses and meanings. Of

course, the excitement generated by these studies comes from the fact that some-

thing so large and surprising—like a gorilla—goes undetected, even though it

should be plainly obvious.

But there are deeper issues here. Reductionist forms of science assume that cues and

data (somehow) jump out and tell us why they are relevant and important, based on

the characteristics of the data itself (the physical properties of the world). In vision sci-

ence, this assumption is based on research in psychophysics (and inverse optics and

ideal observer theory) that focuses on salience as a function of cue or stimulus charac-

teristics. From this perspective, cues and stimuli become data, information, and

evidence due to their inherent nature [5].

To illustrate the problem with this, consider two stimulus or cue characteristics that

are important to various versions of the gorilla study—and central to psychophysics

and the cognitive sciences more generally—namely “size” and “surprisingness” [6]. The
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idea in psychophysics is that these characteristics should make cues salient. For ex-

ample, researchers embedded an image of a gorilla in the CT scan images of patients’

lungs. They then asked expert radiologists to look for nodules as part of lung-cancer

screening. Eighty-three percent of the radiologists missed the gorilla embedded in the

image, despite the fact that the gorilla was 48 times the size of the nodules they were

looking for [7].

But if radiologists or experimental subjects were asked to, say, “look for some-

thing unusual” or to “see if you can find the animal,” they would presumably find

the gorilla. Thus, visual awareness or recognition has little to do with size or sur-

prisingness. It has more to do with the question posed by the experimenter or the

expectations of experimental subjects. In fact, experimental subjects themselves

might suspect that the study actually is not about counting basketball passes or

about analyzing health data or finding cancerous nodules in lungs. If subjects think

that they are being tricked by experimenters—as is often the case—they might ig-

nore the distracting tasks and priming questions and look for and find the gorilla.

Note, again, that the a priori hypothesis of experimenters themselves is that people

are blind, and so the experiments themselves are designed to prove this point.

Alert subjects might suspect that they are being purposefully distracted and thus

try to guess what they are meant to look for and find it.

The key point here is that the “transformation” of raw cues or data to informa-

tion and evidence is not a straightforward process. It requires some form of hy-

pothesis. Cues and data do not automatically tell us what they mean, whether or

why they are relevant, or for which hypothesis they might provide evidence. Size

is relevant in some situations, but not in others. Cues and data only become in-

formation and evidence in response to the questions and queries that we are

asking.

Fishing expeditions require a net
One alternative to having a hypothesis, Y&L argue, is hypothesis-free exploration

of data or what they call fishing expeditions. Of course, the idea of engaging in a

fishing expedition—as Y&L recognize—has highly negative connotations, suggest-

ing haphazard, unscientific, and perhaps even unethical practices. But they make

a valid point: more exploratory and imaginative practices are important in

science.

But fishing expeditions are hardly hypothesis-free. That is, fishing expeditions—to

extend Y&L’s metaphor—require a net or some type of device for catching fish. Data

and insights (just like fish) do not jump out and declare their relevance, meaning, or

importance. As put by physical chemist Michael Polanyi, “things are not labelled

‘evidence’ in nature” [8]. The relevant data needs to be identified and lured in some

fashion. Even the most exploratory process in science features choices and assumptions

about what will count as data and evidence and what should be measured (and how).

Any look at data—however preliminary it might be—necessarily represents some form

of proto-hypothesis: a latent expectation, question, or even guess about what might be

lurking, about what might potentially be interesting or relevant and how it might be

caught.
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In short, there’s no systematic way to extract and identify anything hidden without at

least some rough idea of what one is looking for. The tools and devices scientists use are

the net, sieve, or filter for capturing relevance and meaning. These nets come in vastly dif-

ferent materials and textures, sizes, types of weights, and anchors. Choices also need to be

made about where to cast these nets. There are various ways to use and deploy them (trol-

ling, longline, and so forth). Each choice implies a hypothesis. The choice of fishing net

implies a hypothesis about what one is looking for and about what one might expect to

catch and see as relevant [9].

Now, it might seem like we are stretching the definition of a hypothesis by in-

cluding expectations, conjectures, and even the statistical and computational tools

that are used to generate insights. But we think it is important to recognize that

any tool—whether cognitive, computational, or statistical—functions like a net, as

it already embodies implicit hypotheses about what matters and what does not.

Perhaps these are not full-fledged, formal hypotheses in the sense that Y&L dis-

cuss. But they certainly are proto-hypotheses that direct awareness and attention

toward what should be measured and what counts as data and evidence. A hypoth-

esis is some form of expectation or question about what one is looking for and

about what one expects to find. The identification and collection of data necessar-

ily is of the same form, as one cannot collect all data about what is going on in

the world at a specific time: flu patterns in China, weather patterns in the Pacific,

sunspot cycles, the state of the New York stock exchange, earthquakes in Tahiti,

and so on. Science is about making decisions about what subset of all this “stuff”

should be focused on and included in the analysis.

Y&L specifically emphasize correlations and the generation of various statistical patterns

as a way to make hypothesis-free discoveries in data. Correlations are one form of “net”

for looking at data. But correlations are ubiquitous and their strength tells us little [10].

One needs a hypothesis to arbitrate between which correlation might be worth investigat-

ing and which not. The genome-wide associational studies have pointed this out. With

the exception of the usual outliers (rare genetic diseases), the association levels are rela-

tively small. More data may offer more stable statistical estimates, but it will not achieve

the identification of causality required for a physiological explanation. On the contrary,

the extremely low association data can be hiding substantial causality or perhaps more

complex or interconnected, omnigenic factors are at play in the genome [11]. A causal hy-

pothesis, tested rigorously with quantitative modeling, can reveal the potential pathways

for understanding genetic variation, epigenetic factors, and disease or traits [12].

Science: bottom-up versus top-down
Y&L argue that scientific discoveries are “undiscoverable without data.” While this is

correct in principle, Y&L mis-specify the data-hypothesis relationship by privileging the

role the data to the detriment of hypothesis and theory. They ignore the temporal pri-

macy of theory and hypothesis. A hypothesis tells us what data to look for. Data

emerges and becomes evidence in response to a hypothesis. In physics, for example,

the existence of gravitational waves had long been hypothesized. The hypothesis guided

scientists to look for this data. This specifically led to the invention and construction of

exquisitely sensitive devices to detect and measure gravitational radiation (e.g., LIGO

and VIRGO observations). Eventually, in 2015, gravitational waves were discovered.
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The data emerged because of the conceptualization, design, and construction of rele-

vant devices for measurement. The data was manifest due to the hypothesis rather than

the other way around. And the data analysis itself is theory-based [13]: it depends on

templates of waves expected from the gravitational coalescence of black holes or neu-

tron stars.

Einstein aptly captured the relationship between hypotheses and data when noting

that “whether you can observe a thing or not depends on the theory which you use. It

is the theory which decides what can be observed.” Einstein’s point might be illustrated

by the so-called DIKW hierarchy (Fig. 1) [14]. Currently popular data-first approaches

assume that scientific understanding is built from the bottom-up. But to the contrary,

many of the greatest insights have come “top-down,” where scientists start with theor-

ies and hypotheses that guide them to identify the right data and evidence. One of the

most profound ways this happens is when scientists query fundamental assumptions

that are taken for granted, such as that species are fixed for all time, or that simultan-

eity is independent of the state of motion. This questioning of axiomatic assumptions

drives the creation of transformational theories (the theory of evolution, special relativ-

ity) and the subsequent collection of associated data that tests such profound reshaping

of the foundations.

Fig. 1 The DIKW “hierarchy” is often seen as “bottom-up.” But, as we argue, top-down mechanisms play a
critical role in discovering data, relevance, and meaning
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There certainly are significant reciprocal influences between these “levels” of the hier-

archy. But Y&L’s central argument that a “hypothesis is a liability” simply does not

recognize the profound, top-down influence played by hypotheses and theories in sci-

ence, and how these enable the identification and generation of data.

Our concern is that starting at the bottom—as suggested by Y&L’s notion of

hypothesis-free exploration of data—will inadvertently lead to an overly descriptive sci-

ence: what Ernest Rutherford called “stamp collecting.” Charles Darwin anticipated this

problem when he wrote to a friend:

It made me laugh to read of [Edwin Lankester’s] advice or rather regret that I had

not published facts alone. How profoundly ignorant he must be of the very soul of

observation. About 30 years ago there was much talk that Geologists ought only to

observe and not theorise; and I well remember someone saying, that at this rate a

man might as well go into a gravel-pit and count the pebbles and describe their

colours. How odd it is that everyone should not see that all observation must be

for or against some view, if it is to be of any service [15].
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