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Abstract

Co-expression networks have long been used as a tool for investigating the molecular cir-

cuitry governing biological systems. However, most algorithms for constructing co-expres-

sion networks were developed in the microarray era, before high-throughput sequencing—

with its unique statistical properties—became the norm for expression measurement. Here

we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning

about expression levels to account for the differing levels of uncertainty in expression

measurements between highly- and lowly-expressed entities, and between samples with

different sequencing depths. It combines data from groups of samples (e.g., replicates) to

estimate group expression levels and confidence ranges. It then computes uncertainty-

moderated estimates of cross-group correlations between entities, and uses permutation

testing to assess their statistical significance. Using large scale miRNA data from The

Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Net-

works algorithm provides improved reproducibility in co-expression estimates and lower

false discovery rates in the resulting co-expression networks. Software is available at www.

perkinslab.ca.

Introduction

Co-expression of genes, microRNAs, long non-coding RNAs and other transcribed entities is

a key biological property with multiple implications [1–4]. It can help identify functions of

uncharacterized genes based on expression similarity to characterized genes [1] at the tran-

scriptional level, thereby revealing how gene expression is controlled [2, 5, 6]. Or, co-expres-

sion can be the result of coordinated epigenetic mechanisms [7, 8]. In yet other instances, co-

expression of certain genes can serve as biomarkers in diseases such as cancer [9, 10] and men-

tal disorders [8], or aid in defining distinct cell populations and subpopulations [11].
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One of the earliest, and still widely used, tools for estimating and exploring networks of co-

expression is the Relevance Networks algorithm of Butte et al. [12]. The algorithm has four

main steps. First, entities (e.g., genes) with low estimated entropy are removed, as correlations

between them may result from one or a few outlier samples. Second, Pearson correlations are

computed between all pairs of remaining entities. Third, permutation testing is used to estab-

lish a null distribution for the correlations. Fourth and finally, a co-expression network is cre-

ated by connecting any pair of entities whose correlation exceeds a statistical significance

threshold set by the user (in conjuction with the estimated null distribution). The Relevance

Networks algorithm has been used successfully in numerous studies to uncover significant co-

expression relationships (e.g., [13–16]).

Many elaborations and alternatives to the original Relevance Networks algorithm have

been proposed over the years [17–23]. These include improvements aimed at detecting non-

linear relationships between the expression of different entities by using mutual information

criteria, as seen in Mutual Information Relevance Networks and the ARACNE algorithm [17,

18, 24], or discriminating co-expression more likely to result from direct rather than indirect

interactions, as seen in ARACNE and CLR [18, 20, 24]. As replicate data became more com-

mon, algorithms were developed to accomodate co-expression analysis of data with replicates,

as in Zhu et al. [21, 23]. Other work has focussed on robustly estimating correlations when the

number of samples is much smaller than the number of entities, as in Sch afer and Strimmer

[19]—although interestingly, we are finally emerging from that conundrum. For instance, the

dataset we analyze in this paper describes 2,456 miRNAs measured over 10,999 samples. Other

tools, such as WGCNA, go beyond the construction of correlation networks, offering features

of module identification, topology analysis, etc. [22]

While these algorithms embody many important ideas and methods for co-expression net-

work construction and analysis, they were all developed in the era of microarray-based expres-

sion measurements. The recent past has seen a fundamental shift in the technology used for

expression measurement from microarray-based to sequencing-based platforms [25, 26].

Sequencing-based approaches produce measurement values with very different error proper-

ties, dynamic ranges, and signal-to-noise ratios than microarrays. In particular, the relative

precisions of low-expression measurements are much worse compared to those of high-

expression measurements. Furthermore, precision differs between samples, at the very least

due to differences in sequencing depth, if not other factors [27]. Intuitively, these differences

in precision should influence our confidence in co-expression estimates. Indeed, in the context

of microarrays, the pioneering work of Hughes et al. [1] clearly established the value of

accounting for gene-specific measurement uncertainties in assessing co-expression and differ-

ential expression. How can the same concept be translated into the statistically much different

setting of high-throughput sequencing data?

Here, we develop a Bayesian version of the classical algorithm of Butte et al. [12], which we

call the Bayesian Relevance Networks algorithm. It builds on our recent work where we pro-

posed a Bayesian correlation scheme to analyze sequence count data [28]. We employ Bayesian

statistics both for estimating the expression levels and for quantifying the uncertainties in

those estimates. From those beliefs, we construct estimates of mean expression levels and their

uncertainties in groups of samples. This allows us to study cross-group correlations in studies

with replicates or other natural sample groups (e.g., patients with the same disease). We

describe how to perform permutation testing to estimate a null distribution for grouped Bayes-

ian correlations. This enables the computation of p-values for the statistical significance of

observed correlations, and allows us to estimate rates of true and false positive links in a Bayes-

ian Relevance Network.

Bayesian Relevance Networks
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Throughout the paper, we evaluate our approach on a large-scale public microRNA

(miRNA) expression dataset from The Cancer Genome Atlas project (TCGA) [29]. In a series

of cross-validation studies, we find that Bayesian co-expression estimates are more reproduc-

ible than the Pearson co-expression estimates used by the original Relevance Networks algo-

rithm. We find that Bayesian Relevance Networks are less prone to false positive links and

have lower false discovery rates than classical Relevance Networks. Finally, we find that

entropy filtering to remove “spurious” correlations improves both classical and Bayesian Rele-

vance Networks. At the end of the Results section, we present a Bayesian Relevance Network

based on the full datasets, where we demonstrate several interesting cancer type-specific clus-

ters of co-expressed miRNAs.

Materials and methods

Problem formulation

The algorithm we propose is for computing a co-expression network among m possible enti-

ties (genes, miRNAs, etc.) measured across a set of samples organized into n groups. The

groups may represent replicates of a condition, patients with a common disease, etc. Group g
has ng samples in it.

We observe Rigs reads for entity i in group g sample s. The total number of reads for that

sample is Rgs = ∑i Rigs. We assume that the Rigs, i = 1. . .m, are multinomially distributed.

PrðR1gs;R2gs; . . . ;RmgsÞ ¼ MultinomðRgs; p1gs; p2gs; . . . ; pmgsÞ; ð1Þ

where the pigs are unknown. Each pigs represents the idealized fraction of the sample s in group

g that comes from entity i. We can also think of it as what Rigs/Rgs should converge to in the

limit of infinite sequencing depth (Rgs!1). We define the group mean idealized fractions as

pig ¼
1

ng

Png
s¼1 pigs, and the grand mean idealized fraction as pi ¼

1

n

Pn
g¼1

pig .

We take the pigs to be our definition of the expression level. Other common definitions

include reads per million (RPM), or fragments per kilobase per million (FPKM). Both of these

normalize for sequencing depth in a given sample and are proportional to pigs. As correlations

are independent of scale, working with the pigs is equivalent to working with RPM or FPKM.

Other normalization schemes could be accomodated, as long as the expression level can be

written as an affine function of the pigs. However, so as not to overly complicate our notation,

we leave this to the reader.

For any entity i, we define the cross-group variance in expression as

vargðpigÞ ¼
Xn

g¼1

1

n
ðpig � piÞ

2
ð2Þ

In this formula, we are essentially treating the group g as if it were a random variable, taking

values 1. . .n with equal probability. For any two entities i and j we define the cross-group

covariance as

covgðpig ; pjgÞ ¼
Xn

g¼1

1

n
ðpig � piÞðpjg � pjÞ: ð3Þ
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Then, the cross-group Pearson correlation of their expression values of entities i and j is

defined as

rP
ij ¼

covgðpig ; pjgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vargðpigÞvargðpjgÞ

q : ð4Þ

Ideally, we would like to connect entities i and j in a co-expression network if their cross-

group correlation is statistically significantly large. The problem, of course, is that the pig are

unknown, so we must estimate them.

The Bayesian Relevance Networks algorithm

In principle, one could construct a Bayesian belief about the unknown Pearson correlation

itself. However, this is not computationally convenient. Instead, we use Bayesian methods to

construct estimates of the expression levels, pigs, and then estimate their correlations. The algo-

rithm we propose has four steps, which are detailed in the following subsections.

1. Remove low entropy entities from consideration (optional).

2. Compute Bayesian estimates of the cross-group correlations of expression between every

(remaining) pair of entities

3. Use permutation computations to estimate a null distribution for the Bayesian cross-group

correlations

4. Create a network by linking entities whose Bayesian correlations are statistically significant

Entropy filtering. This step is optional. We include it for the same reason it was included

in the original Relevance Networks algorithm—that correlations may arise spuriously due to

outliers. For instance, suppose two entities are generally expressed at constant levels, but in

one sample both of their levels are much higher or lower than normal. These two entities will

thus appear to have highly correlated expression levels. In some cases this may be genuinely

true, although we may not be comfortable about the robustness of a correlation that depends

on a single sample being present in the dataset. The same phenomenon might also arise for

more mundane reasons, such as sample mishandling, contamination, poor sequencing

depth, etc. Thus, it may make sense to remove entities with such expression profiles from

consideration.

To allow for direct comparison between our Bayesian approach and the classic Relevance

Networks algorithm, we use the exact same entropy filtering procedure. For each entity i, we

compute the maximum likelihood expression estimates, p̂igs ¼ Rigs=Rgs. We then compute the

minimum, A ¼ min gsp̂igs, and maximum, B ¼ max gs p̂igs, expression levels across all samples

in all groups. If A = B then we estimate the entropy of entity i’s expression as Hi = 0. Otherwise,

we divide the interval [A, B] into 10 equal-sized bins. We determine the empirical fraction of

the p̂igs that fall into each of those 10 bins, calling them fi1. . .fi10. We then estimate the entropy

of entity i’s expression as Hi ¼ �
P10

j¼1
fij log

2
fij. Entities with estimated entropies in the lowest

Hthresh% are discarded, where Hthresh is chosen by the user.

Bayesian estimation of pairwise correlations. The essence of our Bayesian approach is to

first construct beliefs over the true expression levels of all the entities. We then propose that

the Pearson correlation between two entities be replaced by what we call the Bayesian correla-

tion. We compute variances and covariances across groups and also with respect to our

Bayesian Relevance Networks
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uncertainty about the true expression levels. That uncertainty arises from the limited sampling

depth in any experiment and the inherent noise in sampling reads from the large set of possible

entities. Using u to denote our uncertainty informally—and we will become formal very

shortly—the Bayesian correlation can be written as

rB
ij ¼

covg;uðpig ; pjgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varg;uðpigÞvarg;uðpjgÞ

q ð5Þ

Intuitively, high uncertainty in expression levels may influence the covariance term, but it

will definitely inflate the variance terms in the denominator, leading to lower estimates of cor-

relation. (More precisely, estimates moderated towards zero.)

We adopt a standard Bayesian approach to estimate the idealized fractions pigs. For each

group g and sample s, we employ a Dirichlet distribution to model our uncertainty about the

pigs. We assume the Dirichlet beliefs for different samples are independent. Thus, for sample s
and group g we adopt a prior belief,

Prðp1gs; p2gs; . . . ; pmgsÞ ¼ Dirichletða0
1gs; a

0
2gs; . . . ; a0

mgsÞ ð6Þ

¼
Gð
Pm

i¼1
a0

igsÞ
Qm

i¼1
Gða0

igsÞ

Ym

i¼1

p
a0
igs

igs : ð7Þ

The posterior distribution is

Prðp1gs; p2gs; . . . ; pmgsjR1gs;R2gs; . . . ;RmgsÞ ð8Þ

¼ Dirichletða1gs; a2gs; . . . ; amgsÞ ð9Þ

¼ Dirichletða0
1gs þ R1gs; a

0
2gs þ R2gs; . . . ; a0

mgs þ RmgsÞ: ð10Þ

The prior parameters a0
igs may be chosen however one likes. We previously showed that

poor choice of priors can lead to highly biased estimates of correlation [28], and thus some

care should be taken with the choice. We employ a0
igs ¼ 1=m, which has provably low bias for

low expression entities represented by few read counts [28]. For entities with high read counts,

the prior makes little difference, as the posterior is determined almost entirely by the data.

With these assumptions, and defining ags ¼
Pm

i¼1
aigs, the mean of the marginal posterior dis-

tribution for pigs with respect to our beliefs (which we denote by u for “uncertainty”) is

EuðpigsÞ ¼
aigs

ags
: ð11Þ

The variance of that marginal posterior is

varuðpigsÞ ¼
aigsðags � aigsÞ

a2
gsðags þ 1Þ

: ð12Þ

Bayesian Relevance Networks
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The covariance of our beliefs about the expression of two different entities, i and j 6¼ i,
within the same sample s of group g is

covuðpigs; pjgsÞ ¼
� aigsajgs

a2
gsðags þ 1Þ

: ð13Þ

This covariance is nonzero because of the implicit requirement that
Pm

i¼1
pigs ¼ 1. Intui-

tively, if we believe that i’s expression is larger, we must believe that the expression of other

entities is smaller.

From these, we can readily compute the within-group means, variances and covariances

between entities, accounting for our uncertainty. Recalling that by definition, pig is the average

of pigs across samples s, we have the following.

EuðpigÞ ¼ Eu

Xng

s¼1

1

ng
pigs

 !

ð14Þ

¼
Xng

s¼1

1

ng

aigs

ags
: ð15Þ

varuðpigÞ ¼ varu

Xng

s¼1

1

ng
pigs

 !

ð16Þ

¼
1

n2
g

Xng

s¼1

varuðpigsÞ ð17Þ

¼
1

n2
g

Xng

s¼1

aigsðags � aigsÞ

a2
gsðags þ 1Þ

: ð18Þ

Eq 17 follows because our estimates for different samples are statistically independent, so

the variance of the sum is the sum of the variances.

covuðpig ; pjgÞ ¼ covu

Xng

s¼1

1

ng
pigs ;

Xng

s0¼1

1

ng
pjgs0

 !

ð19Þ

¼
1

n2
g

covu

Xng

s¼1

pigs ;
Xng

s0¼1

pjgs0

 !

ð20Þ

¼
1

n2
g

Xng

s¼1

Xng

s0¼1

covuðpigs; pjgs0 Þ ð21Þ

¼
1

n2
g

Xng

s¼1

covuðpigs; pjgsÞ ð22Þ

Bayesian Relevance Networks
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¼
1

n2
g

Xng

s¼1

� aigsajgs

a2
gsðags þ 1Þ

: ð23Þ

Eq 22 follows because our beliefs are independent for different samples, hence there is no

covariance when s 6¼ s0. We can then define the total variance across groups and uncertainty,

for entity i, via the Law of Total Variance as

varg;uðpigÞ ¼ vargðEuðpigÞÞ þ EgðvaruðpigÞ ð24Þ

¼
Xn

g¼1

1

n
ðEuðpigÞ � EuðpiÞÞ

2
þ
Xn

g¼1

1

n
varuðpigÞ: ð25Þ

Similarly, we define the total covariance across groups and uncertainty, for entities i and j,
via the Law of Total Covariance as

covg;uðpig ; pjgÞ ¼ covgðEuðpigÞ; EuðpjgÞÞ þ Egðcovuðpig ; pjgÞÞ ð26Þ

¼
Xn

g¼1

1

n
ðEuðpigÞ � EuðpiÞÞðEuðpjgÞ � EuðpjÞÞ þ

Xn

g¼1

1

n
covuðpig ; pjgÞ ð27Þ

Eqs 25 and 27 can be substituted back into Eq 5 to completely specify the definition and

computation of the Bayesian correlation. One step of this substitution and expansion is dis-

played below, as it will be relevant to our discussion of permutations in the next section.

rB
ij ¼

covg;uðpig ; pjgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varg;uðpigÞvarg;uðpjgÞ

q

¼
covgðEuðpigÞ;EuðpjgÞÞ þ Egðcovuðpig ; pjgÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvargðEuðpigÞÞ þ EgðvaruðpigÞÞÞðvargðEuðpjgÞÞ þ EgðvaruðpjgÞÞÞ

q :

ð28Þ

A permutation scheme for assessing statistical significance. Permutation testing is a

common approach to assessing significance of associations between variables. However, in our

context, this is not entirely straightforward. It is not sufficient to simply permute the read

counts Rigs for each entity i and recompute Bayesian correlations. Recall that the estimated

expression levels of entity i depend not only on Rigs but also on the total reads in the samples,

Rgs. Permuting the read counts would change the Rgs, and therefore change the estimated

expression levels. Permutation testing should “break” associations between different entities

by reassigning their values to different samples, but it should not change the values themselves.

It is also not sufficient to permute the estimated expression levels, Eu, pigs, as that could change

estimated group expression levels, Eu, pig.

With the null hypothesis being that there is no cross-group correlation between entities, we

suggest that a proper way to estimate a null distribution between entities i and j is to compute

many different permutations ρ : {1. . .n} 7! {1. . .n} of the group numbers (all permutations, if

Bayesian Relevance Networks
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possible). For each permutation ρ we evaluate the following formula.

rr
ij ¼

covgðEuðpigÞ; EuðprðjÞgÞÞ þ Egðcovuðpig ; pjgÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varg;uðpigÞvarg;uðpjgÞ

q ð29Þ

The distribution of that value for many different permutations ρ is taken to be the null dis-

tribution of the Bayesian correlation.

In comparison with the formula for the Bayesian correlation (Eq 28), the permuted values

of j’s group-level expression are used in the first covariance term. This is the part of the for-

mula where the hypothesis of no cross-group correlation would have its effect. We do not use

the permuted j’s in the second covariance term. That term represents the covariance of our

beliefs within a sample, which results from the necessity that expression levels within a sample

add up to one. This is not affected by the null hypothesis, so we leave it unchanged. The per-

mutations also do not appear in the variance terms of the denominator, although it would not

matter if they did, as the variances of i’s and j’s expression are independent.

Statistical significance and constructing the Bayesian Relevance Network. In the classi-

cal Relevance Networks algorithm, a single null distribution for correlations under the null

hypothesis is constructed by combining the permuted correlations across all pairs of entities.

Although it is technically more sound to maintain a separately estimated null distribution for

each pair of entities (i, j), in order to maximize our ability to compare the results of Bayesian

Relevance Networks to the classical algorithm, we do the same here. Thus, suppose that K
times we have permuted the group idealized fractions, Eu, pig, of every entity i, and recomputed

the cross-group Bayesian correlations as in Eq 29. Let rr

ijk represent the permuted Bayesian cor-

relation between entities i and j in the kth permutation. We estimate the overall probability of a

correlation of at least t, under the null hypothesis, as

Pðr � tÞ ¼
jfði; j; kÞ : i < j and rr

ijk � tgj
Kmðm � 1Þ=2

ð30Þ

Suppose we construct a Bayesian Relevance Network by connecting any pair of entities i
and j if their Bayesian correlation is at least t, obtaining Nt such pairs. Given that there are m
(m − 1)/2 possible pairs of entities, we can estimate the expected number of false positives at

that threshold as FPt = P(r� t)m(m − 1)/2. The number of true positives can be estimated as

max(Nt − FPt, 0). The false discovery rate can be estimated as min(FPt/Nt, 1), as long as Nt> 0.

Together, these quantities—estimated numbers of true positives, numbers of false positives,

and the false discovery rate—can be employed by the user to make a rational choice for the

threshold t used to construct the network.

Data

To demonstrate and evaluate our approach, and potentially to generate some biological

insights in an important area, we decided to analyze miRNA expression data from The Cancer

Genome Atlas (TCGA) [29]. We used the Genomic Data Commons data portal [30] to down-

load all available “isoforms.quantification.txt” files on November 10, 2016. These files report

counts of miRNA-seq reads mapped to a large number of genomic intervals. Those intervals

are also annotated for whether they represent a certain pre-miRNA, a mature miRNA, or sev-

eral other types of objects. From each file, we collected all lines corresponding to a mature

miRNA (specified by a unique miRBase [31] MIMAT identifier), and then added up all counts

corresponding to the same mature miRNA. This includes reads mapped to slightly different

genomic intervals within the same mature miRNA, as well as entirely different genomic

Bayesian Relevance Networks
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regions that happen to code for the same mature miRNA. In the end, this left us with read

counts for 2456 distinct mature miRNAs, across 10,999 patient samples.

While this gave us a wealth of data on miRNA expression in cancer, the isoform files do not

specify which types of cancer each patient had (nor any other patient characteristics). To estab-

lish this information, we constructed a json query that, through the Genomic Data Commons

API, returned a list of all isoform quantification files, along with their project IDs. The project

IDs are synonymous with the types of cancer profiled. In this way, we assigned one of 33

unique cancer types to each miRNA-seq dataset. These cancer types consititute the groups in

our grouped correlation analysis.

In order to better inform our co-expression assessments, we downloaded from miRbase

[31] their version 21 miR definitions in the file “hsa.gff3”. This file specifies the IDs and geno-

mic coordinates of both stem-loop pre-cursors and mature miRNAs. It also specifies which

mature miRNAs are to be found in which stem-loop precursors. Multiple genomic occur-

rences of the same mature miRNA have IDs ending in _1, _2, etc., to discriminate them. How-

ever, the “Alias” field omits these IDs, which could then be matched to the MIMAT IDs in the

TCGA isoforms file. Similarly, we downloaded from ENSEMBL their latest gene definitions in

the file “Homo_sapiens.GRCh38.86.gtf”. This file describes many types of transcribed entities,

including protein-coding genes, pseudogenes, long non-coding RNAs, miRNAs, etc. Impor-

tantly, it includes their genomic locations. Using these sources of information, we were able to

categorize every pair of mature miRNAs into one of the following categories: (1) “stem-loop”

if the two mature miRNAs occur within the same stem-loop precursor miRNA anywhere in

the genome; (2) “transcript” if the two mature miRNAs occur within the same transcribed

entity (according to ENSEMBL) but not the same stem-loop precursor; (3) “near” if the two

mature miRNAs occur within 10kb on the genome; (4) “cluster” if the two mature miRNAs

occur within the same equivalence class in the transitive closure of the “near” relation, but are

not themselves “near”. For example, if i is near j and j is near k, but i and k are not near, then i
and k are still in the same cluster; (5) “non-local” if none of the previous categories apply.

Results

TCGA miRNA expression data spans many orders of magnitude across

miRNAs and samples

As described in the Methods section, we obtained miRNA-seq expression data from the TCGA

project through the Genomic Data Commons, resulting in read counts for 2456 miRNAs in

10,999 patient samples, representing 33 cancer types. Some summary statistics are shown in

Table 1, while the data is shown visually in Fig 1A. Each row corresponds to a miRNA, and

each column corresponds to a patient sample. The most-represented cancer was breast cancer,

with 1207 samples, while the least-represented was glioblastoma multiforme, with 5 samples.

There are clearly miRNAs with cancer-specific, or at least tissue-specific, expression profiles.

To formalize this observation, we computed for each miRNA the total variance across samples

of its expression in units of reads per million. We also computed the variance of expression

within and across cancer types, and from those the percentage of variance explained (POVE)

for each miRNA by the cancer type. Fig 1B shows a histogram of the POVE for all miRNAs.

While for most miRNAs patient-to-patient variability within cancer types is dominant, there is

a subset for which differences between cancer types are substantial. For approximately 3% of

miRNAs, differences between cancer types explain the majority (� 50%) of the variability.

Fig 1C shows the expression of every miRNA in every sample, sorted by decreasing order

within the sample. Expression values range from around 105 RPM to below 1 RPM. Because all

miRNAs are measured in the same units—reads—this means that relative to their expression
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levels, the miRNAs with lowest expression are measured with approximately 1/100,000 the

precision of the miRNAs with highest expression. There are also great differences in sequenc-

ing depth between samples, as shown in Fig 1D. The sample with the greatest sequencing

depth has over 36 million reads, while the sample with the shallowest sequencing depth has

under a quarter million. There is approximately a 150-fold difference in resolution between

these two samples. Given these statistics, it is clear that our uncertainties about the true expres-

sion levels of the miRNAs must vary widely by miRNA and by sample.

Bayesian correlations are more reproducible than Pearson correlations

We expected that Bayesian correlation estimates would suppress correlations between low

expression miRNAs. By contrast, we expected that Pearson correlations would be more subject

Table 1. Summary statistics of the TCGA miRNA expression data, arranged by the 33 cancer types indicated in the first column.

Cancer type # of sample # reads per sample Avg # miRNAs with

min mean max � 1 read � 10 reads

ACC 80 1551466 5238839 13485999 834 415

BLCA 437 1098304 5536924 22467066 848 400

BRCA 1207 625626 3700260 21860459 743 348

CESC 312 1136797 5221462 15609274 837 394

CHOL 45 1544330 5380110 14331556 779 375

COAD 465 423443 3848607 19020048 742 351

DLBC 47 1456958 4083343 15518513 822 368

ESCA 200 1391187 4512379 23606563 788 369

GBM 5 3303938 4352000 5474968 952 468

HNSC 569 729195 4942025 18693022 841 396

KICH 91 2639584 6584305 12002200 753 362

KIRC 616 763326 3212078 17197508 671 314

KIRP 326 1205370 6640663 22894161 766 357

LAML 105 244985 737680 1505243 596 270

LGG 530 685558 7857242 36058383 861 418

LIHC 425 1014345 5140172 14231455 820 392

LUAD 567 483912 5111986 17211282 829 383

LUSC 523 709553 3983871 14158055 830 386

MESO 87 1551956 5413600 11533492 804 393

OV 499 272473 3603354 14514811 821 383

PAAD 183 1392723 5528911 20235510 790 392

PCPG 187 1553639 6398065 14993169 863 436

PRAD 551 1289316 4829321 20140914 682 322

READ 165 607359 4429930 15161558 763 366

SARC 263 1121749 4716469 27664941 729 352

SKCM 452 942620 4482870 22160523 924 435

STAD 491 605003 4369209 18420952 770 362

TGCT 156 1817285 5835794 21135730 1069 568

THCA 573 994295 5776260 21658328 841 400

THYM 126 2825552 6207201 13060284 1013 515

UCEC 579 687906 5257890 25392268 852 405

UCS 57 838232 4789254 9702547 936 451

UVM 80 1444028 5090500 17669704 851 397

https://doi.org/10.1371/journal.pone.0183103.t001
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to falsely high or low correlations, due to spurious correlations between miRNAs with low

read counts. To test this, we computed all pairwise grouped Bayesian and Pearson correlations,

using the cancer types to define patient groups. For the Pearson correlations, this was the cor-

relation across cancers of the within-cancer average expression in units of RPM. Fig 2A shows

a density scatterplot of the Pearson and Bayesian correlations. Points along the y = x diagonal

line correspond to miRNA pairs where Pearson and Bayesian estimates agreed. We note that

there are some miRNA pairs correlated at essentially +1 by both Pearson and Bayesian esti-

mates, but no miRNA pairs with such strong anticorrelations. At the same time, there are

many miRNA pairs that have high correlations according to the Pearson estimate, but that are

relegated to much lower correlation levels—including essentially zero—by the Bayesian esti-

mate. These involve miRNAs that, by our approach, have too much uncertainty in their

expression levels to be able to confidently assert a strong correlation. As a rather extreme

example, there was a strong disagreement in the estimated correlations between miR-4459 and

miR-5692b. The former shows expression in 70 different samples across 12 cancer types, but is

Fig 1. Mature miRNA expression data for 10,999 cancer patients from the TCGA project. (A) Heatmap of expression, with yellow indicating high and

blue indicating low, relative to the mean for each miRNA across samples. miRNAs are ordered based on a hierarchical average-linkage Euclidean-distance

clustering of the reads per million across samples. Samples are grouped by cancer type, indicated by labels along the bottom. (B) Histogram of percentage of

variability in expression of different miRNAs explained by differences in cancer type. (C) Curves showing expression of all miRNAs within each sample,

sorted from highest to lowest expression. (D) Histogram of the numbers of reads (i.e., sequencing depth) in each sample.

https://doi.org/10.1371/journal.pone.0183103.g001
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primarily seen in thyroid cancers, albeit at low levels (53 samples, 139 total reads). The latter is

expressed at only 2 reads in a single thyroid cancer sample, and nowhere else. The Pearson cor-

relation between these two is a near perfect 0.9731, whereas the Bayesian correlation is 0.0512.

To test the reproducibility of Pearson and Bayesian correlations, we randomly assigned

each sample to one of two data folds, keeping the numbers of samples representing each cancer

Fig 2. Comparison of Pearson and Bayesian grouped correlations across cancer types. (A) Density scatterplot of Bayesian versus

Pearson correlations. Non-white points are where at least one pair of miRNAs has the specified Pearson (x-axis) and Bayesian (y-axis)

correlations. Colored points, going from blue to yellow to red, indicate increasing numbers of miRNA pairs with the specified correlations. (B)

Agreement of Pearson correlations when the data is divided in half and correlations computed for each half separately. (C) Agreement of

Bayesian correlations when the data is divided in half and correlations computed for each half separately. (D) For each pair of miRNAs,

organized by their expression quantiles across all samples, the average mean absolute deviation (MAD) between the two data halves of

Pearson and Bayesian correlations.

https://doi.org/10.1371/journal.pone.0183103.g002
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type as even as possible. We then computed cross-cancer Pearson correlations on each half of

the data separately (Fig 2B), and likewise for the Bayesian correlations (Fig 2C). For the Pear-

son correlations, there is broad agreement between correlations computed based on each fold

of the data—the estimates from each half are themselves correlated. But there are also many

miRNA pairs where correlations from the two folds disagree dramatically. For a substantial

number of pairs, one fold of the data produces a Pearson correlation near 1, while the other

fold produces a Pearson correlation near zero. The two “lines” visible along the x- and y-axes

of the density scatterplot arise from miRNAs that have absolutely zero reads in one fold of the

data (hence no correlation to anything), but some reads in the other fold (and in some cases

strong correlations, although they may be spurious). In comparison, the Bayesian correlation

estimates from each fold of the data tend to be closer to each other. There are no “lines” of

exceptional behaviour for zero-count miRNAs, and no miRNA pairs with near zero Bayesian

correlation in one fold and near +1 Bayesian correlation in the other fold (although there are a

very few near 0.9).

To quantify the reproducibility of the two approaches more carefully, and also to study the

relationship between expression level and correlations, we divided miRNAs into 21 bins of

increasing average RPM expression. Let X denote the set of miRNAs in one expression bin,

and Y denote the set of miRNAs in another expression bin. From data fold 1, we computed

all pairwise Pearson correlations between miRNAs in bin X with those miRNAs in bin Y,

namely, frP1
xy : x 2 X; y 2 Yg. We did the same for data fold 2, compute the correlations

frP2
xy : x 2 X; y 2 Yg. Finally, we computed the mean absolute deviation between these two

sets of correlations, MADðX;YÞ ¼
P

x2X;y2Y jr
P1
xy � rP2

xy j=jXjjYj. This gives the average disagree-

ment of Pearson correlations computed from the two data folds, as a function of binned

expression level. Then, we did the same for the Bayesian correlations. Fig 2D shows those

mean absolute deviations. Generally, as the expression of both miRNAs trends higher, the dis-

agreement between the two halves of the data decreases, and the error in the Pearson and

Bayesian estimates is essentially identical. For these miRNAs, low signal-to-noise ratio is not

an issue, and Pearson and Bayesian estimates are nearly the same. Error is worst when both

miRNAs have low but nonzero expression, and it is nearly as bad when just one of the two

miRNAs has low but nonzero expression. When one of the miRNAs is in the lowest expression

bin, error tends not to be quite as bad, as both methods will tend to assign zero correlation

(but Bayesian more so than Pearson). At all levels of expression, the average error of the Pear-

son estimates exceeds the error of the Bayesian estimates. Across all pairs of miRNAs, the

Pearson MAD is 0.1304 between folds, and the Bayesian MAD is 0.0843, a difference that is

statistically significant by a simple sign test at a p-value too small for machine precision (easily

p< 10−100).

Entropy filtering improves reproducibility of both Pearson and Bayesian

correlations

As described in the Introduction, the classical Relevance Networks algorithm begins by filter-

ing out entities whose expression demonstrates low entropy. The purpose of this step is to

avoid correlations that arise from a single sample or small set of “outliers.” Whether or not

such an approach is appropriate is situation dependent. For example, if a subset of miRNAs

were highly expressed only in glioblastoma multiforme tumours, and no others, such miRNAs

would appear to have low entropy. (Remember, just five out of our 10,999 samples are for that

disease.) We may not want to naively dismiss correlations among such miRNAs, as they arise

from a clear disease relevance. Nevertheless, in the worst case, individual samples may be faulty

and can create spurious correlations.
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To test the effect of entropy filtering on both the Pearson and Bayesian correlations, we first

computed the entropy of each miRNA’s expression (Fig 3A). In the original paper [12], it was

suggested to discard the 5% of entities with lowest entropy (dashed red line). However, the

appearance of the empirical entropy distribution suggested to us cut off around 10% (solid red

line) would better separate entities with a “normal range” of entropies from those that appear

unusually low. Hence, we chose 10% as our cut off, and defined miRNAs with entropies below

that to be “low entropy” and the remainder to be “high entropy.” Fig 3B examines the relation-

ship between miRNA expression and entropy. For the most part, the low entropy miRNAs

also have very low expression. However, a small number of miRNAs with above average

expression also have low entropy. The miRNA with the highest average expression that is still

Fig 3. The effects of entropy filtering on Pearson and Bayesian correlations. (A) Empirical distribution of entropies of miRNAs’

expression across samples. Dashed red line indicates 5th percentile and solid red line indicates 10th percentile. (B) Empirical distribution

of expression levels (average RPM across samples) for low entropy and high entropy miRNAs. (C) Comparison of Pearson grouped

correlations from two halves of the data, when restricting attention to the high entropy miRNAs. (D) Comparison of Bayesian grouped

correlations from two halves of the data, when restricting attention to the high entropy miRNAs.

https://doi.org/10.1371/journal.pone.0183103.g003
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classified as low entropy is miR-205-3p, a miRNA with some known associations with cancer

[32–34]. This miRNA is exceptionally high in two patient samples, one thymoma and one

head or neck squamous cell carcinoma, where its expression levels of over 10,000 RPM are

more than 100 times greater than in any other sample.

Restricting attention to the high-entropy genes, and we recomputed the density scatterplots

of Pearson correlations from the two halves of our data (Fig 3C), we see that the lines of excep-

tional correlations along the x- and y-axis are gone. (Compare to Fig 2B). However, the overall

qualitative shape of the point cloud remains, as do numerous miRNA pairs that have near +1

correlation in one half of the data and near zero correlation in the other half. Fig 3D shows the

Bayesian correlations of the high-entropy miRNAs from each half of the data. There is little

apparent change compared to Fig 2C, which includes the low entropy miRNAs. Perhaps sur-

prisingly, entropy filtering does not improve the mean absolute deviation between the two

halves of the data. For Pearson correlations restricted to high-entropy miRNAs, the MAD is

0.1305 (versus 0.1304 for all miRNAs), and for Bayesian correlations the MAD is 0.0894 (ver-

sus 0.0843). Although filtering eliminates some spurious correlations, it also eliminates many

(correctly) zero correlations between low- or non-expressed miRNAs, driving the average

error up.

Bayesian Relevance Networks have lower false discovery rates

As Bayesian correlations between miRNAs match better between data folds than do Pearson

correlations, we predicted that Bayesian Relevance Networks built based on each half of the

data would agree better than classical Relevance Networks would. To test this hypothesis, we

performed permutation testing on each half of the data, estimating null distributions for both

the Pearson correlations and the Bayesian correlations. The results are shown in Fig 4A and 4B

for analyzing all miRNA pairs (solid lines) and for analyzing high-entropy miRNAs only

(dashed lines). The blue curves indicate the observed distributions of correlations on each half

of the data, while the red curves indicate the estimated null distributions. For both Pearson

and Bayesian correlations, there appear to be stronger positive correlations than would be pre-

dicted based on the null hypothesis of no statistical association between miRNAs. The shapes

of the distributions estimated from each half of the data are in close agreement. There are

more Pearson correlations at the highest levels (near 1) than there are Bayesian correlations—

because of the tendency of the Bayesian approach to discount apparent correlations between

low expression miRNAs. Filtering miRNAs based on entropy appears to have negligible impact

on the distribution of Bayesian correlations, and a slightly larger, though still modest, effect on

the Pearson correlations.

Next, we constructed Relevance Networks at different correlation thresholds. At each

threshold, we determined the number of miRNA pairs above threshold, as well as the expected

number of such pairs under the null hypothesis. Based on these, we estimated the false discov-

ery rate (FDR) for links in the Relevance Networks as a function of correlation threshold. At

the same time, we compared the specific links constructed from each half of the data to the

links in the other half. Links appearing in one half but not the other were labeled as putative

false positives, and from these we constructed a second estimate of the FDR as a function of

correlation threshold. The results are shown in Fig 4C, 4D and 4E and are radically different

for Pearson and Bayesian approaches. Firstly, the Bayesian FDRs are almost uniformly better

than the Pearson FDRs (Fig 4E); the only exception is at the threshold of r = 0.99, where the

permutation-based estimate of Pearson FDR when restricting attention to high-entropy miR-

NAs is lower than the estimate for Bayesian FDR. When analyzing all miRNAs, the estimated

Pearson FDRs from permutation testing hover around 0.2 for most correlation thresholds,
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Fig 4. Permutation testing and agreement of Relevance Networks constructed based on Pearson or Bayesian correlations. (A)

Empirical (blue) and permutation-based (red) distributions of Pearson correlations from each half of the data, comparing all pairs of miRNAs

(solid lines) and comparing all pairs of high-entropy miRNAs (dashed lines). (B) Empirical (blue) and permutation-based (red) distributions of
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whereas estimated Bayesian FDRs are smaller than 0.15. The empirical Pearson FDRs, based

on comparing the networks obtained from each half of the data, are worse than 0.4 at all

thresholds except r = 1, where there is substantial divergence between the estimates from the

two data folds. The empirical Bayesian FDRs are somewhat different between the two folds of

the data, but average to around 0.3 at most thresholds. The Bayesian FDR estimates either

improve (drop) with increasing correlation threshold (permutation-based) or are relatively

constant (based on data folds). This is a reasonable behaviour, as increasing the threshold intu-

itively means increasing stringency. Pearson FDRs sometimes decrease with increasing corre-

lation threshold, but sometimes increase, depending on which estimate we consider and

depending on the exact threshold level. When we restrict attention to the high-entropy miR-

NAs, we see that permutation-based estimates of FDR improve for the Pearson correlations.

However, the empirical estimates of FDR based on comparing data folds do not improve. The

FDRs of Bayesian Relevance Networks seem almost entirely immune to entropy filtering.

A Bayesian Relevance Network describing co-expression of miRNAs

across 10,999 patients with 33 types of cancer

Having established the soundness of the Bayesian Relevance Networks algorithm in the previ-

ous sections, we conclude the Results section by presenting the Bayesian Relevance Network

obtained by analyzing the full dataset. We chose not to filter out miRNAs based on low

entropy, so that we would not overlook potentially interesting connections, and because our

results above suggest there would be little benefit. Accordingly, we computed all pairwise

Bayesian correlations, and we performed 100 permutation computations to assess statistical

significance. The empirical distributions of actual and permuted Bayesian correlations are

shown in Fig 5A. As expected, we see many miRNA pairs that are highly correlated. However,

high correlation can also be obtained by chance, as shown by the permutation testing. Even at

a threshold of r = 0.99, which links just 61 miRNA pairs, our permutation testing suggests that

3.33 of those would be false positives.

We decided to construct the relevance network at the threshold r = 0.96. This gave us 1519

links between 342 distinct miRNAs, with an estimated 99.67 false positive links, or an empiri-

cal false discovery rate of 6.56%. We chose this level because it produced a large enough rele-

vance network to see some interesting results, without letting the FDR grow too far out of

control. The network is depicted in Fig 5B. We used Cytoscape [35] to construct the layout of

the network. Links are colored by their locality: blue for miRNAs in the same pre-miRNA

stem-loop, red for miRNAs in the same transcript, light green for miRNAs nearby on the

genome, dark green for miRNAs in the same genomic cluster, and black for those not having

any of those locality properties. As is typical for relevance networks, and indeed many types of

biological networks, we observe connected components of widely varying sizes. Several major

components have tens of miRNAs each and are heavily cross-connected, while there are also

many isolated pairs of miRNAs connected by a single link. The majority of the links do not

represent any locality relationship (Fig 5C).

A typical cluster is indicated by (i) in Fig 5B. Only a few links are related to genomic locale;

most of the miRNAs are spread throughout the genome. miRNAs in this subnetwork are

Bayesian correlations from each half of the data, comparing all pairs of miRNAs (solid lines) and comparing all pairs of high-entropy miRNAs

(dashed lines). (C) Estimated false discovery rates (red, based on permutations) and empirical false discovery rates (blue, taking other half of

the data as gold standard) at varying Pearson correlation thresholds. (D) Estimated false discovery rates (red, based on permutations) and

empirical false discovery rates (blue, taking other half of the data as gold standard) at varying Bayesian correlation thresholds. (E) Difference

between Pearson and Bayesian estimated and empirical false discovery rates.

https://doi.org/10.1371/journal.pone.0183103.g004
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Fig 5. A Bayesian Relevance Network describing cross-cancer correlations between miRNAs. (A) Empirical distributions of

Bayesian and permuted correlations. (B) The network obtained at a correlation threshold of r = 0.96. (C) Numbers of links with different

locality relationships. (D) Normalized expression of miRNAs in the mostly-black subnetwork (i) near the center of the diagram in panel B.
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highly expressed in acute myeloid leukemia (TCGA code LAML) (Fig 5D). We found that

many of the other connected subnetworks are also highly expressed in just one or a few cancer

(or tissue) types.

A notable subnetwork is the “C”-shaped one in the upper left of the layout. This includes

many miRNAs that are nearby on the genome (within 10kb) or at least within the same geno-

mic cluster. However, the most densely connected part of the subnetwork, towards the bottom

of the “C”, contains a mixture of stem-loop, transcript, local and non-local links. When we

analyze miRNAs in three different parts of that network, we see different expression patterns

(Fig 5E) The mostly-back cluster at the bottom is expressed almost exclusively in testicular

germ cell tumors. At the opposite end of the “C”, the dense genomic cluster in green is

expressed somewhat in testicular tumors but primarily in thymomas. miRNAs in between

those two ends display a mixture of testicular tumor and thymoma expression. These miRNAs

comprise the primate-specific C19MC miRNA cluster, which has normal functions in the pla-

centa [36, 37]. This cluster’s roles in various cancers are still being worked out [38–41].

Although one must zoom in on the figure to see clearly, the vast majority of the links

between isolated pairs of miRNAs do have some kind of locality relationship—unlike the

majority of links in the network. Nearly half of the isolated miRNAs pairs are in the same

stem-loop (11 of 23), five are in the same transcript, and five are nearby on the genome. Only

two links are non-local, between miR-1180-3p and miR-6511b-3p, and between miR-548d-3p

and miR-3613-5p (Fig 5F). These pairs show some evidence of cancer/tissue-specificity, with

the first pair largely expressed in glioblastoma multiforme and ovarian cancer samples, and the

latter pair largely expressed in acute myeloid leukemia samples and thymomas.

As a point of comparison, we computed a classical relevance network by computing mean

expression levels for each miRNA within each cancer type in units of RPM, and then comput-

ing Pearson correlations between all pairs of miRNAs across the cancer types. One hundred

permutation tests suggested that the minimum false discovery rate we could expect at any cor-

relation threshold was over 15%, so we could not achieve the same error rate as in the Bayesian

Relevance Network. Instead, we decided to compare the Bayesian and classical approaches

when equalized to the same number of links. At a Pearson threshold of 0.9910775, the resulting

Relevance Network had the same number of links (1519) as the Bayesian network, linking 308

distinct miRNAs. Many of these miRNAs and links are also present in the Bayesian Relevance

Network, but many are not. Fig 6A shows a network depicting the difference between the

Bayesian and Classical Relevance Networks. Black nodes and links are present in both net-

works. Green nodes and links are present only in the Bayesian network, and red nodes and

links are present only in the classical network. The “C” shaped structure is present in both net-

works, with the classical network assigning additional miRNAs to the cluster at the bottom of

the “C”. As we saw before, expression of these miRNAs is enriched in testicular germ cell

tumors (Fig 6B). The nodes added in the classical relevance network, however, have much

lower expression levels. (The median expression level is zero reads.) The Bayesian approach

does not “trust” their correlations enough to report them, but they may be legimate, and might

have been included if greater sequencing depth revealed their expression levels more clearly.

In general, miRNAs that were unique to the Classical Relevance Network had lower expression

values than those uniquely in the Bayesian network, or those shared by both networks (Fig

6C). In other parts of the difference network, we can see other subnetworks that were also

present in the Bayesian Relevance Network, but which are now augmented by a few additional

(E) Normalized expression of miRNAs at the top (ii), middle (iii), and bottom (iv) of the “C”-shaped subnetwork in the top left of panel A. (F)

Normalized expression of four miRNAs participating in the only two non-local miRNA pairs in the relevance network.

https://doi.org/10.1371/journal.pone.0183103.g005
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Fig 6. Difference between Bayesian and Classical Relevance Networks on cross-cancer co-expression. (A) Difference

network in which black nodes and links are shared by both Bayesian and Classical Relevance Networks, red nodes and links are

specific to the Classical network, and green nodes and links are specific to the Bayesian network. (B) Cancer-specific expression
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red nodes or links. But the Pearson analysis also failed to find many links reported by the

Bayesian approach, as seen by the green nodes and links. Towards the bottom of the chart, we

see a number of smaller subnetworks, most of which are unique to the Bayesian or Classical

Relevance Networks. We were initially surprised that so many of the isolated pairs of linked

miRNAs reported in the Bayesian Relevance Network (green doublets towards the bottom of

Fig 6A) are not present in the Pearson-based network. This is not because those links have low

Pearson correlation estimates. Indeed, their Pearson correlations are uniformly larger than the

Bayesian correlations. However, they were not high enough to reach the 0.9910775 threshold

we needed so that the Classical Relevance Network would have as many links as the Bayesian

network. In essence, other miRNA pairs with lower Bayesian correlations “leapfrogged” to

even higher Pearson correlations, and thus were included in the Classical network.

Discussion

In this work, we have proposed Bayesian Relevance Networks as an update to the classical and

widely-used Relevance Networks algorithm [12], with the aim of making it better suited to

high-throughput sequencing data. Our approach accounts for the fact that sequence-based

expression measurements can have widely varying precision, both for different entities (e.g.,

genes or miRNAs) and for different samples. It builds on our recent proposal for Bayesian cor-

relation analysis [28], adding two main ingredients helpful for the construction of co-expres-

sion networks: 1) a method for estimating uncertainties in the expression levels in groups of

samples; and 2) a permutation-testing scheme to assess statistical significance of Bayesian cor-

relations. In testing on a large-scale miRNA expression dataset from The Cancer Genome

Atlas [29], we found that Bayesian estimates of co-expression were more reproducible than the

Pearson estimates used in the classical algorithm. As a consequence, we found that Bayesian

Relevance Networks had lower false discovery rates than standard Relevance Networks. We

also found that the entropy filtering step, with its additional and arbitrary cut off parameter, is

unnecessary in the Bayesian approach, leading to a simpler algorithm over all. Although we

focused on this single, large-scale dataset for demonstration and empirical evaluation, an

important direction for future work is testing on other datasets. We suspect that one area

where Bayesian Relevance Networks will be particularly helpful is in the analysis of single-cell

RNA-seq data [42]. In such datasets, the average number of reads per gene are much smaller

than for bulk RNA-seq data, and there can be great variability in the sequencing depths for

each cell. This is exactly the situation where uncertainties in expression levels need to be con-

sidered, and where Bayesian approaches can provide a solution.

Bayesian Relevance Networks can be computed efficiently in both space and time, although

there is a caveat regarding time efficiency. Regarding space, none of the computations are

larger than O(mntot + m2), where ntot = ∑g ng is the total number of samples. O(mntot) is the

size of the input count data, and O(m2) is the size of the output correlation matrix, so this per-

formance is as good as possible. Regarding time, the complexity is O(m2ntot), because for all O
(m2) pairs of entities, we need to perform various O(ntot) summations over samples or groups.

For the miRNA dataset, in 10 repetitions on a 2013 MacBook Pro with 2.6 GHz i7 processor

and 16 GB RAM, our Matlab implementation of the full Bayesian computation of all� 3 mil-

lion pairwise correlations took on average 205.2 ± 4.4 seconds. However, the vast bulk of that

time was spent computing the numerator term Eg(covu(pig, pjg)). Recall, this term represents

the covariance, under our posterior belief, of the true expression levels of entities i and j.

of shared and Classical-specific nodes at the bottom of the “C”-shaped structure. (C) Histogram of expression of shared,

Bayesian-specific and Classical-specific miRNAs.

https://doi.org/10.1371/journal.pone.0183103.g006
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Because it involves a product of small fractions, this term is usually several orders of magnitude

smaller than the other numerator term. Further, the exact same term appears in the permuta-

tion tests. When we omitted the second numerator term from all calculations, the computation

sped up to 0.99 ± 0.02 seconds, and the results were virtually identical. This speed is compara-

ble to that of our grouped Pearson calculations, which took 0.42 ± 0.01 seconds. Because of the

large speed difference with and without the second numerator term, our Matlab and R codes

for Bayesian correlations and permutations have an option allowing the user to skip that term.

This is the time for computing all pairwise correlations. The permutation testing takes time

approximately proportional to that multiplied by the number of repetitions. For 100 repeti-

tions, for example, and skipping the second numerator term in the Bayesian correlations, the

entire analysis can be completed in a matter of minutes.

In the broader context of co-expression network modeling, we view our primary contribu-

tion as emphasizing the importance of accounting for measurement uncertainty, and describ-

ing how that can be done in this era of sequencing-based expression measurement. As

mentioned in the Introduction, Hughes et al. [1] paid significant attention to gene-specific

measurement uncertainty in microarrays, using that information to discount correlations

between genes. Much subsequent work on co-expression networks ommitted this issue,

although some algorithms contain mechanisms that can be related to measurement uncer-

tainty. For instance, the mutual information estimation in the ARACNE algorithm [18, 24]

depends on a bivariate Gaussian kernel density estimate, with kernels placed on each observed

pair of expression values. These kernels could be interpreted as representing a measurement

uncertainty for each observation—although the authors do not talk about it in that manner.

Another contribution of Hughes et al. [1] was to study the natural variability in expression of

different genes, where they found that some genes are much more variable than others—as

found in numerous other studies as well (e.g. [43, 44]). Our present algorithm accounts for

only generic differences in entities and samples that arise because of differences in sequencing

depth. However, given appropriate prior data, gene-specific expectations of expression levels

or expression variability could be incorporated into our scheme through the Bayesian priors.

Determining the best way to do this, and evaluating its impact on co-expression estimates, is

an important topic for future work.

In our work, we have focused on incorporating uncertainty into the very simple, yet widely

used, Pearson correlation metric. Much work on co-expression networks has explored other

metrics for measuring similarity, such as the mutual information measures of Mutual Informa-

tion Relevance Networks and the ARACNE algorithm [17, 18, 24] or the measures used in the

WGCNA algorithm [22], which include weighted (i.e., exponentiated) versions of Pearson cor-

relation, Spearman correlation and biweight midcorrelation. Our correlation metric could be

immediately incorporated into WGCNA as an alternate fourth correlation measure. It could

also be relatively easily incorporated into the ARACNE algorithm by observation-specific

manipulation of kernel density bandwidths. An important direction for future work is to

determine if accounting for measurement uncertainty increases the accuracy and reproducibil-

ity of algorithms such as these, as we found it to do for the Relevance Networks algorithm.

Co-expression sometimes suggests regulatory mechanisms, and so co-expression networks

have been employed for the purpose of regulatory network estimation. This, however, brings

up two related issues—direction of influence, and multiplicity of influence. While co-expres-

sion network construction is typically efficient, for those willing to pay the computational

price, directed models such as Bayesian networks have been shown to be more accurate in

some circumstances [45]. These models allow each gene to be regulated by multiple regulators,

and, as generative models, can be used to make predictions about the outcome of perturbation

experiments, for example. Static Bayesian networks have some limitations that co-expression
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networks do not, such as not permitting feedback loops—which are rife in biology in general

and molecular networks in particular—due to the necessity of acyclic influence structure. But

dynamic Bayesian networks can include feedbacks [46]. A final avenue for future research

would be accounting for measurement noise in such a graphical model setting.
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