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Abstract 

Background: This study explored the prognostic significance of Glypican (GPC) family genes in patients with pan‑
creatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy using data from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO).

Methods: A total of 112 PDAC patients from TCGA and 48 patients from GEO were included in the analysis. The 
relationship between overall survival and the expression of GPC family genes as well as basic clinical characteristics 
was analyzed using the Kaplan‑Meier method with the log‑rank test. Joint effects survival analysis was performed to 
further examine the relationship between GPC genes and prognosis. A prognosis nomogram was established based 
on clinical characteristics and prognosis‑related genes. Prognosis‑related genes were investigated by genome‑wide 
co‑expression analysis and gene set enrichment analysis (GSEA) was carried out to identify potential mechanisms of 
these genes affecting prognosis.

Results: In TCGA database, high expression of GPC2, GPC3, and GPC5 was significantly associated with favorable 
survival (log‑rank P = 0.031, 0.021, and 0.028, respectively; adjusted P value = 0.005, 0.022, and 0.020, respectively), and 
joint effects analysis of these genes was effective for prognosis prediction. The prognosis nomogram was applied to 
predict the survival probability using the total scores calculated. Genome‑wide co‑expression and GSEA analysis sug‑
gested that the GPC2 may affect prognosis through sequence‑specific DNA binding, protein transport, cell differentia‑
tion and oncogenic signatures (KRAS, RAF, STK33, and VEGFA). GPC3 may be related to cell adhesion, angiogenesis, 
inflammatory response, signaling pathways like Ras, Rap1, PI3K‑Akt, chemokine, GPCR, and signatures like cyclin D1, 
p53, PTEN. GPC5 may be involved in transcription factor complex, TFRC1, oncogenic signatures (HOXA9 and BMI1), 
gene methylation, phospholipid metabolic process, glycerophospholipid metabolism, cell cycle, and EGFR pathway.
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Background
Pancreatic cancer (PC) is related to an unfavorable prog-
nosis, and its mortality rate is close to its incidence rate 
[1]. The incidence of PC is predicted to rise 40% in the 
next 10 years in North America and Europe [2], and 
according to the latest statistics, PC ranks fourth among 
cancers directly causing death for men and women in 
the United States [3], moreover, by 2030, its rank may 
increase to second [4]. In China, the prognostic status 
of PC patients is also severe, and 5-year survival rate of 
patients with PC after age standardization is approxi-
mately 11.7% [5]. Due to the unique biological behaviors 
of PC, metastasis is present when patients are diagnosed 
and only 9.7% patients can be diagnosed at an early stage 
[6]. Furthermore, the 5-year survival rate is 9% for PC at 
all stages and 3% at advanced stages [3]. So far, surgical 
resection remains the best therapy for PC at the early 
stage [7]. Therefore, identifying reliable early molecular 
markers to improve prognosis of PC is important.

Glypican (GPC) family genes include six members 
(GPC1, GPC2, GPC3, GPC4, GPC5, GPC6), and all of the 
GPC family are expressed in human [8]. Glypicans are 
attached to the cell membrane and function in biological 
processes such as cell and tissue growth, embryo devel-
opment, and cell movement [9, 10]. They are reported to 
be related to multiple diseases including various cancers. 
GPC1 is upregulated in pancreatic cancer [11], esopha-
geal cancer [12], and prostate cancer [13]. Li et al. report 
that GPC1 contributes to the proliferation and motil-
ity of esophageal cancer cells through the PTEN/Akt/β-
catenin pathway [14]. Increased level of GPC3 in serum 
could serve as a marker for hepatoblastoma [15] as well 
as hepatocellular carcinoma (HCC) [16, 17]. GPC3 dele-
tion mutation can help in diagnosis of Simpson-Golabi-
Behmel syndrome type 1 (SGBS1), which is a serious 
genetic disease [18, 19]. Overexpression of GPC5 may 
accelerate tumor progression of lymphoma [20]. In addi-
tion, GPC5 may play a role in strengthening the inter-
action between Patched 1 and Hedgehog signaling in 
rhabdomyosarcoma [21]. GPC5 may serve as a key gene 
affecting the cell cycle of podocytes in kidneys, finally 
causing nephrotic syndrome [22].

Pancreatic ductal adenocarcinoma (PDAC) accounts 
for more than 80% of pancreatic neoplasms [1, 23]. How-
ever, there are few studies on the prognostic value of GPC 
family genes in early-stage PDAC after pancreaticoduo-
denectomy despite the poor prognosis of this tumor type. 

In this study, we explored the relationship between GPC 
family genes expression and prognosis of PDAC patients.

Methods
Patient data
The RNA-sequencing dataset used in this study and 
the corresponding clinical data were acquired from The 
Cancer Genome Atlas (TCGA) (https ://porta l.gdc.cance 
r.gov/; accessed September 25, 2019), and DESeq was 
applied to normalize the initial material [24]. To increase 
reliability of data analysis, previously established inclu-
sion and exclusion criteria were used [25]. The inclu-
sion criteria were as follows: (i) survival information was 
complete; (ii) histology result was confirmed as PDAC; 
(iii) pathologic stage was I or II; (iv) pancreaticoduo-
denectomy was carried out on patients. PDAC patients 
with pathologic stage III or IV and those who under-
went other surgical procedures were excluded from the 
study. According to the above criteria, 112 patients were 
included in the analysis. The clinical characteristics 
included in the analysis were age, sex, alcohol history, 
pathologic stage, histologic grade, radical resection, radi-
ation therapy, targeted molecular therapy, overall sur-
vival (OS) time, and survival status. Dataset GSE62452 
was downloaded from Gene Expression Omnibus (GEO) 
database to validate the prognostic value of survival-
related genes (https ://www.ncbi.nlm.nih.gov/geo/query /
acc.cgi?acc=GSE62 452; accessed October 5, 2020). Fol-
lowing the same criteria described above, we included 48 
cases in this study.

Analysis using public database
The expression status of GPC family genes in different 
normal tissues was analyzed by the Genotype-Tissue 
Expression (GTEx, https ://www.gtexp ortal .org/, accessed 
October 9, 2019) website [26, 27]. The Gene Expression 
Profiling Interactive Analysis (GEPIA, http://gepia .cance 
r-pku.cn/, accessed October 9, 2019), an online tool con-
taining 9736 tumors and 8587 normal samples from the 
TCGA and the GTEx projects, was used to show expres-
sion level of each gene in both tumor and normal tissues 
of PDAC [28]. The Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) v6.8 (https ://
david .ncifc rf.gov/, accessed November 6, 2019) [29, 30] 
was chosen to carry out gene enrichment analysis con-
taining Gene Ontology (GO) function analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 

Conclusion: GPC2, GPC3, and GPC5 expression may serve as prognostic indicators in PDAC, and combination of these 
genes showed a higher efficiency for prognosis prediction.
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analysis. The possible functioning pathways of the genes 
were also investigated by Biological Network Gene 
Ontology (BiNGO) in Cytoscape (version 3.7.1) [31].

Survival analysis
Two groups of patients were set up based on 50% cutoff 
expression value of each gene both in TCGA database 
and GEO database. The relationship between OS and 
gene expression level as well as basic clinical character-
istics was analyzed using Kaplan-Meier method with the 
log-rank test. Log-rank P < 0.05 was considered statisti-
cally significant. Multivariate Cox proportional hazards 

regression analysis was used to adjust for prognosis-sig-
nificant factors. Hazard ratio (HR) and 95% confidence 
interval (CI) were considered to estimate the relative 
risk. Stratified analysis was carried out based on cer-
tain clinical characteristics of the patients for survival-
related genes to explore their significance in prognosis. 
To understand the relationship between GPC genes and 
prognosis at a deeper level, joint effects survival analy-
sis was taken into consideration. The survival-significant 
clinical characteristics, clinical factors usually related to 
prognosis of patients with malignant tumors clinically 
and prognosis-related genes were included to establish a 
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Fig. 1 Gene expression levels of Glypican family genes in normal human organ tissues. a‑f Gene expression levels of Glypican1–6, respectively
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prognosis nomogram. Better survival prediction could be 
made according to the total points.

Genome‑wide co‑expression analysis
Genome-wide co-expression analysis of prognosis-
related genes was performed to investigate their potential 
biological mechanisms based on TCGA database. A gene 

a b c

d e f

Fig. 2 Gene level distribution of Glypican family genes in pancreatic ductal adenocarcinoma between tumor and normal tissues. a‑f Gene level 
distribution of Glypican1–6 in pancreatic ductal adenocarcinoma between tumor and normal tissues, respectively. Notes: *P < 0.05.
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with Pearson correlation coefficient > 0.5 and P < 0.05 was 
considered as a co-expression gene. A co-expression net-
work was built for each gene related to prognosis and its 
co-expressed genes using Cytoscape software (version 
3.7.1) [32]. GO function analysis and KEGG pathway 
analysis of these genes were also completed using DAVID 
[29, 30].

Gene set enrichment analysis
To understand the underlying mechanisms of GPC 
genes affecting prognosis, we used Gene Set Enrichment 
Analysis (GSEA, http://softw are.broad insti tute.org/gsea/
index .jsp, November 6, 2019) [33, 34]. Databases c2 (c2.
all.v7.0.symbols.gmt) and c6 (c6.all.v7.0.symbols.gmt) in 
the Molecular Signatures Database (MSigDB) [35] were 
used to search for possible pathways based on TCGA 
database. Enrichment results were considered statisti-
cally significant if the nominal P-value was < 0.05 and the 
false discovery rate (FDR) was < 0.25.

Statistical analysis
Survival analysis was performed using Kaplan-Meier 
method with log-rank test. Univariate and multivariate 
survival analyses were performed with Cox proportional 
hazards regression model to calculate crude and adjusted 
HRs and 95% CIs. Survival curves were plotted using 
GraphPad Prism v.7.0 (GraphPad Software Inc., La Jolla, 
CA).

The unpaired t test was used to compare gene expres-
sion levels between normal and tumor tissues. The 
expression relationship of each GPC gene and its co-
expressed genes was quantified by Pearson’s correlation 
coefficient. The correlation plot was constructed using 
Cytoscape software (version 3.7.1). All statistical analyses 
were performed using SPSS v.25.0 software (IBM, Chi-
cago, IL, USA). A P value < 0.05 was considered statisti-
cally significant.

Results
Analysis using public database
The expression status of GPC family genes in tissues 
derived from various normal human organs was analyzed 
using GTEx (Fig. 1). The expression level of GPC family 
genes was lower in human pancreas than in other organs. 
The results of GEPIA analysis showed that expression of 
GPC1, GPC3, GPC4, and GPC6 was significantly higher 
in PDAC tumor tissues than in normal tissues (P < 0.05) 
(Fig. 2). GO functional enrichment analysis indicated that 
GPC family genes were mainly involved in composition 
of cell membrane, organelles and anchored components 
of the membrane, heparan sulfate proteoglycan bind-
ing, and glycosaminoglycan metabolic process (Fig.  3, 
Additional file 1: Table 1). The results of BiNGO analysis 
(Fig. 4) confirmed those of GO analysis.
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Fig. 3 Function enrichment analysis of Gene Ontology for Glypican family genes completed by the Database for Annotation, Visualization, and 
Integrated Discovery
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Survival analysis
The Kaplan-Meier method and log-rank test were used 
to investigate the association between basic clinical 
characteristics and OS in TCGA database. Additional 

file 2: Table 2 shows that histologic grade, extent of sur-
gery, treatment with radiation and targeted molecular 
therapy were significant in OS. GPC family genes were 

Fig. 4 Functioning pathways of Glypican family genes carried out by Biological Network Gene Ontology in Cytoscape software
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divided into two groups based on expression level, and 
survival analysis was performed between the two groups. 
The results (Fig.  5a–f) demonstrated that expression 
of GPC2, GPC3, and GPC5 was significantly associated 
with survival. The median survival time (MST) was sig-
nificantly longer in patients with high expression of 
GPC2, GPC3, and GPC5 than the low expression group 
(log-rank P = 0.031, 0.021, and 0.028, respectively; MST, 
634 days vs. 481 days, 614 days vs. 473 days, and 593 days 
vs. 485 days, respectively, Fig.  5b, c, e and Fig.  6). After 
adjusting for survival-significant clinical parameters in a 
multivariate Cox proportional hazards regression model, 
GPC2, GPC3, and GPC5 were still significantly asso-
ciated with OS (Table  1) (adjusted P = 0.005, adjusted 

HR = 0.449, 95% CI = 0.258–0.782; adjusted P = 0.022, 
adjusted HR = 0.531, 95% CI = 0.309–0.914; and adjusted 
P = 0.020, adjusted HR = 0.525, 95% CI = 0.306–0.902, 
respectively). Results of stratified analysis for GPC2, 
GPC3, and GPC5 are shown in Table 2. High expression 
of GPC2 was significantly associated with better OS in 
patients who were male, were > 60 years old, had histo-
logic grade G1 or G2, had R1 or Rx resection or whether 
received radiation therapy. GPC3 expression was related 
to patients who were female, were > 60 years old, had his-
tologic grade G1 or G2, or did not receive radiation or 
targeted molecular therapy. Moreover, GPC5 could influ-
ence prognosis of patients who were ≤ 60 years old, had 
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Fig. 5 Kaplan‑Meier survival curves of Glypican family genes for pancreatic ductal adenocarcinoma in The Cancer Genome Atlas database. a‑f 
Kaplan‑Meier survival curves of Glypican1–6, respectively



Page 8 of 23Liu et al. BMC Gastroenterol          (2020) 20:415 

histologic grade G3 or G4, had R1 or Rx resection, or did 
not receive radiation or targeted molecular therapy.

Joint effects analysis
Based on the prognostic significance of each GPC fam-
ily gene, we combined every two genes among GPC2, 
GPC3, and GPC5 to investigate their significance in 
PDAC prognosis. The combination of GPC2 and GPC3 
was associated with worse survival outcome in group 1 

(MST = 278 days, adjusted P value < 0.001). The group 
of GPC2 and GPC5 was associated with the high-
est risk of death in group I (MST = 278 days, adjusted 
P value < 0.001) and the group combining GPC3 
and GPC5 showed the poorest prognosis in group i 
(MST = 278 days, adjusted P value < 0.001).

We also analyzed survival associated with the three 
genes simultaneously. Group A showed the worst in sur-
vival status (MST = 219 days, adjusted P value = 0.018), 

a b c

Fig. 6 Prognostic models of Glypican2, Glypican3 and Glypican5 for pancreatic ductal adenocarcinoma in The Cancer Genome Atlas database. From 
top to bottom are expression values of these genes, survival status of patients and expression heatmaps of these genes at low and high expression 
levels. a‑c Prognostic models of Glypican2, Glypican3, and Glypican5, respectively

Table 1 Prognostic value of Glypican family genes in The Cancer Genome Atlas database

Abbreviations: MST median survival time, HR hazard ratio, CI confidence interval
a Adjusted for histologic grade, targeted molecular therapy, radiation therapy and radical resection

Gene No. of events (%) MST (days) Crude HR
95% CI

Crude
P value

Adjusted HR
95%  CIa

Adjusted
P  valuea

GPC1

 Low 36/56(64.3%) 518 1 1

 High 33/56(58.9%) 511 0.986(0.610–1.594) 0.955 1.120 (0.661–1.896) 0.674

GPC2

 Low 41/56(73.2%) 481 1 1

 High 28/56(50.0%) 634 0.589(0.362–0.959) 0.031 0.449(0.258–0.782) 0.005

GPC3

 Low 38/56(67.9%) 473 1 1

 High 31/56(55.4%) 614 0.568(0.349–0.925) 0.021 0.531(0.309–0.914) 0.022

GPC4

 Low 35/56(62.5%) 517 1 1

 High 34/56(60.7%) 592 1.066(0.659–1.723) 0.794 1.252(0.744–2.105) 0.397

GPC5

 Low 35/56(62.5%) 485 1 1

 High 34/56(60.7%) 593 0.577(0.351–0.948) 0.028 0.525(0.306–0.902) 0.020

GPC6

 Low 37/56(66.1%) 485 1 1

 High 32/56(57.1%) 603 0.647(0.393–1.063) 0.083 0.891(0.501–1.585) 0.693
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whereas the best survival was observed in group D 
(MST = 702 days, adjusted P value < 0.001). These data 
are shown in Table 3 and Fig. 7a–d showed the survival 
curves.

Prognosis nomogram
Based on the status of each clinical parameter and 
expression levels of GPC2, GPC3, and GPC5, a score for 
each variable was calculated. The total score could be cal-
culated to predict 1-, 2-, and 3- year survival probabili-
ties. The nomogram (Fig. 8) indicated that GPC2, GPC3, 
and GPC5 affected the prognosis of PDAC to different 
degrees.

Validation dataset to demonstrate the prognostic value 
of survival‑related genes
To further understand the prognostic value of GPC2, 
GPC3, and GPC5, we acquired the GSE62452 data-
set from GEO database. As shown in Additional file  3: 
Table 3, histologic grade was significantly associated with 
OS. GPC family genes were also divided into two groups 
by the median expression level of each gene and survival 

analysis between the two groups was carried out. Table 4 
and Fig.  9a–f show that higher expression of GPC3 
was significantly related to better survival (log-rank 
P = 0.038) and higher expression of GPC2 and GPC5 was 
also related to better survival, though not significantly 
(log-rank P = 0.337 and 0.090, repectively). Multivariate 
Cox proportional hazards regression analysis adjusted 
for prognosis-related clinical characteristics showed that 
none of these genes was significantly correlated to overall 
survival (all adjusted P > 0.05).

Genome‑wide co‑expression analysis of GPC2, GPC3 
and GPC5 in PDAC
Genome-wide co-expression analysis was performed for 
each of these genes to investigate their related functional 
pathways through TCGA database. For GPC2 and its co-
expressed genes, a correlation network was established as 
shown in Fig. 10a (Additional file 4: Table 4). GO analy-
sis indicated that GPC2 and its co-expressed genes func-
tioned mainly in sequence-specific DNA binding, protein 
transport, cell differentiation, and anterior/posterior pat-
tern specification (Fig. 10b, Additional file 5: Table 5).

Table 3 Joint effects analysis of combination of Glypican genes in The Cancer Genome Atlas database

Group 1:low GPC2 + low GPC3; Group 2:low GPC2 + high GPC3 or high GPC2+ low GPC3; Group 3: high GPC2 + high GPC3

Group I:low GPC2 + low GPC5; Group II:low GPC2 + high GPC5 or high GPC2 + low GPC5; Group III: high GPC2 + high GPC5

Group i:low GPC3 + low GPC5; Group ii:low GPC3 + high GPC5 or high GPC3 + low GPC5; Group iii: high GPC3 + high GPC5

Group A:low GPC2 + low GPC3 + low GPC5; Group B: high GPC2 + low GPC3 + low GPC5 or low GPC2 + high GPC3 + low GPC5 or low GPC2 + low GPC3 + high GPC5; 
Group C:high GPC2 + high GPC3 + low GPC5 or high GPC2 + low GPC3 + high GPC5 or low GPC2 + high GPC3 + high GPC5; Group D:high GPC2 + high GPC3 + high 
GPC5

Abbreviations: MST median survival time, HR hazard ratio, CI confidence interval
a Adjusted for histologic grade, targeted molecular therapy, radiation therapy and radical resection

Group No. of events MST (days) Crude HR
95% CI

Crude
P value

Adjusted HR
95%  CIa

Adjusted
P  valuea

GPC2 + GPC3

 1 21/26(80.8%) 278 1 0.001 1 < 0.001

 2 37/60(61.7%) 568 0.441(0.252–0.772) 0.004 0.350(0.187–0.653) 0.001

 3 11/26(42.3%) 702 0.285(0.135–0.598) 0.001 0.173(0.072–0.418) < 0.001

GPC2 + GPC5

 I 18/23(78.3%) 278 1 0.001 1 < 0.001

 II 40/66(60.6%) 517 0.424(0.237–0.758) 0.004 0.283(0.145–0.554) < 0.001

 III 11/23(47.8%) 702 0.253(0.116–0.552) 0.001 0.141(0.057–0.353) < 0.001

GPC3 + GPC5

 i 26/38(68.4%) 393 1 0.028 1 0.018

 ii 21/36(58.3%) 498 0.685(0.383–1.226) 0.203 0.575(0292–1.129) 0.108

 iii 22/38(57.9%) 691 0.443(0.243–0.805) 0.008 0.394(0.206–0.756) 0.005

GPC2 + GPC3 + GPC5

 A 13/16(81.2%) 219 1 0.028 1 < 0.001

 B 26/39(66.7%) 517 0.494(0.250–0.974) 0.042 0.446(0.212–0.938) 0.033

 C 23/42(54.8%) 592 0.269(0.130–0.560) < 0.001 0.176(0.076–0.406) < 0.001

 D 7/15(46.7%) 702 0.204(0.079–0.526) 0.001 0.135(0.045–0.403) < 0.001
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The correlation network for GPC3 and its co-expressed 
genes (Fig.  11a, Additional file  6: Table  6) identified 
511 positively co-expressed genes and 25 negatively co-
expressed genes. GO analysis of these genes indicated 
that they were enriched in cell adhesion, angiogenesis, 
and inflammatory response (Fig.  11b, Additional file  7: 
Table 7). And KEGG analysis indicated that these genes 
were related to several biological processes, mainly in 
Ras, Rap1, PI3K-Akt, and chemokine signaling pathways 
(Fig. 11c, Additional file 8: Table 8).

The correlation network for GPC5 and its co-
expressed genes was shown in Fig. 12a and Additional 
file 9: Table 9. The results of GO analysis showed that 
these genes were associated with transcription factor 
complex and phospholipid metabolic process (Fig. 12b, 
Additional file  10: Table  10). KEGG analysis showed 
that these genes were involved in pancreatic secretion 
and glycerophospholipid metabolism (Fig.  12c, Addi-
tional file 11: Table 11).

Gene set enrichment analysis
GSEA was carried out to explore possible mechanisms of 
GPC family genes affecting prognosis of PDAC patients 
through TCGA database. The results of c6 reference 

indicated that low GPC2 expression was closely related to 
oncogenic signatures such as KRAS, RAF1, STK33, and 
VEGFA (Fig.  13a–f; Additional file  12: Table  12). GSEA 
results of c2 enrichment showed that high GPC3 expres-
sion was associated with neuroactive ligand receptor 
interaction and GPCR ligand binding (Fig. 14a–c; Addi-
tional file  13: Table  13), and c6 enrichment suggested 
that high GPC3 expression was correlated to cyclin D1, 
p53, and PTEN (Fig. 13d–f; Additional file 14: Table 14). 
For GPC5, c2 reference indicated that low expression of 
GPC5 was related to the EGFR pathway, gene methyla-
tion status, TFRC1, and the cell cycle (Fig. 15a–d; Addi-
tional file  15: Table  15) and c6 reference indicated that 
low GPC5 expression was related to HOXA9 and BMI1 
(Fig. 15e–f; Additional file 16: Table 16).

Discussion
In this research, we studied the relationship between 
GPC family gene expression and prognosis of early-stage 
PDAC patients after pancreaticoduodenectomy both in 
TCGA database and GEO database. We concluded that 
high expression of GPC2, GPC3, and GPC5 was signifi-
cantly related to favorable prognosis in TCGA database, 
suggesting the value of these genes as biomarkers for 
predicting the prognosis of PDAC patients. Moreover, 
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Fig. 7 Survival curves of joint effects analysis of Glypican2, Glypican3 and Glypican5 in The Cancer Genome Atlas database. a Survival curve of 
Glypican2 and Glypican3; b Survival curve of Glypican2 and Glypican5; c Survival curve of Glypican3 and Glypican5; d Survival curve of Glypican2, 
Glypican3 and Glypican5 
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combination of the three genes showed a better predic-
tive value for PDAC prognosis.

GPC family genes may contribute to the malignant 
behaviors of tumors and they are closely related to 

the development and prognosis of various cancers. Li 
et  al. demonstrated that GPC1 is enriched in exosomes 
produced by colorectal cancer cells HT-29 and HCT-
116, and increased expression level of miR-96-5p and 
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miR-149 can restrain both GPC1 expression and cell 
proliferation of the tumor, suggesting that GPC1 can be 
used as a marker for diagnosis and therapy of colorectal 
cancer [36]. It is reported that GPC2 could promote the 
proliferation of neuroblastoma cells as a result of MYCN 
binding to a motif of the promoter of GPC2 and gain of 
chromosome 7q [37]. GPC2 can also be used an effective 
prognostic indicator for prostate cancer and neuroblas-
toma [37–39]. GPC3 blocks the cell cycle in renal cancer 
cells 786-O and ACHN at G1 phase [40]. Overexpression 
of GPC3 reduces progression and metastasis of breast 
cancer cells LM3 through targeting canonical Wnt path-
way [41]. The GPC5 rs2352028 variant and lower expres-
sion of this gene may contribute to increased risk of lung 
cancer [42, 43]. Sun et  al. have shown that GPC5 regu-
lates epithelial–mesenchymal transition to reduce inva-
sion of prostate cancer cells [44]. Its expression can serve 
as a prognostic indicator in a cohort of prostate cancer 
patients in China [45]. In this study, we demonstrated the 
relationship between OS and expression levels of GPC2, 
GPC3, and GPC5. Combined with results of GEPIA, it 
demonstrates their roles as tumor suppressor genes in 
PDAC.

To explore potential mechanisms of GPC genes affect-
ing prognosis, we conducted GSEA and genome-wide co-
expression analyses. The results showed that GPC2 was 
associated with sequence-specific DNA binding, protein 

transport, cell differentiation and oncogenic signatures 
(KRAS, RAF, STK33, and VEGFA). In pancreatic cancer, 
mutation of TP53 at codon 249 can alter the structure of 
p53, thus affecting its binding to a specific region of DNA 
and enhancing the risk of cancer [46, 47]. A study showed 
that GDF11 regulates the biological behaviors of pancre-
atic cancer cells to influence their differentiation and high 
expression of GDF11 is associated with favorable OS in 
pancreatic cancer [48]. RAF1 accelerates migration and 
invasion of pancreatic cancer and disorders of the RAF1 
pathway are related to worse prognosis in pancreatic 
cancer patients [49, 50]. Moreover, microRNA-216a may 
downregulate RAF1 in pancreatic cancer and increase 
cell apoptosis [51]. VEGFA expression can increase as a 
result of the long non-coding RNA (lncRNA) 00511 in 
PDAC, which finally promotes tumor progression. The 
expression level of lnc00511 can be used as an indicator 
of prognosis in PDAC [52].

GPC3 is related to cell adhesion, angiogenesis, inflam-
matory response, signaling pathways like Ras, Rap1, 
PI3K-Akt, chemokine, GPCR, and signatures like cyclin 
D1, p53, PTEN. For pancreatic cancer patients, the degree 
of inflammatory response can be measured by serum 
lactate dehydrogenase level and it is associated with the 
outcome of patients [53]. Angiogenesis is dysregulated in 
PDAC, and it contributes to proliferation and deteriora-
tion of the tumor, making survival of patients worse [54, 

Table 4 Prognostic value of Glypican family genes in Gene Expression Omnibus database

Abbreviations: HR hazard ratio, CI confidence interval
a Adjusted for histologic grade

Gene Samples
(n = 48)

Crude HR
95% CI

Crude
P value

Adjusted HR
95%  CIa

Adjusted
P  valuea

GPC1

 Low 24 1 1

 High 24 0.888(0.455–1.735) 0.728 0.675(0.330–1.383) 0.283

GPC2

 Low 24 1 1

 High 24 0.717(0.362–1.420) 0.337 0.852(0.418–1.738) 0.660

GPC3

 Low 24 1 1

 High 24 0.468(0.225–0.973) 0.038 0.556(0.259–1.197) 0.134

GPC4

 Low 24 1

 High 24 1.722(0.869–3.413) 0.115 1.616(0.812–3.216) 0.172

GPC5

 Low 24 1 1

 High 24 0.556(0.279–1.106) 0.090 0.600(0.298–1.206) 0.151

GPC6

 Low 24 1 1

 High 24 1.727(0.882–3.381) 0.107 1.554(0.783–3.083) 0.207
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55]. Certain mutations of KRAS are associated with the 
response to drugs in PDAC cells [56]. In PDAC associ-
ated with the KRAS mutation, decitabine therapy inhibits 
tumor growth [57]. ARF6 is reported to be in close rela-
tionship with the Ras pathway and its overexpression is 
related to unfavorable prognosis of PDAC patients [58]. 
PTEN plays a role in pancreatic cancer growth. The func-
tion of PTEN is regulated by HNF1A and finally affects 
the survival of pancreatic cancer patients [59, 60].

GPC5 is involved in the transcription factor complex 
TFRC1, oncogenic signatures HOXA9 and BMI1, gene 
methylation, phospholipid metabolic process, glycer-
ophospholipid metabolism, cell cycle, and the EGFR 

pathway. In pancreatic cancer, the transcription factor 
hif- 2α can speed up metabolism and promote tumor 
proliferation and high level of hif- 2α correlates with 
worse OS [61, 62]. The methylation status of GRAP2, 
ICAM3, A2ML1, MUC1, and MUC4 can influence the 
expression of these genes, which is associated with sur-
vival of pancreatic cancer [63, 64]. Phosphatidylserine 
is related to apoptosis of pancreatic cancer cells with 
the involvement of microparticles [65]. Stimuli such as 
oxidative stress can make phosphatidylserine appear 
outside on the pancreatic cancer cell membrane, finally 
leading to dysregulation of factors and cells such as 
VEGF and macrophages, making prognosis of patients 
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Fig. 9 Kaplan‑Meier survival curves of Glypican family genes for pancreatic ductal adenocarcinoma in Gene Expression Omnibus database. a‑f 
Kaplan‑Meier survival curves of Glypican1–6, respectively
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unfavorable [66–68]. The EGFR pathway contributes 
to pancreatic cancer growth and accelerates invasion 

of the cancer as a result of lnc00976 overexpression, 
which can deteriorate the outcome of patients [69, 70].

a

b

Fig. 10 a Correlation network for Glypican2 and its co‑expression genes in The Cancer Genome Atlas database. The pink nodes are genes 
correlated positively. b Function enrichment analysis of Gene Ontology for Glypican2 and its co‑expression genes
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a

c

b

Fig. 11 a Correlation network for Glypican3 and its co‑expression genes in The Cancer Genome Atlas database. The pink nodes are genes 
correlated positively and the blue nodes are genes correlated negatively. b Function enrichment analysis of Gene Ontology for Glypican3 and its 
co‑expression genes. c Function enrichment analysis of Kyoto Encyclopedia of Genes and Genomes for Glypican3 and its co‑expression genes
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a

c

b

Fig. 12 a Correlation network for Glypican5 and its co‑expression genes in The Cancer Genome Atlas database. The pink nodes are genes 
correlated positively. b Function enrichment analysis of Gene Ontology for Glypican5 and its co‑expression genes. c Function enrichment analysis of 
Kyoto Encyclopedia of Genes and Genomes for Glypican5 and its co‑expression genes
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The present study had several limitations. First, clini-
cal data acquired from TCGA and GEO databases did 
not include all the relevant information, and there may 
be some factors that needed to be adjusted. Second, 
because the study included PDAC patients who under-
went pancreaticoduodenectomy, the sample size was 
relatively small. Third, the results of genome-wide anal-
ysis and GSEA analysis were based on online databases 
to predict potential processes influencing prognosis, 
and further studies at molecular and genomic levels are 
necessary to confirm the results.

Despite these limitations, we identified GPC2, GPC3, 
and GPC5 as biomarkers for prognosis of PDAC 
patients and showed that joint effects analysis was more 
effective for prediction of prognosis. We also explored 
possible mechanisms of survival-significant genes 
affecting PDAC prognosis through genome-wide analy-
sis and GSEA analysis. These results could all improve 
prognostic prediction for PDAC and provide informa-
tion valuable for the management of PDAC patients 
and making better clinical decisions in this population.

a b c

d e f

Fig. 13 Gene Set Enrichment Analysis (GSEA) results of Glypican2 in The Cancer Genome Atlas database. a‑f GSEA results of c6 reference for the 
group of low Glypican2 expression. NES, normalized enrichment score; FDR, false discovery rate
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Conclusions
We identified GPC2, GPC3, and GPC5 as potential 
prognostic indicators for PDAC patients and showed 
that combination of these genes was more effec-
tive for prognosis prediction. Possible mechanisms of 
GPC2 influencing prognosis may involve sequence-
specific DNA binding, protein transport, cell differen-
tiation and oncogenic signatures (KRAS, RAF, STK33, 
and VEGFA). GPC3 may be related to cell adhesion, 

angiogenesis, inflammatory response, signaling path-
ways such as Ras, Rap1, PI3K-Akt, chemokine, and 
GPCR, and signatures including cyclin D1, p53, and 
PTEN. GPC5 may be involved in the transcription fac-
tor complex TFRC1, the oncogenic signatures HOXA9 
and BMI1, gene methylation, the phospholipid meta-
bolic process, glycerophospholipid metabolism, cell 
cycle, and the EGFR pathway.
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