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Neurotrophic factors in Alzheimer’s and Parkinson’s 
diseases: implications for pathogenesis and therapy

Introduction
Neurodegenerative disorders are debilitating conditions that 
have an increased incidence with the aging of population. 
Alzheimer’s (AD) and Parkinson’s diseases (PD) are the most 
common neurodegenerative disturbances. Several biochem-
ical and molecular mechanisms are involved in the AD and 
PD pathogenesis, such as synaptic dysfunction, neurotrophic 
impairment, energetic deficit triggered by mitochondrial dis-
order, oxidative stress and neuroinflammation (O’Brien and 
Wong, 2011; Serrano-Pozo et al., 2011; Mack et al., 2016).

AD is characterized by a progressive cognitive decline due 
to a variety of pathological changes in the brain, mainly in 
the basal forebrain cholinergic neurons (O’Brien and Wong, 
2011; Serrano-Pozo et al., 2011). On the other hand, PD is 
classically known as a chronic and progressive movement 
disorder related to dopaminergic neurodegeneration of the 
substantia nigra pars compacta (Gao and Wu, 2016; Hirsch 
et al., 2016). In both illness, neurotrophic factors play an es-
sential role for the survival of neurons affected by degenera-
tive processes (Bothwell, 2016; Ibanez and Andressoo, 2017). 

The alterations in the regulation of specific neurotrophic 
factors and their receptors seem to be involved in the neuro-
degeneration. Neurotrophic factors prevent the cell death and 
support the neuronal proliferation and maturation, enhancing 
the growth and function of affected neurons in AD and PD 

(Connor and Dragunow, 1998; Sullivan and O’Keeffe, 2016).
The current therapies for AD and PD focus on managing 

symptoms and fail to prevent further neurodegeneration. In 
this way, the neurotrophic factors employment emerged as a 
therapeutic promise in preclinical models of these disorders. 
However, their effectiveness in clinical studies remains un-
clear (Pramanik et al., 2016; Sullivan and O’Keeffe, 2016).

Therefore, this review discusses the main findings related 
to the neurotrophic factor support in the survival, prolifera-
tion and maturation of affected neurons in AD and PD, such 
as cholinergic and dopaminergic neurons, as well as their 
putative employment as new therapeutic strategy for man-
agement of these diseases. 

Neurotrophic Factors
Neurotrophic factors comprise essential secreted proteins 
that have several functions in neural and non-neural tissues, 
mediating the development, survival and maintenance of pe-
ripheral and central nervous system (Bothwell, 2016). These 
pleiotropic molecules play critical roles both in the neuronal 
development and neural plasticity during the adulthood 
(Vilar and Mira, 2016), including the establishment of ap-
propriate contacts with specific target cells through of the 
axonal growth and guidance control, dendrite development 
and synaptic plasticity (Ledda and Paratcha, 2016).
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Currently, neurotrophic factors can be grouped in three 
major families:  neurotrophins, glial cell line-derived neuro-
trophic factor (GDNF) family of ligands (GFLs) and neuro-
kines (Bothwell, 2014; Ibanez and Andressoo, 2017). More-
over, unconventional neurotrophic factors, such as cerebral 
dopamine neurotrophic factor (CDNF) and mesencephalic 
astrocyte-derived neurotrophic factor (MANF), have been 
studied (Lindahl et al., 2017).

The nerve growth factor (NGF), a protein necessary for 
the survival and development of peripheral nervous system, 
was the first discovered member of the neurotrophin family 
(Levi-Montalcini and Angeletti, 1963). In mammals, this 
family comprises four structurally-related neurotrophins: 
NGF, brain-derived neurotrophic factor (BDNF), neurotro-
phin-3 (NT-3) and neurotrophin-4 (NT-4, also known as 
NT-4/5) (Bothwell, 2014).

Neurotrophins initially are synthesized as proneurotro-
phins, being packaged into secretory vesicles. Proneurotro-
phins undergo proteolytic cleavage, releasing a N-termi-
nal prodomain peptide and a C-terminal mature protein 
(Bothwell, 2016). Lee et al. (2001) demonstrated that the 
proneurotrophins cleavage could occur both in intracellular 
and extracellular medium. In contrast to neurotrophins, 
proneurotrophins are not inactive. They act in inducing 
apoptosis pathway through their interaction to the p75 neu-
rotrophin receptor (p75NTR) (Teng et al., 2005; Domeniconi 
et al., 2007). In this way, proneurotrophins mediate neuronal 
growth cone retraction and pro-apoptotic actions, mainly 
during development and pathological conditions (Lee et al., 
2001; Teng et al., 2005; Deinhardt et al., 2011; Hempstead, 
2014). 

The neurotrophins and proneurotrophins activities are 
mediated by their binding to transmembrane receptor sys-
tems: tropomyosin receptor kinase (Trk) family and p75NTR. 
All mature neurotrophins and proneurotrophins bind to a 
p75NTR However, p75NTR is more effectively activated by pro-
neurotrophins, while the Trk receptors are only activated by 
mature neurotrophins (Lee et al., 2001; Hempstead, 2014). 
Three different Trks are described for mammals - TrkA, 
TrkB and TrkC, which have preferred ligands. TrkA prefer-
entially binds to NGF, BDNF and NT-4 has more affinity to 
TrkB, and TrkC prefers NT-3. Besides this, NT-3 also binds 
to TrkA and TrkB, though with lower affinity (Hempstead et 
al., 1991; Squinto et al., 1991; Benedetti et al., 1993; Bibel et 
al., 1999; Esposito et al., 2001).  

Another family of neurotrophic factors is GFLs, a family 
of proteins represented by GDNF, neurturin (NRTN), arte-
min (ARTN), and persephin (PSPN) (Ibanez and Andressoo, 
2017). GDNF was the first discovered member of GFLs, being 
described as a potent neurotrophic factor for survival of mid-
brain dopaminergic neurons (Lin et al., 1993). The description 
of GDNF receptors became a target for studies soon thereafter. 

Currently, it is known that the actions of GFLs are mediat-
ed by binding those to two types of receptors. In summary, 
each GFL selectively interacts with one of the four members 
of GDNF family receptor α (GFRα1 to 4). However, GFRα 
has no intracellular domain, being necessary glycosylphos-

phatidylinositol (GPI) to anchor the GFL-GFRα complex 
to plasma membrane (Airaksinen and Saarma, 2002). Once 
that GFL-GFRα complex is anchored, GFLs acquire high 
affinity for the canonical receptor tyrosine kinase RET or 
the neuronal cell adhesion molecule (NCAM). In turn, 
GFL-GFRα-co-receptors complex activates the downstream 
signaling. Additionally, GFLs can bind to NCAM directly, 
inducing neurite outgrowth and synapse formation (Ibanez 
and Andressoo, 2017).

The family of neurokines, also known as neuropoietic cy-
tokine family, comprises the following members: ciliary neu-
rotrophic factor (CNTF), cardiotrophin-1 (CT-1), leukemia 
inhibitory factor (LIF), neuropoietin (NPN), oncostatin M 
(OSM), cardiotrophin-like cytokine (CLC), interleukin (IL)-
6, IL-11 and IL-27 (Halvorsen and Kaur, 2006). CNTF stands 
out for supporting the survival of motor, dopaminergic and 
parasympathetic neurons (Sendtner et al., 1991; Hagg and 
Varon, 1993; Davey et al., 2000). Of note, LIF supports sen-
sory neurons (Moon et al., 2009). Neurokines mediate their 
actions mainly through Janus tyrosine kinase‐signal trans-
ducer and activator of transcription (Jak/STAT) pathway 
(Halvorsen and Kaur, 2006).

Although structurally and functionally distinct from the 
classical neurotrophic factors, CDNF and MANF also show 
neurotrophic properties, such as the promotion of the dopami-
nergic neurons survival in the midbrain and the maintenance 
of endoplasmic reticulum homeostasis. However, their mecha-
nisms of action remain largely unclear (Lindahl et al., 2017).

Neurotrophic Factors in AD and PD 
Pathophysiology
Neurotrophic factor issue has been extensively investigated 
into the context of neurodegenerative diseases, particularly 
AD and PD, because they show alterations in their levels and 
in adult neurogenesis as common hallmarks (Hoglinger et 
al., 2004; Gakhar-Koppole et al., 2008; O’Keeffe et al., 2009; 
Vilar and Mira, 2016). In this way, the understanding of the 
neurotrophic factor roles in supporting survival, prolifera-
tion and maturation of certain neurons, such as cholinergic 
and dopaminergic neurons, is a focus of active research and 
also of this review.

Alzheimer’s disease 
AD is well established as a complex progressive neurodegen-
erative disorder that results in memory deterioration and 
cognitive capacity impairment. However, this illness also 
comprises non-cognitive symptoms, such as delusions, ag-
itation and changes in mood and personality (Epelbaum et 
al., 2017). The observed symptoms are associated with cho-
linergic deficits, mainly those related to cognitive functions. 
AD patients exhibit degeneration in the basal forebrain cho-
linergic neurons and in their projections for the cortex and 
hippocampus, being the loss of neurotrophic support a likely 
involved mechanism (Serrano-Pozo et al., 2011).

Analyses of brains from AD patients demonstrate the 
presence of β-amyloid peptide aggregates in the extracellular 
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medium, intracellular inclusions of neurofibrillary tangles 
rich in microtubule-associated protein tau, and neuritic 
plaques, which are pathological hallmarks of this disease 
(Serrano-Pozo et al., 2011). Moreover, the β-amyloid tox-
icity may also explain pathological aspects of AD, such as 
neurofibrillary tangles, inflammation and oxidative damage 
(O’Brien and Wong, 2011).

Oxidative stress is inextricably linked with several major 
pathological processes in AD, including β-amyloid-induced 
neurotoxicity, tau pathology, mitochondrial dysfunction and 
metal dyshomeostasis. In addition, oxidative stress plays an 
important role in the initiation and progression of AD (Zhao 
and Zhao, 2013). In fact, amyloidosis and tau protein accu-
mulation can induce reactive oxygen species increase that 
promotes a redox imbalance. In contrast, the oxidative stress 
could have a causal relation with the AD pathogenesis. In 
this way, the augment of β-amyloid production and aggrega-
tion and tau phosphorylation and polymerization induce the 
reactive oxygen species increase (Zhao and Zhao, 2013). No-
tably, the oligomeric form of β-amyloid has been considered 
the most neurotoxic (Allen et al., 2011).

Additionally, changes in neurotrophic factors are observed 
both in AD animal models and patients (Allen et al., 2011; 
Budni et al., 2015). In this context, the neurotrophins NGF 
and BDNF stand out. NGF is a key neurotrophic factor cho-
linergic system development, including neuronal survival 
and differentiation (Nilbratt et al., 2010). It is synthesized in 
the cortex and hippocampus and retrogradely transported 
to the basal forebrain cholinergic neurons (Cattaneo and 
Calissano, 2012). NGF also induces rapid plasticity in the 
barrel cortex of rats - a region of the primary somatosensory 
cortex – through projections to basal forebrain cholinergic 
system (Prakash et al., 2004). Concerning that the basal fore-
brain cholinergic neurons constitute the main cholinergic 
innervation to hippocampus and neocortex, they play an es-
sential role in cognition and attention processes (Triaca and 
Calissano, 2016). Moreover, Biane et al. (2014) observed that 
cortical GABAergic neurons are the primary source of NGF 
synthesis, providing support for basal forebrain cholinergic 
projections in adulthood.

Regarding AD, postmortem-derived tissue show NGF 
levels decrease in the nucleus basalis of Meynert, a neuronal 
group that projects large cholinergic innervation source to 
widespread cortical areas and it is well known to undergo 
degeneration in this disorder (Scott et al., 1995). Indeed, 
there are in vitro and in vivo evidence suggesting that NGF 
levels control the amyloidogenic pathway and β-amyloid 
peptides production (Matrone et al., 2008a, b; Yang et al., 
2014). In physiological conditions, amyloid precursor pro-
tein (APP) can bind to TrkA. However, phosphorylated APP 
at Thr668, presents in AD patients, does not interact with 
TrkA favoring the β-secretase action that, in turn, increases 
the β-products levels. Thus, NGF controls the amyloidogen-
ic route through the decrease in APP phosphorylation that 
diminishes the APP-β-secretase interaction by reducing the 
β-amyloid peptides formation (Triaca et al., 2016). 

NGF retrograde transport from cortex and hippocampus 

to the basal forebrain cholinergic neurons is TrkA dependent. 
Nevertheless, this transport is dysfunctional in AD (Cattaneo 
and Calissano, 2012). In this way, decreased TrkA gene ex-
pression may be linked to basal forebrain neurodegeneration 
in early AD patients and increased NGF levels in the cortex of 
AD postmortem brains (Fahnestock et al., 1996; Counts et al., 
2004). In addition, TrkA shows pro-survival or pro-apoptotic 
actions that are dependent of the presence or absence of NGF. 
TrkA-mediated pro-death signals were demonstrated after a re-
duction in NGF levels and as a consequence of overactivation 
of NGF-TrkA signaling following NGF withdrawal (Li et al., 
2010; Nikoletopoulou et al., 2010). 

Furthermore, p75NTR expression changes also are reported 
in the literature. Hippocampal TrkA expression is reduced in 
mild cognitive impairment patients while pro-NGF is elevat-
ed, suggesting the activation of pro-apoptotic pathways by 
pro-NGF (Mufson et al., 2012). Current data from Crispol-
toni et al. (2017) demonstrated changes in the TrkA/p75NTR 
expressions during the disease progression in monocytic 
cells, which perform the β-amyloid deposits clearance. Mild 
cognitive impairment and mild AD patients showed an ele-
vation in TrkA expression in monocytes and in NGF levels 
in plasma. In contrast, a reduction in both molecules and the 
monocytic p75NTR expression increase were found in patients 
with severe AD (Crispoltoni et al., 2017).

Regarding BDNF, this neurotrophin is largely expressed in 
the central nervous system, influencing several aspects of the 
neuronal function. Because this, BDNF was established as 
the main central neurotrophic factor (Park and Poo, 2013). 
BNDF mediates hippocampal plasticity in adulthood, sur-
vival and integration of hippocampal new-born neurons, 
assists the early and late long term potentiation (LTP) phases 
and works as cellular substrate for learning and memory 
(Vilar and Mira, 2016).

Similar to NGF, imbalance in BDNF levels also has been 
reported in AD cases. BDNF concentrations were found ele-
vated in plasma of patients with severe AD (Angelucci et al., 
2010; Faria et al., 2014). However, studies that investigated 
serum BDNF levels in mild cognitive impairment subjects 
show conflicting results (Angelucci et al., 2010; Faria et al., 
2014). On the other hand, a postmortem study revealed that 
hippocampal BDNF expression was not altered, while TrkB 
expression was increased (Kao et al., 2012). In contrast, Fer-
rer et al. (1999) observed that both BDNF and TrkB levels 
were reduced in cerebral cortex and hippocampus of AD pa-
tients. Recently, the cortical BDNF expression reduction was 
corroborated by Buchman et al. (2016).

Preclinical reports have described that AD transgenic 
mouse models show decreased cortical BDNF expression and 
BDNF-mediated TrkB retrograde trafficking impairment in 
neuronal culture submitted to β-amyloid peptides (Peng et al., 
2009; Poon et al., 2011). Alterations in the anterograde and 
retrograde transport of BDNF-containing vesicles by extra-
cellular products from APP also were recently demonstrated 
(Seifert et al., 2016). Additionally, β-amyloid at a sublethal 
concentration down-regulates the BDNF signaling in cultured 
cortical neurons (Tong et al., 2004). In contrast, both protein 
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and mRNA levels of BDNF were elevated in cells submitted to 
β-amyloid(25–35) treatment (Lattanzio et al., 2016).

Data from Lattanzio et al. (2016) are in accordance with 
the putative causal role of BDNF in the AD pathogenesis. 
Ruiz-Leon and Pascual (2001) demonstrated that the binding 
of BNDF to TrkB, in a dose- and time-dependent fashion, 
can modulate the in vitro APP expression. In addition, full 
activation of APP gene expression by BDNF is simultaneously 
mediated by Ras/MAPK and PI3K/Akt signaling pathways 
(Ruiz-Leon and Pascual, 2001, 2004). Once that APP overex-
pression is an AD risk factor because it increases the β-amy-
loid peptide levels, BDNF could favor the formation of them. 
However, the most clinical and preclinical evidence indicates  
a BDNF reduction in the AD affected brain areas. Thus, these 
findings suggest a physiological role of APP in the cellu-
lar growth, which may be modulated by factors other than 
BDNF. Of note, these outcomes also present an open question 
for establishing the mechanisms undertaken by APP.

Parkinson’s disease
PD is the second most common neurodegenerative disorder 
after AD. The PD incidence rate rises with the age, being 
expected a social and economic burden on the societies 
that prevalently have elderly population (Hirsch et al., 2016; 
Mack et al., 2016). PD etiology shows that although the most 
of patients are idiopathic or late onset PD cases (> 85 %), 
there is a relation between familial historic and a high PD 
risk. Additionally, families with inherited parkinsonism (< 
10 %) had a variety of putative genes involved in PD iden-
tified individuals, showing that mitochondrial or lysosomal 
dysfunctions, protein aggregation, ubiquitin-proteasome 
system and kinase signaling pathways play a major role in 
the PD pathogenesis (Corti et al., 2011).

PD is clinically characterized by resting tremor, rigidity, 
bradykinesia and postural instability. Furthermore, nonmo-
tor symptoms also are observed, occurring both in the late 
and early stages. These nonmotor symptoms comprise olfac-
tory deficits, constipation, sleep behavior disorders, cogni-
tive impairment and mood disturbances, such as anxiety and 
depression (Chaudhuri et al., 2006; Mack et al., 2016).

The disability of PD patients controlling the voluntary 
movements is a consequence of changes in the functional 
organization of the basal ganglia nuclei, which include the 
dopaminergic neurons loss in the substantia nigra pars com-
pacta resulting in dopaminergic deficiency in the striatum 
(Gao and Wu, 2016). The major pathological hallmarks of 
PD comprise the presence of dystrophic neurites and Lewy 
bodies –intracytoplasmic inclusions in the surviving neu-
rons composed mainly by α-synuclein and ubiquitin proteins 
(Wakabayashi et al., 2007). 

Furthermore, neurotrophic factor alterations also are ob-
served both in pre-clinical and clinical PD studies. In gener-
al, decreased neurotrophic factor levels have been reported 
in dopaminergic areas linked to PD, such as the substantia 
nigra (Nagatsu and Sawada, 2007). More consistent evidence 
suggests the major BDNF and GDNF involvement in the PD 
pathophysiology (Howells et al., 2000; Chauhan et al., 2001; 

Nagatsu and Sawada, 2007). Moreover, CDNF and MANF 
have emerged as new targets of study for this illness (Lindahl 
et al., 2017).

Accumulating data indicate the essential role and wide 
expression of BDNF in central motor structures, for instance 
basal ganglia, cerebellum and brainstem (Altar et al., 1997; 
He et al., 2013). So, disturbance in its homeostasis is harmful 
for neuronal development and survival in these areas (Li et 
al., 2012). Its neurotrophic functions include development 
and differentiation of cerebellar granule and Purkinje cells 
(Schwartz et al., 1997), survival support for dopaminergic 
neurons in the ventral tegmental area and medial substan-
tia nigra pars compacta (Hyman et al., 1991; Baquet et al., 
2005), and nigrostriatal apoptosis inhibition by BDNF/TrkB 
signaling (Lui et al., 2012). Moreover, the expressions of do-
pamine D3 receptor and tyrosine hydroxylase are mediated 
by BDNF (Du et al., 1995; Guillin et al., 2001).

Postmortem studies of PD patients found a reduction in 
the BDNF levels and in its expression in the substantia nigra 
pars compacta, caudate nucleus and putamen (Mogi et al., 
1999; Parain et al., 1999; Howells et al., 2000; Nagatsu and 
Sawada, 2007). In addition, decreased BDNF levels is posi-
tively correlated to the degree of dopaminergic degeneration 
(Ziebell et al., 2012). Interestingly, genetic polymorphism of 
BDNF influences on familial PD, cognitive performance in 
individuals with PD and in the development of L-DOPA-in-
duced dyskinesias (Foltynie et al., 2005; Karamohamed et al., 
2005; Evans and Barker, 2008). Moreover, the α-synuclein 
overexpression down-regulates BDNF transcription and im-
pairs BDNF trafficking in neurons (Yuan et al., 2010; Chu et 
al., 2012; Pramanik et al., 2016).

On the other hand, preclinical studies carried out in an-
imal models show unclear results linked to BDNF levels 
imbalance. Hence, several factors can influence BDNF levels 
in PD models, for instance, the neurotoxin used, the admin-
istration protocol chosen and the degree of dopaminergic 
damage induced (Collier et al., 2005; Mocchetti et al., 2007; 
Berghauzen-Maciejewska et al., 2015; Sampaio et al., 2017).

Similar to BDNF, GDNF also assists motor and dopami-
nergic neurons, having an important role in their survival, 
differentiation, organization and maintenance (Henderson 
et al., 1994; Evans and Barker, 2008; Chermenina et al., 
2014). Nevertheless, GDNF is five to ten times more potent 
than BDNF for survival promotion in injured nigrostriatal 
neurons of rats (Lu and Hagg, 1997). Adult mice express 
GDNF only in the dorsal and ventral striatum, anteroventral 
nucleus of the thalamus, septum and subcommissural organ 
(Pascual et al., 2011), whereas RET and GFRα1 are broadly 
expressed in the central nervous system (d’Anglemont de 
Tassigny et al., 2015). Curiously, there is no GDNF receptors 
mRNAs in the striatum, but high expression of them in the 
nigral cells (Trupp et al., 1997) suggesting a specific action 
on nigral dopaminergic neurons. Due to robust preclinical 
evidence of its effects, GDNF is one of the most largely in-
vestigated neurorestorative approach for PD.

Besides that, clinical reports also have related GDNF with 
the dopaminergic system. High expression of GDNF and RET 
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were found in human striatum and substantia nigra, respec-
tively (Springer et al., 1994; Trupp et al., 1997). Furthermore, 
Chauhan et al. (2001) demonstrated that the nigral GDNF 
reduction in brain of PD patients was of two to eight times 
greater than those of other neurotrophic factors analyzed. Nev-
ertheless, in another postmortem study in lysates of caudate/
putamen, substantia nigra, cerebellum, frontal cortex and ce-
rebrospinal-fluid, no significant difference was found between 
healthy subjects and PD patients (Mogi et al., 2001). Moreover, 
the detected polymorphisms in the GDNF gene did not show 
correlation with the disease (Wartiovaara et al., 1998).

CDNF and MANF have emerged in the PD context due 
to their neurotrophic effects on dopaminergic neurons. Low 
levels of CDNF expression have been detected in most of the 
brain areas of embryonic, postnatal and adult mouse, where-
as CDNF levels were mainly observed in neurons of adult 
mouse. Nevertheless, CDNF immunocontent is not colocal-
ized with tyrosine hydroxylase-positive cells in the substan-
tia nigra. Indeed, few CDNF-positive neurons were stained 
in the substantia nigra and striatum, being more abundant 
in cerebellum, locus coeruleus, hippocampus and thalamus. 
Furthermore, CDNF expression was observed in the human 
brain and in central and peripheral non-neuronal tissues 
(Lindholm et al., 2007).

In contrast to CDNF, MANF expression was found in 
several areas of the developing and adult brain, including 
striatum and midbrain (Lindholm et al., 2008; Wang et al., 
2014). In addition, its immunocontent presented colocal-
ization with dopaminergic neurons in the substantia nigra 
(Lindholm et al., 2008). Although no effects on dopaminer-
gic neurons are observed when MANF is administered in 
naïve rodents, accumulating evidence suggests its neurore-
storative role against injured neurons (Airavaara et al., 2009; 
Voutilainen et al., 2009). Moreover, MANF regulates the 
endoplasmic reticulum stress and unfolded protein response 
(Apostolou et al., 2008).

Although several aspects linked to physiology of CDNF 
and MANF, such as their cytoprotective mechanism and 
their ability to bind to transmembrane receptors (Lindahl et 
al., 2017) remain unclear, their beneficial effects against in 
vitro and in vivo PD experimental models justify the growing 
investigation about them.

Neurotrophic Factors as Therapy Strategies for 
AD and PD
Besides the role of neurotrophic factors in the nourishment, 
survival and regeneration of neurons, there is increasing ev-
idence indicating their involvement in the survival, anti-in-
flammation, proliferation and differentiation of non-neuro-
nal tissues (Bothwell, 2016). In addition, they can be found 
in tissue-specific adult stem cell niche, inducing tissue re-
generation outside the nervous system (Matsuda et al., 1988; 
Meng et al., 2000; Lavasani et al., 2006). Considering these 
evidence and the pathophysiological features that link the 
neurotrophic factors to AD and PD, it is plausible the neu-
rotrophic factors employment as therapeutic approach for 
neuroregeneration.

The current therapies for AD and PD are initially effective, 
alleviating the main symptoms of these diseases. However, 
disease progression is not prevented, justifying the research 
focus in neurorestorative approaches. In this way, pluripo-
tent stem cells transplant, gene therapy vectors, neurotrophic 
factor replacement and neurotrophic factor mimetics emerge 
as strategies for neuronal regeneration. In contrast to current 
therapies, these new therapeutic strategies could provide a 
cure for neurodegenerative disorders. 

Across the last decades, research data on the therapeutic 
promise of neurotrophic factors have been collected. Nev-
ertheless, none treatment for any disease was established. 
Firstly, different neurotrophic factors were tested by subcuta-
neous route, in order to produce a systemic exposure (Group, 
1999; Sorenson et al., 2008). Following serious side effects 
found with the subcutaneous injections, intrathecal deliv-
ery of neurotrophic factors, mainly CNTF and BDNF, was 
employed. Intrathecal administration avoided subcutaneous 
side effects, indicating the feasibility and tolerability by this 
delivery route. Lumbar and cervical taps analysis demon-
strated the ability of neurotrophic factors to be distributed 
in the cerebrospinal-fluid compartment following intrathe-
cal infusion. However, the effectiveness of these proteins to 
reach the spinal cord and brain was not elicited. Moreover, 
unexpected side effects likely dose-related were found subse-
quently to intrathecal administration (Aebischer et al., 1996; 
Penn et al., 1997; Ochs et al., 2000; Kalra et al., 2003; Beck et 
al., 2005). 

Dosing paradigm for neurotrophic factor intrathecal ad-
ministration was changed after the results obtained from 
intracerebral ventricular (ICV) infusion of neurotrophic 
factors, which suggested that cerebrospinal-fluid was not the 
ideal way to delivery these peptides. ICV studies using NGF 
and GDNF, respectively, in AD and PD patients, demonstrat-
ed significant side effects with little clinical benefit (Eriksdot-
ter Jonhagen et al., 1998; Kordower et al., 1999; Nutt et al., 
2003). In addition, dose reduction was enough to eliminate 
side effects observed in the ICV approach. In this way, intra-
thecal approach, which also reaches the cerebrospinal-fluid 
compartment, may yet prove useful for application of new 
strategies with different biological constructs, for instance, 
antisense oligonucleotides, some gene therapy vectors and 
phage-like entities (Bartus and Johnson, 2017).

Based on findings from previous trials, neurotrophic fac-
tors began to be administered directly into the target tissue. 
As in the pioneer study that tested NGF into the putamen 
of a PD patient (Olson et al., 1991), positive clinical effects 
have been reported using GDNF in PD subjects, without 
serious side effects (Gill et al., 2003; Love et al., 2005; Patel 
et al., 2005, 2013). Besides the enhanced performance in 
standardized PD scales and tests, improvement in [18F]-do-
pamine uptake after a year of treatment was described (Gill 
et al., 2003). Additionally, an autopsied brain from a study 
by Gill et al. (2003) showed an increase in tyrosine hydrox-
ylase-staining at the injection area of putamen and an en-
hancement in L-DOPA uptake in the infused hemisphere 
(Love et al., 2005). However, a double-blind controlled trial 
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with PD patients did not replicate those clinical outcomes 
(Lang et al., 2006). These conflicting data were attributed to 
putative differences in drug delivery (Salvatore et al., 2006). 
Nevertheless, Morrison et al. (2007) reported that GDNF 
distribution and diffusion did not explain the different effi-
cacy found. 

Regarding clinical trials of AD, investigators were focused 
on developing effective and innovative delivery methods. 
Gene transfer has emerged as a technology able to provide 
controlled, predictable, long-term biologically active pro-
teins, which act on specific targeted brain sites (Herzog et 
al., 2011). Autologous fibroblasts genetically modified to 
express human NGF were implanted into the basal forebrain 
area of AD patients. The subjects showed an improvement in 
the cognitive decline rate and an increase in cortical 18-flu-
orodeoxyglucose, indicating metabolic activity in this area 
(Tuszynski et al., 2005). Autopsied brain confirmed long-
term, targeted, gene-mediated NGF expression and bioactiv-
ity (Rafii et al., 2014). In addition, it was observed that axons 
sprouted toward the local source of NGF and cell hypertro-
phy (Tuszynski et al., 2015).

Preclinical studies also have used innovative delivery 
methods to evaluate the neurotrophic factors potential 
against AD models. Recombinant lentiviral vectors used 
to overexpress hippocampal GDNF gene in astrocytes pre-
served cognitive functions in 3xTg-AD mice and aged rats 
(Pertusa et al., 2008; Revilla et al., 2014). Revilla et al. (2014) 
also reported that MC65 cells overexpressing GDNF present-
ed a reduction of toxic APP content and its β-amyloid pep-
tides-derived. Moreover, protective effect of GDNF against 
β-amyloid-induced neuronal death was demonstrated in 
rabbit hippocampus and in cultured septal neurons (Ghribi 
et al., 2004; Kitiyanant et al., 2012). Although these data are 
promising, further preclinical and clinical studies are needed 
to elucidate the putative application of GDNF as therapeutic 
strategy for AD. 

Conclusion
In summary, neurotrophic factors play essential roles for 
survival, development and maintenance of neurons. Alter-
ations in the neurotrophic factors levels/expression and their 
signaling pathways seem to be tied to the development and/or 
progression of neurodegenerative disorders. In this context, 
neurotrophic factors emerge as therapeutic promises for AD 
and PD. Although many data have been collected in the last 
decades, none neurotrophic factor treatment for any disease 
was established until now. However, the new drug delivery 
approaches, such as gene therapy vectors, search to optimize 
the clinical benefit in reducing the side effects observed in the 
tested methods. Thus, application of neurotrophic factors us-
ing new therapeutic methods should be carefully considered 
and evaluated for AD and PD management.
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