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Abstract: The purpose of this study was to compare the cytotoxic effects and mineralization activity
of three calcium silicate-based root canal sealers to those of a conventional resin-based sealer.
Experiments were performed using human dental pulp stem cells grown in a monolayer culture.
The root canal sealers tested in this study were EndoSequence BC Sealer (Brasseler), BioRoot RCS
(Septodont), Endoseal MTA (Maruchi), and AH Plus (Dentsply DeTrey). Experimental disks 6 mm
in diameter and 3 mm in height were made and stored in a 100% humidity chamber at 37 ◦C
for 72 h to achieve setting. The cytotoxicity of various root canal sealers was evaluated using
a methyl-thiazoldiphenyl-tetrazolium (MTT) assay. To evaluate cell migration ability, a scratch
wound healing method was used, and images of the scratch area were taken using a phase-contrast
microscope. Cell morphology was evaluated by a scanning electron microscope after direct exposure
for 72 h to each sealer disk. In the cell viability assay, there were no significant differences between
the EndoSequence BC, BioRoot RCS, Endoseal MTA, and control groups in any experimental period
(p > 0.05). In the cell migration assay, there were no significant differences between the EndoSequence
BC, Endoseal MTA, and control groups in any experimental period (p > 0.05). BioRoot RCS exhibited
slower cell migration relative to EndoSequence BC and Endoseal MTA for up to 72 h (p < 0.05).
Conversely, it showed a similar wound healing percentage at 96 h (p > 0.05). In an evaluation of cell
morphology, cells in direct contact with EndoSequence BC, BioRoot RCS, and Endoseal MTA disks
showed superior spreading compared to those in contact with the AH Plus disk. In an Alizarin red
staining assay, EndoSequence BC, BioRoot RCS, and Endoseal MTA showed a significant increase
in mineralized nodule formation compared to the AH Plus group (p < 0.05). In conclusion, all
calcium silicate-based root canal sealers tested in this study showed good biological properties and
mineralization activity compared to conventional resin-based sealer.

Keywords: cell viability; cell migration; scanning electron microscope; mineralization; calcium
silicate-based sealer; conventional resin-based sealer

1. Introduction

The aim of root canal treatment is to provide three-dimensional obturation of the root canal
system to prevent the entry of bacteria and fluid [1–3]. To provide hermetic sealing, core materials
such as gutta-percha (GP) and root canal sealers are essential [4,5]. Sealers should be biocompatible
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and nonirritating to the periradicular tissues [6,7]. The most commonly used sealers are calcium
hydroxide sealers, glass ionomer sealers, zinc oxide eugenol sealers, resin-based sealers, and the
recently introduced calcium silicate-based sealers. AH Plus Plus (Dentsply DeTrey GmbH, Konstanz,
Germany) is a conventional epoxy resin-based root canal sealer with low microleakage and good
penetration ability into dentinal walls [8,9]. This sealer exhibits toxicity when freshly mixed that
gradually reduces upon setting [7,10]. If in direct contact with viable tissues over extended periods,
it causes an inflammatory reaction and may result in delayed healing [11]. To overcome this toxicity
problem, calcium silicate-based sealers have been developed.

EndoSequence BC Sealer (Brasseler, Savannah, GA, USA) is a bioceramic calcium phosphate
silicate-based sealer. It has an alkaline pH, a high rate of calcium ion release, and suitable flow
capacity [12]. It also shows superior biocompatibility and osteogenic differentiation ability relative to
other endodontic sealers [13–17].

BioRoot RCS (Septodont, Saint Maur-des-Fossés, France) is composed mainly of tricalcium silicate
and zirconium oxide powder that must be mixed with a liquid containing calcium chloride. In recent
studies comparing epoxy resin-based and calcium silicate-based sealers, BioRoot RCS showed excellent
biocompatibility in both fresh and set states [17–19].

Endoseal MTA (Maruchi, Wonju, Korea) is a pozzolan-based premixed calcium silicate sealer
that offers satisfactory biocompatibility [15,20] and good root canal filling quality [21,22]. It has high
alkalinity and low solubility, similarly to ProRoot MTA (Dentsply Tulsa Dental Specialties, Johnson
City, TN, USA) [23].

The biocompatibility and osteogenic potential of these three newly developed root canal sealers
have not been fully reported. The purpose of this study was to compare the cytotoxic effects and
mineralization activity of the above three calcium silicate-based root canal sealers to those of a
conventional resin-based sealer.

2. Materials and Methods

2.1. Human Dental Pulp Stem Cells (hDPSCs)

This study was approved by the institutional review board of the Catholic University of Korea
(IRB No. KC19SNSI0186). Passage 3 hDPSCs were used for the experiments in this study. The
cell lines were developed anonymously at Top Cell Bio, Inc. (Seoul, Korea). Cells were grown in a
growth medium consisting of HyClone Minimum Essential Medium (α-MEM; GE Healthcare Life
Sciences, Pittsburgh, PA, USA) supplemented with HyClone 10% fetal bovine serum (GE Healthcare
Life Sciences), 100 U/mL of penicillin, and 100 µg/mL of streptomycin. Cell cultures were maintained
at 37 ◦C in a humified atmosphere with 5% CO2. In colony-forming tests, the majority of hDPSCs
maintained their spindle-shaped morphology, consistent with other types of mesenchymal stem cells.
All experimental procedures were performed under aseptic conditions.

2.2. Experimental Disks of Various Root Canal Sealers

The root canal sealers tested in this study were EndoSequence BC sealer (Brasseler), BioRoot RCS
(Septodont), Endoseal MTA (Maruchi), and AH Plus (Dentsply DeTrey GmbH). Their compositions are
from the manufacturer’s guidelines and are presented in Table 1. All experimental sealers were mixed
in accordance with the manufacturer’s instructions. EndoSequence BC sealer and Endoseal MTA, a
premixed sealer, were placed in a disposable syringe. One spoon of BioRoot RCS powder was mixed
with five drops of a liquid consisting of water and calcium chloride. AH Plus Sealer was mixed at a
1:1 ratio in accordance with the manufacturer’s instructions. Disks of each root canal sealer 6 mm in
diameter and 3 mm in height were made under aseptic conditions using sterile Teflon molds. All disks
were stored in a 100% humidity chamber at 37 ◦C for 72 h to achieve setting.
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Table 1. Manufacturer and chemical composition of experimental sealers.

Table Manufacturer Composition Batch Number

AH Plus
Dentsply DeTrey
GmbH, Konstanz,

Germany

Epoxide paste: diepoxide, calcium tungstate,
zirconium oxide, aerosil, pigment; amine paste:

1-adamantane amine, N,
N’-dibenzyl-5-oxa-nonandiamin-1,9,

TCD-diamine, calcium tungstate, zirconium
oxide, aerosil, and silicon oil

1703000226

EndoSequence
BC Sealer

Brasseler,
Savannah, GA,

USA

Zirconium oxide, calcium silicates, calcium
phosphate monobasic, calcium hydroxide, filler

and thickening agents
17004SP

BioRoot RCS
Septodont, Saint
Maur-des-Fossés,

France

Tricalcium silicate, zirconium oxide (opacifier)
and excipients in its powder form, and calcium
chloride and excipients as an aqueous liquid

B16422

Endoseal MTA Maruchi, Wonju,
Korea

Calcium silicates, calcium aluminates, calcium
aluminoferrite, calcium sulfates, radiopacifier,

and thickening agents
CD180327D

2.3. Cell Viability Assay

The cytotoxicity of various root canal sealers was evaluated using a methyl-thiazoldiphenyl-
tetrazolium (MTT) assay (MTT Cell Growth Assay Kit, Chemicon, Rosemont, IL, USA). This assay
exploits the ability of mitochondrial dehydrogenase enzymes to convert the yellow water-soluble
tetrazolium salt 3-(4,5,-mimethyl-thiazol)-2,5,-diphenyl-tetrazolium bromide into colored compounds
of formazan. The absorbance depends on the number of living cells. Here, hDPSCs were seeded in
24-well plates (SPL Life Sciences Co., Ltd., Pocheon, Korea) at a density of 1.0 × 104 cells/well and
incubated for 24 h in growth medium to allow for cell attachment. Each disk was placed individually
into an insert with a 0.4-µm pore size (SPLInsert; SPL Life Sciences Co., Ltd.), and the insert was placed
over the attached cells. To maintain the culture medium above the level of the disk, an additional
1 mL of growth medium was supplemented in each well. For controls, hDPSCs cultured without
experimental disks were used. For 5 days, hDPSCs with various root canal sealer disks were incubated,
and the growth medium was changed every 2 days. The proliferation of hDPSCs was analyzed after 0,
24, 48, 72, and 120 h of culture growth. Experimental procedures are shown in Figure 1. Wells were
rinsed with phosphate-buffered saline (PBS) and incubated with the MTT solution (500 µg/mL) for
4 h. Subsequently, each well was rinsed with PBS, and dimethyl sulfoxide was then added to extract
and solubilize the formazan. The absorbance at 570 nm was measured with an absorbance microplate
reader (Power Wave XS; BioTek Instruments, Winooski, VT, USA) using absorbance at 630 nm as the
reference wavelength. Each experimental group was analyzed in quadruplicate.

2.4. Cell Migration Assay

To evaluate cell migration ability, a scratch wound healing assay was used: hDPSCs were seeded
in 24-well plates (SPL Life Sciences Co., Ltd.) at a density of 3.5 × 104 cells/well and incubated for 24 h
in growth medium to allow for cell attachment. A scratch was made in the center of the confluent layer
of cells using a 1000-µL pipette tip. After wounding, cell debris was washed away with PBS. Each disk
was placed individually into an insert with a 0.4-µm pore size (SPLInsert; SPL Life Sciences Co., Ltd.),
and the insert was placed over the attached cells. To maintain the culture medium above the level of
the disk, an additional 1 mL of growth medium was added to each well. For controls, hDPSCs cultured
without experimental disks were used. For 4 days, hDPSCs with various root canal sealer disks were
incubated, and the growth medium was changed every 2 days. Images of the scratch area were taken
at 0, 24, 48, 72, and 96 h using a phase-contrast microscope (Olympus, Tokyo, Japan). ImageJ 1.46r
software (National Institutes of Health, Bethesda, MD, USA) was used to measure the surface covered
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by the cells. The area of cell migration into the scratch area was calculated using the original scratch
area as the reference. Each experimental group was analyzed in quadruplicate.Materials 2018, 11, x FOR PEER REVIEW  4 of 13 
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Figure 1. Experimental procedure of biocompatibility tests of each experimental sealer disk.

2.5. Cellular Morphology Evaluation

Here, hDPSC morphology was evaluated with a scanning electron microscope (SEM) after direct
exposure of the cells to the experimental disks. Cells were seeded at a density of 5.0 × 104 cells/well
onto disks in 24-well plates (SPL Life Sciences Co., Ltd.), while control group cells were seeded on
glass coverslips (SPL Life Sciences Co., Ltd.). After direct contact for 72 h, the growth medium was
aspirated, and disks were washed using PBS. Cells on the disk were fixed by adding 2 mL of 2%
buffered paraformaldehyde for 4 h and were then washed four times with PBS. All experimental disks
with cells were rinsed with distilled water and dehydrated. Subsequently, they were mounted on
aluminum stubs and sputter-coated with a 30-nm layer of gold. All specimens were observed with an
S-4700 field emission SEM (FESEM; Hitachi, Tokyo, Japan). The voltage was set to 15.0 kV, the signal
type was secondary electrons, the working distance was 12 mm, and the scan speed was 16 frames per
20 s.

2.6. Alizarin Red Staining Assay

Each experimental root canal sealer disk was transferred to conical tubes containing 20 mL of fresh
growth medium and stored in a humidified atmosphere at 37 ◦C and 5% CO2 for 7 days. Supernatant
from this preparation was filtered using 0.20-µm filters (Minisart; Sartorius Stedim Biotech, Goetingen,
Germany), and hDPSCs were seeded in 24-well plates (SPL Life Sciences Co., Ltd.) at a density of 2.0 ×
104 cells/well and incubated for 24 h in growth medium to allow for cell attachment. Mineralization
activity was determined after 15 days of incubation, and root canal sealer extracts were changed every
3 days. Cells were stained with 2% Alizarin red stain solution for 20 min and washed five times with
sterile water. The stain was treated with 10% cetylpyridinium chloride for 15 min to quantitatively
evaluate the results, and the absorbance at 560 nm was measured with an absorbance microplate reader
(Power Wave XS). Each experimental group was analyzed in quadruplicate.

2.7. Statistical Analysis

Statistical analysis was performed using SPSS software (ver. 24.0; IBM Corp., Armonk, NY, USA).
The Shapiro–Wilk normality test was used to verify the data distribution. The data were normally
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distributed, and thus repeated measures analysis of variance was used for overall comparisons of
cell viability and cell migration assays. Independent t-tests were used for pairwise comparisons of
experimental groups in each experimental period. One-way analysis of variance and Tukey post hoc
tests were used for the Alizarin red staining assay. P-values < 0.05 were considered significant.

3. Results

In the cell viability assay, there were no significant differences between the EndoSequence BC
Sealer, BioRoot RCS, Endoseal MTA, and control groups in any experimental period (p > 0.05). Among
all experimental groups, AH Plus showed the lowest cell viability after 72 h (p < 0.05) (Figure 2).
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In the cell migration assay, there were no significant differences between the EndoSequence BC
Sealer, Endoseal MTA, and control groups in any experimental period (p > 0.05). BioRoot RCS exhibited
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slower cell migration than EndoSequence BC Sealer and Endoseal MTA did up to 72 h (p < 0.05).
Conversely, it showed a similar wound healing percentage at 96 h (p > 0.05). Wound healing was not
observed in the AH Plus group after 24 h, and there were significant differences between the AH Plus
and control groups at 48 h, 72 h, and 96 h (p < 0.05) (Figure 3). Representative images of the wound
healing rates of all experimental sealers, created using ImageJ 1.46r software, are shown in Figure 4.

In the evaluation of cell morphology, hDPSCs in direct contact with EndoSequence BC Sealer,
Endoseal MTA, and BioRoot RCS disks showed superior spreading compared to those in contact with
the AH Plus disk. The EndoSequence BC Sealer and BioRoot RCS groups showed large amounts of
small sealer particles on the disk surfaces but exhibited superior cell attachment compared to the AH
Plus group (Figure 5).

In the Alizarin red staining assay, hDPSCs exposed to EndoSequence BC, BioRoot RCS, and
Endoseal MTA extracts showed a significant increase in calcium nodule formation compared to the
AH Plus group at 15 days (p < 0.05) (Figure 6).Materials 2018, 11, x FOR PEER REVIEW  7 of 13 
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Figure 5. Scanning electron microscope (SEM) results of direct contact of human dental pulp stem cells
(hDPSCs) with each experimental sealer. (a) Control group, (b,c) cells with control disk, (d) AH Plus
disk, (e,f) cells with AH Plus disk, (g) EndoSequence BC Sealer disk, (h,i) cells with EndoSequence BC
Sealer disk, (j) BioRoot RCS disk, (k,l) cells with BioRoot RCS disk, (m) Endoseal MTA disk, (n,o) cells
with Endoseal MTA disk.
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4. Discussion

After proper nonsurgical root canal treatment, periapical wound healing occurs, with the removal
of dead bacteria and necrotic tissue, formation of fibrovascular granulation tissue, and repair or
regeneration of the injured area. During the healing process, osteoprogenitor and mesenchymal cells
can undergo proliferation after stimulation by growth factors and cytokines, followed by differentiation
into osteoblasts and production of bone matrix [24]. Biocompatible and bioactive root canal sealers
have the potential to promote the rapid healing of apical periodontitis. The purpose of this study was
to compare the biocompatibility and mineralization activity of three calcium silicate-based root canal
sealers to those of a conventional resin-based sealer using human dental pulp stem cells.

In this study, the biocompatibility of EndoSequence BC Sealer, BioRoot RCS, Endoseal MTA,
and AH Plus was analyzed using an MTT assay and a wound healing assay. In the present study,
EndoSequence BC Sealer, BioRoot RCS, and Endoseal MTA showed superior cell viability and migration
ability compared to AH Plus. EndoSequence BC Sealer is a novel bioceramic tricalcium silicate-based
sealer that has shown nontoxic and biocompatible results in previous studies [10,13,17,25,26]. It is
a premixed sealer that will not change in terms of its properties during the mixing procedure [17].
Compared to AH Plus, EndoSequence BC Sealer had less cytotoxicity in mouse fibroblasts [10] and in
human bone marrow cells [17]. In three-dimensional cell culture models, EndoSequence BC Sealer
showed the lowest cytotoxicity compared to AH Plus and MTA Fillapex (Angelus, Londrina, Brazil) [26].
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BioRoot RCS is another novel bioceramic endodontic sealer, which has shown significantly lower
cytotoxicity compared to other sealers, such as MTA Fillapex and SimpliSeal (Kerr, Orange, CA,
USA) [27]. BioRoot RCS is composed of a powder consisting of tricalcium silicate and zirconium oxide
and a liquid that is water-based and has calcium chloride and polymer additives. In an evaluation of
direct contact with cells, BioRoot RCS was not cytotoxic and did not affect cell viability or morphology,
which indicated that cell growth was not disturbed [18,19,28,29]. BioRoot RCS had fewer toxic
effects on periodontal ligament cells [18] and A4 mouse pulp stem cells [19] than Pulp Canal Sealer
did (CybronEndo, Orange, CA, USA). It also showed the lowest DNA double-strand breaks when
compared to other resin- and silicate-based root canal sealers [28]. In previous studies, Endoseal
MTA has shown satisfactory biocompatibility similar to that of ProRoot MTA [20,30]. In a histological
evaluation, inflammatory scores of Endoseal MTA were also similar to those of ProRoot MTA, but
were lower than those of AH Plus [20]. However, Collado-González et al. showed low rates of cell
proliferation and viability at concentrations of 100% and 50% in an Endoseal MTA group [29]. In their
study, SEM analysis showed restricted human periodontal ligament cell attachment on Endoseal MTA
disks [29]. Endoseal MTA showed high levels of aluminum and contained bismuth, which are typical
compositions of Portland cement [31], whereas BioRoot RCS did not show these elements because it is
composed of pure tricalcium silicate [31]. Further studies are required to confirm the characterization
of Endoseal MTA and BioRoot RCS.

The morphology of cells in contact with EndoSequence BC Sealer, BioRoot RCS, and Endoseal
MTA disks was flattened and cell attachment was better than in cells in contact with AH Plus in the
present study (Figure 5). This result was consistent with previous studies [19,30]. Mouse pulp stem
cells in BioRoot RCS extract showed superior spreading compared to cells in AH Plus extract [19].
In addition, MG-63 cells and human gingival fibroblasts cultured in direct contact with the AH Plus
disk seemed to be less flattened and exhibited inferior spreading compared to those in the Endoseal
MTA group [30]. AH Plus contains mutagenic substances in its composition, namely epoxy resin and
an amine. The epoxy resin in AH Plus may cause breaks in the chain of cellular DNA. The higher
cytotoxicity when it is freshly mixed is due to the initial release of minute amounts of formaldehyde
and the epoxy resin component [7,10,32].

In this study, the mineralization activity of calcium silicate-based root canal sealers was evaluated
using an Alizarin red staining assay. We found that not only calcium silicate-based root canal sealers but
also AH Plus enhanced calcium nodule formation. However, hDPSCs exposed to EndoSequence BC,
BioRoot RCS, and Endoseal MTA extracts showed a significant increase in calcium nodule formation
compared to the AH Plus group (Figure 6). A previous study reported that alkaline pH may influence
the biocompatibility and antibacterial ability of calcium silicate-based sealers [12]. It could also
neutralize lactic acid from osteoclasts and prevent the dissolution of mineralized elements of teeth. In
this regard, EndoSequence BC Sealer and BioRoot RCS could promote hard tissue formation [12,18,19].
Furthermore, extended Ca2+ release was observed when EndoSequence BC Sealer was used compared
to AH Plus [33]. Calcium ions play an essential role in the development of hard tissue and mineralization
activity. This extended Ca2+ release may explain why calcium silicate-based sealers are bioactive and
affect the differentiation of bone marrow stem cells and osteoblast progenitor cells [34,35].

Some limitations have to be considered about the results of this study. First, we used dental pulp
stem cells instead of bone morphogenic stem cells. Calcium silicate-based sealers were developed with
the expectations of ideal cell proliferation and differentiation of apical tissue. Second, the experimental
materials in this study were tested in a setting state, and a comparison between set and freshly mixed
materials was not made. Third, physicochemical properties such as radiopacity, solubility, flowability,
setting time, and dimensional stability were not evaluated in this study.

All calcium silicate-based root canal sealers tested in this study showed good biological properties
and mineralization activity compared to conventional resin-based sealer. However, EndoSequence BC
Sealer had some disadvantages, such as an increased setting time and a requirement for moisture from
dentinal tubules for complete setting [36]. In a previous study, EndoSequence BC Sealer required 72 h
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to achieve initial setting and 240 h to achieve final setting without water [37]. In addition, BioRoot
RCS and Endoseal MTA showed lower cell viability at higher concentrations of sealer extracts [17,29].
Therefore, to confirm the beneficial use of calcium silicate-based sealers in root canal treatments, further
in vitro and in vivo studies are required.

5. Conclusions

Calcium silicate-based root canal sealers such as EndoSequence BC Sealer, BioRoot RCS, and
Endoseal MTA showed good cell viability and cell migration ability relative to the control group. The
AH Plus group showed the lowest cell viability and no wound healing. All experimental calcium
silicate-based sealers exhibited increased mineralization activity compared to AH Plus.
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