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Abstract: In this article, a multiscale simulation method of polymer melt injection molding filling flow
is established by combining an improved smoothed particle hydrodynamics method and clustered
fixed slip-link model. The proposed method is first applied to the simulation of HDPE melt in a classic
Poiseuille flow case, and then two high-speed and high-viscosity injection molding flow cases in two
simple long 2D rectangular cavities with and without a circular obstacle, respectively, are analyzed.
For each case, the macro velocity results, and the micro average number of entanglements Zave and
orientation degree S results are demonstrated and discussed, and the changing trends of Zave and S
are analyzed. The results of the two injection molding cases are compared, and the influence of the
obstacle on the injection flow at both the macro and micro levels is analyzed. Furthermore, based on
the multiscale results, reason of some structural features and defects in injection molded products
are analyzed.

Keywords: multiscale simulation; injection molding; smoothed particle hydrodynamics; slip-link model

1. Introduction

The injection molding process is a polymer molding processing method with popu-
larity and efficiency [1,2]. With the growing performance demands for injection molding
products, some in-depth research on the injection molding process becomes necessary. As
the macroscopic product properties and defects reflect the microscopic polymer structure,
a multiscale simulation of injection molding can be implemented for an insight of the
influence of macroscopic injection molding filling flow history on the evolution of the
microscopic polymer chain conformation.

The macroscopic simulation of injection molding has been researched and developed
for decades, and many simulation methods have been proposed. The mainstream method
for injection molding filling simulation is the mesh-based approaches [3,4]. The most
popular injection molding engineering software Moldflow uses the finite element method
(FEM), and Modex3D uses the finite volume method (FVM). Rather than the mesh-based ap-
proaches, some meshfree methods [5–8] for macroscopic injection molding simulation have
developed rapidly in recent years. As a meshfree method based on Lagrangian descrip-
tion, the smoothed particle hydrodynamics (SPH) method [9,10] has massive applications
in the study of free-surface flow [11–14], impact and explosion [15–20], fracture [21,22],
metal processing [23–25] and other fields, and is applied to the injection molding in recent
years [26–30]. The SPH method comes with trace tracking of the SPH particles, which
can also be regarded as material points. Hence one SPH particle can be directly coupled
with a microscopic simulation ensemble, and a simpler multiscale simulation approach can
be realized.
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As for the microscopic simulation, there are atomic-scale methods such as molecular
dynamics and its coarse-grained versions [31], as well as methods at the polymer chain
scale such as tube model [32–35] and slip-link model. The slip-link model focuses on
the entanglements between the polymer chains, and has a single-chain version proposed
by Schieber [36], and a multi-chain version proposed by Masubuchi [37]. Although the
single-chain slip-link model has rougher description of polymer chain conformation, it
has lower computational cost, and in the recent coarse-grained version called clustered
fixed slip-link model (CFSM) [38], it is possible to simulate polymer chains with very high
molecular weights equivalent to that of polymer for injection molding.

Combining SPH method and slip-link model, some scholars have made attempts
in the multiscale simulation of polymer flow. Feng et al. [39] simulated the flow past a
periodic array of confined cylinders and the journal bearing lubricated with polymer melt,
and the results are in good agreement with the simulation results of the UCM viscoelastic
constitutive equation. Murashima et al. [40] simulated the 2D flow around two cylinders,
and obtained the influence of the cylindrical obstacles on the microscopic variables, includ-
ing the mean length of the polymer chains, the mean number of entanglements and degree
of orientation. Sato et al. [41] simulated flows in a 4:1:4 contraction-expansion channel,
evaluated the microscopic variables and developed a model equation that describes the
time evolution of the number density of entanglements along a polymer chain. However,
the multiscale simulations in these works are all some classical flow studies in a closed
space filled with polymer melt, which is much simpler than the flow in the polymer process-
ing such as injection molding filling. The injection molding filling flow involves complex
boundary conditions such as that at melt front (free surface), along with heat conduction
and phase transitions.

The main purpose of this work is to make multiscale simulation closer to engineering
applications, so a new multiscale simulation strategy of polymer melt injection molding
filling flow is established by combining an improved SPH method and CFSM, and applied
to HDPE melt in a classic Poiseuille flow case and two injection molding cases in two
simple long 2D rectangular cavities with and without a circular obstacle, respectively.
The rest content of this article is arranged as follows: In Section 2, the macro governing
equations and their discretization using the improved SPH algorithm, the micro CFSM and
the multiscale simulation solution procedure are described. In Section 3, the multiscale
simulation method is implemented in the various examples described above. For each
case, the macro velocity results, and the micro average number of entanglements and
orientation degree results of multiscale simulation will be demonstrated and discussed. In
the two injection molding cases, the above simulation results together with the tracking line
quantity results that provide an insight of melt motion of the two examples are compared.
Finally, in Section 4, there are conclusions and remarks.

2. Formulations
2.1. Smoothed Particle Hydrodynamics
2.1.1. Governing Equations

In this work, on the macro scale, the polymer melt is considered as an isothermal,
transient, weakly compressible viscous fluid, and the basic governing equations can be
written as Equations (1) and (2):

∂ρ

∂t
= −ρ(∇ · u), (1)

ρ
∂u
∂t

= −∇p + µ∇2u + ρf, (2)

where ρ is the density, u is the velocity, f is the external force acceleration, and p is the
pressure. µ is the physical viscosity, which depends on the shear rate

.
γ =
√

2D : D, where
D = (∇u + (∇u)T)/2 is the strain rate tensor, and the cross-viscosity model is used:
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µ(
.
γ) =

µ0

1 +
(

µ0
.
γ

τ∗

)1−n , (3)

which is a 3-parameter (µ0, n, τ*) model.
An equation of state is also necessary to describe the relationship between density

and pressure. In some previous studies of SPH [42,43], the following equations of state are
commonly used:

p(ρ) = c2(ρ− ρ0), (4)

p(ρ) =
ρ0c2

γ

[(
ρ

ρ0

)γ

− 1
]

, (5)

where c is the speed of sound, ρ0 is the initial density of the fluid, and γ is a constant
that usually takes the value γ = 7. In this work, the Tait equation of state [26,44] which is
especially appropriate for polymer melts is used:

p(ρ) = B
{

exp
[

1
c1

(
1− ρ0

ρ

)]
− 1
}

, (6)

where c1 = 0.0894 for polymer melts. B is a very large constant parameter in the range of
about 107 to 109 for a specific polymer melt, reflecting the compressibility of the melt.

2.1.2. Improved SPH Algorithm for the Polymer Melt Injection Molding Filling Flow

In this work, an improved SPH method is applied to the macro-scale simulation. A
traditional SPH discretization of the basic governing equations is shown as below [45,46]:

dρi
dt

= ρi

N

∑
j=1

mj

ρj
uij · ∇iWij, (7)

dui
dt

= −
N

∑
j=1

mj

(
pi
ρi

2 +
pj

ρj
2

)
∇iWij +

N

∑
j=1

mj
µi + µj

ρiρj

xij · ∇iWij

rij
2 + (0.01 h)2 uij + fi, (8)

where mi, ρi, ui, pi and µi are the mass, density, velocity, pressure and physical viscosity of
the i-th particle, respectively, uij = ui −uj, xij = xi −xj, rij = |xij|, ∇iWij = (xij/rij)∂Wij/∂rij,
and term (0.01 h)2 in the denominator is to avoid singularity when two particles become
too close, where h is the smooth length. The above SPH discretization is not robust and
accurate enough for the high viscosity polymer melt injection molding filling flow, and
certain improvements are required.

To weaken the non-physical pressure oscillation and increase the numerical accuracy
and stability, a previous proposed modified low-dissipation Riemann solver and the kernel
gradient correction are used, and Equations (7) and (8) are rewritten into the following
forms as the main SPH algorithm in this work:

dρi
dt

= ρi∑
j

mj

ρj

(
uij +

pi − pj

ρc
xij

rij

)
· ∇C

i Wij, (9)

dui
dt

= −
N

∑
j=1

mj

ρiρj

(
pi + pj − βRS

xij · uij

rij

)
∇C

i Wij +
N

∑
j=1

mj
µi + µj

ρiρj

xij · ∇C
i Wij

rij
2 + (0.01 h)2 uij + fi, (10)

where ρ =
(
ρi + ρj

)
/2, c =

(
ci + cj

)
/2, ci =

√
(∂p/∂ρ)i is the artificial speed of sound,

and βRS = min
(
η(µi + µj)/rij, ρc

)
is the dissipation limiter based on the melt viscosity,

where η is an adjustable parameter set as η = 0.5 in all the numerical examples in this work.
The modified kernel gradient ∇C

i Wij is used to replace the original kernel gradient ∇iWij
in Equations (7) and (8), and is obtained by the following equations [47,48]:
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∇C
i Wij = (As)−1 · ∇iWij, (11)

As = −
N

∑
j=1

mj

ρj
xij ⊗∇iWij, (12)

where (As)−1 is the inverse matrix of correction matrix As. To avoid singularity of As,
the original kernel gradient ∇iWij is still used when the condition number of As is larger
than 1015.

Furthermore, the particle shifting technique [49,50] is used in this work to keep the
particle distribution approximately uniform and remove the tensile instability. The particles’
shift vectors are calculated by the following two equations for inner particles and free
surface particles, respectively:

δxi = −5h|ui|∇Ci∆t for inner particles, (13)

δxi = −5h|ui|(I− ni ⊗ ni)∇Ci∆t for free surface particles, (14)

where ∇Ci = ∑N
j=1 (mj/ρj)∇iWij is the gradient of particle concentration, ∆t is the time

step of numerical integration, I is the 2nd-order unit tensor, and ni = As · ∇Ci/|As · ∇Ci|
is the outer normal unit vector of free surface at the i-th particle, where As is the same
correction matrix as calculated by Equation (12).

The boundary conditions also need to be improved, and a combination of two types
of virtual particles, that is, one layer of wall boundary particles and three layers of dummy
boundary particles, is implemented in this work [14,29]. The velocity of a wall boundary
particle is the same as the velocity boundary condition uwall. The pressure of a wall bound-
ary particle is defined by a weighted average of the surrounding fluid particles’ pressures:

pi =

M
∑

j=1

mj
ρj

pjWij

M
∑

j=1

mj
ρj

Wij

, (15)

where M is the number of fluid particles that have interaction with the i-th wall boundary
particle, and j represents their indices. For each dummy particle, its pressure is the average
pressure of several wall boundary particles nearby. The velocity of this dummy boundary
particle equals to the average extrapolation speed of several wall boundary particles
nearby, where the extrapolation speed of a wall boundary particle ui

ext is defined by the
following equations:

uext
i = 2uwall − uave

i , uave
i =

M
∑

j=1

mj
ρj

ujWij

M
∑

j=1

mj
ρj

Wij

, (16)

where ui
ave is a weighted average of the surrounding fluid particles’ velocities, which is

similar to that in Equation (15). In order to avoid the contradictory velocity conditions
at the intersection of the moving boundary and the fixed wall boundary, Equation (16) is
only used in the normal direction of moving boundary, and ui

ave is used as the tangential
extrapolation speed, thus the moving boundary is equivalently frictionless.

In this work, the filling process is controlled by a uniformly moving boundary that
pushes the melt forward similar to a piston, and the number of particles remains constant
without new particle generation. It should be noted that the details of the above SPH
algorithm improvements can be found in a previous work [30] and some will not be
repeated in this article.
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2.2. Clustered Fixed Slip-Link Model

In this work, the clustered fixed slip-link model (CFSM) [38] is applied to the
micro-scale simulation, which is a coarse-grained version of the discrete slip-link model
(DSM) [36,51]. Similar to the classic tube model [32–35], DSM is a single-chain mean-field
model for the dense, entangled polymer chains, but includes extra information on the
entanglements and chain strands between the adjacent entanglements. Empirically, a DSM
simulation usually contains an ensemble of several thousand independent polymer chains.
The movement of a single chain may seem stochastic, but with statistical mechanics, the
statistical properties of the chain ensemble will show regularity.

In contrast with the molecular dynamics simulation, the polymer chains’ conformation
is described mainly on the scale of entanglements in DSM, and the chain movement is
assumed to involve two different dynamic processes: sliding dynamics (SD) and con-
straint dynamics (CD). SD corresponds to reallocation of Kuhn steps through entangle-
ments with characteristic time τK, and creation and destruction of the entanglements at
the chain ends. CD is the creation and destruction of entanglements due to SD of the
surrounding chains. The DSM conformation variable set of a single chain is defined as
Ω = (Z, {Ni}, {Qi},

{
τCD

i
}
), where Z is the number of chain strands separated by Z − 1

entanglements, Ni and Qi are the number of Kuhn steps and the vector, respectively, of the
chain segment between the (i − 1)th and i-th entanglements, and τi

CD is the characteristic
lifetime of the i-th entanglement related to CD. The conformations are described by the
probability density p(Ω;t), and the equilibrium probability density peq(Ω) is analytic and
can be used to generate the initial chain ensemble configurations efficiently. The dynamics
of p(Ω;t) is as follows:

∂

∂t
p(Ω; t) = L[Ω; (∇u(t))]p(Ω; t), (17)

where operator L[Ω; (∇u(t))] = Leq[Ω] + L f low[Ω; (∇u(t))], L f low = −∑i (∂/∂Qi)·
[(∇u)T ·Qi] is for the influence of flow, and Leq keeps the equilibrium state unchanged.

In addition to the conformation variables in Ω, there are three parameters in the
model: MK, the molecular weight of a Kuhn step, which is determined by chemistry
and non-adjustable; β, which is related to the entanglement density; and τK. By cluster-
ing a maximum number of Kuhn steps, the CFSM is derived. Mathematically CFSM is
identical to DSM with fixed β = 1, and MK, τK replaced by Mc, τc through the relations
Mc ≈ 0.56(β + 1)MK and τc ≈ 0.265β8/3τK. The parameters of CFSM can also be obtained
by matching data of small amplitude oscillatory shear (SAOS) experiments [52]. Compared
to DSM, CFSM can be used for faster simulation of polydisperse polymer melt with higher
average molecular weight, as is the case with most commercial injection molding polymers.
Therefore, CFSM is chosen as the most suitable microscopic simulation method in this work.

2.3. Multiscale Simulation Solution Procedure

It should be noted that a one-way multiscale simulation is used in this work, i.e., the
macro-scale simulation affects the micro-scale simulation but not vice versa. The micro-
scale simulation mainly affects the macro-scale simulation by the statistical local stress
to account for viscoelastic effects of the polymer melt. The influence of viscoelasticity
effects on injection molding filling is generally weak, but the randomness of local stress
can seriously affect the numerical stability of macro-scale simulation and therefore a one-
way multiscale simulation is used. The solution procedure of the multiscale simulation
is summarized as follows. First, for the macro-scale SPH method, all the fluid particles
and boundary particles are generated, and the physical quantity of particles and some
simulation parameters are initialized. For each SPH particle selected for the micro-scale
simulation, a corresponding ensemble of several thousands of polymer chains for CFSM
simulation is initialized and briefly relaxed. Then a predictor-corrector time integration
scheme is used to update the physical quantity of SPH particles qi = (xi, ui, ρi) at the macro
scale, as shown in the following equations:
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qn+1/2
i = qn

i + F(qn
i )

∆t
2

as predictor, (18)

qn+1
i = qn

i +
(

F(qn
i ) + F

(
qn+1/2

i

))∆t
2

as corrector, (19)

where F(qi) denotes to the right-hand sides of governing Equations (9) and (10), qi
n and

qi
n+1 are the macro-scale physical quantity at the nth and (n + 1)th time steps, respec-

tively. Considering the numerical stability, the time step ∆t should be constrained by the
Courant-Friedrichs-Lewy condition, the viscous-diffusion condition and the body force
condition [53]:

∆t ≤ min
∀i

(
0.1

h
|ui|

, 0.125
h2

νi
,

√
h
|fi|

)
, (20)

where νi = µi/ρ is the kinematic viscosity, and |f i| is the acceleration magnitude caused
by external force. Considering the shear thinning polymer melt and the improvements
on the SPH algorithm, the time step sizes of the macro SPH simulations are a bit larger
than that strictly constrained by Equation (20), but still dramatically smaller than the micro
time step size τc. At the end of every macro time step loop, the particle shifting technique
is implemented.

Meanwhile at the micro scale, the CFSM simulation runs at a different time step, but
proportional to the macro-scale time step by a rational number. Therefore, the macro-scale
and micro-scale simulation times are synchronized every certain number of macro-scale
time steps. At such a synchronized time, the SPH calculated macro-scale velocity gradient
of each particle involved in the multiscale simulation is passed to the micro-scale CFSM
simulation of the corresponding polymer chain ensemble. In addition, before the next
synchronized time, the velocity gradient remains constant during the micro-scale simulation
time steps. At each synchronized time, the statistical parameters calculated by micro-scale
CFSM simulation are saved as well as the macro-scale SPH result data. The flowchart of
the solution procedure is shown in Figure 1.
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For higher computational efficiency, an open-source code called gpu_dsm [54] with
CUDA acceleration is applied to the micro-scale CFSM simulation. The multiscale simula-
tion runs on a SITONHOLY IW4210-8G workstation with 2 Intel Xeon CPUs, 128GB RAM
and 8 NVIDIA GTX 1080 GPUs.

3. Numerical Simulation Cases

In this section, the multiscale simulation method introduced above is applied for a
Poiseuille flow and two injection molding cases in two simple long 2D rectangular cavities
with and without a circular obstacle, respectively. The polymer melt properties used in
the numerical examples in this work are from Marlex 9006 HDPE. The macro physical
properties are from the Moldflow material database. The micro properties include the
molecular weight distribution (MWD) and CFSM parameters. Based on work in Ref. [52],
the MWD is described by the generalized exponential (GEX) distribution:

W(M) =
b

Γ
(

a+1
b

)( M
mp

)a+1
exp

[
−
(

M
mp

)b
]

, (21)

where a, b and mp are parameters obtained by fitting the gel permeation chromatography
(GPC) experimental data [55], and Γ(x) is gamma function. The CFSM parameters are the
same as that of PE12 sample in Ref. [52], as they depend only on temperature for the same
polymer material, and the same temperature as PE12 sample is set in the simulation in this
work. All the properties of Marlex 9006 HDPE are listed in Table 1. The smooth length is
set as h = 1.5∆x, where ∆x is the initial particle spacing. Every CFSM simulation has an
ensemble of 1000 polymer chains.

Table 1. The properties of Marlex 9006 HDPE.

Parameter Value

SPH

Initial melt density, ρ0 (kg/m3) 742.93
Melt temperature, T (K) 463.15

Zero-shear viscosity, µ0 (Pa·s) 1254.18
Critical stress level at the transition to shear thinning, τ* (Pa) 192,149

Power law index in the high shear rate regime, n 0.2411
Compressibility parameter of the Tait model, B (Pa) 7.9344 × 107

GEX
Shape parameter, a 1.39
Shape parameter, b 0.26

Localization parameter, mp (g/mol) 20.54

CFSM
Molecular weight of a Kuhn step cluster, Mc (g/mol) 1089.12

Characteristic time for a Kuhn step cluster, τc (s) 1.5 × 10−7

3.1. Poiseuille Flow

During the injection molding filling process, the velocity distribution on a section
perpendicular to the fill flow direction approximates a Poiseuille flow. The particle ar-
rangement of the Poiseuille flow example in this section is shown in Figure 2. The initial
particle spacing ∆x = 1.0 × 10−4 m. Excluding the boundary particles (represented by
squares), the melt particles have a total of 49 rows and 20 columns, including both the SPH
particles and multiscale particles, which are all involved in the macro SPH simulation. The
body acceleration for driving the Poiseuille flow f = 3.3 × 105 m/s2 to the positive x-axis.
Periodic boundary conditions are imposed in the x direction. Due to the homogeneity of
Poiseuille flow in the x direction, only one column of particles is involved in the micro
CFSM simulation (represented by grey circles as multiscale particles in Figure 2). The
total simulation time is 2.25 × 10−3 s. To match the micro CFSM time step τc, the macro
SPH time step ∆t = 7.5 × 10−9 s = τc/20, and the simulation runs a total of 300,000 macro
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time steps. The macro and micro simulations are synchronized every 200 macro (10 micro)
time steps.
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The simulated velocity in the x direction U, average number of entanglements Zave
and orientation degree S distributions in the y direction of Poiseuille flow at times t = 0 s,
1.875 × 10−4 s, 3.75 × 10−4 s, 7.5 × 10−4 s and 2.25 × 10−3 s are shown in Figure 3a–c,
respectively. The average number of entanglements Zave = 〈Z〉, where 〈A〉 represents an av-
erage of A over the polymer chains in the ensemble of the corresponding CFSM simulation.
The orientation degree S =

〈
3 cos2 θ − 1

〉
/2 [40], where cos θ = Qave ·Q/(|Qave| · |Q|),

and Qave = 〈sgn(Qx) ·Q〉, sgn is the sign function, and Qx is the x coordinate of the chain
segment vector Q. As seen in Figure 3a, U distribution in the y direction reaches steady
state rapidly and has a plateau area far from the wall boundary due to the shear thinning
of the polymer melt. The steady state U distribution in the y direction shows that the
particle closest to the boundary has the highest shear rate, and the farther away from the
boundary, the smaller the shear rate of the particle is. The particles in the plateau area of U
distribution have insignificant shear rate. As seen in Figure 3b,c, Zave and S of the particles
in the plateau area of U distribution have negligible change at all times. At a certain time,
the particle closest to the boundary has the lowest Zave, and the farther away from the
boundary, the higher the Zave of the particle is, which is reasonably opposite to the trend
of shear rate change due to the polymer chain disentanglement under shearing. As for
the orientation degree S, the overall trend is the same as the shear rate change due to the
polymer chain orientation under shearing, but at times 7.5 × 10−4 s and 2.25 × 10−3 s, the
orientation degree S of several particles near the boundary are similar to each other.
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Figure 3. The multiscale simulation results of (a) velocity in x direction, (b) average number of
entanglements and (c) orientation degree distributions in the y direction of Poiseuille flow at different
times as indicated.

To further analyze the simulation results, the changes in velocity in x direction U,
average number of entanglements Zave and orientation degree S over time of Poiseuille flow
at y = 0.1 mm, 0.4 mm, 0.7 mm, 1.0 mm and 1.3 mm are shown in Figure 4a–c, respectively.
The y coordinates of the chosen particles are from closest to the lower wall boundary with
the highest shear rate to near the middle of the two wall boundaries with low shear rate.
As seen in Figure 4a, U at the chosen y coordinates basically reaches steady state at time
t = 5 × 10−4 s, thus the states of the particles are close to pure shear at different shear
rates. As seen in Figure 4b, Zave of a certain particle decreases over time under shearing
and decreases faster with higher shear rates. However, Zave eventually decreases to a
minimum and remains almost constant, which indicates the equilibrium state of shear
disentanglement. The simulation of Zave change over time at y = 1.3 mm in Figure 4b is
specifically extended to capture its steady state. Zave of a particle with lower shear rate
decreases to a higher minimum. As seen in Figure 4c, S of a certain particle first increases
over time under shearing and increases faster with higher shear rates. For a particle with
low shear rate, its S eventually increases to a maximum remains almost constant. While for
a particle with high shear rate, its S first increases to a maximum, and then decreases to a
certain value and remains almost constant, which indicates relaxation in shear orientation.
S of a particle with higher shear rate increases to a higher maximum, but S of the chosen
particles all decrease to a similar value.
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Figure 4. The multiscale simulation results of changes in (a) velocity in x direction, (b) average
number of entanglements and (c) orientation degree over time of Poiseuille flow at different y
coordinates as indicated.

The above Poiseuille flow occurs in the injection molding filling of most thin-walled
products. The micro Zave and S results indicate that polymer melt close to the cavity wall
is well disentangled and oriented while melt in the center is not. This variance causes the
skin-core structure along the thickness direction in a thin-walled injection molded product.

3.2. Injection Molding Filling in a Simple Long Rectangular Cavity

The rectangular cavity is one of the simplest cavities. It can be regarded as the
simplified 2D model of a plate or an injection runner. The sketch of the simple long
rectangular cavity in this section is shown in Figure 5. The black lines indicate the fixed
boundaries as the cavity inner walls. The grey line indicates the moving boundary as the
injection piston, and its velocity is constant at 10 m/s along the positive x-axis. The grey
area is initially filled with fluid particles as the polymer melt. The initial particle spacing
∆x = 1.25 × 10−4 m, hence there are a total of 39 rows and 80 columns of fluid particles,
which are all involved in both macro SPH and micro CFSM simulations. It takes 0.005 s for
the melt to fully contact the right cavity wall as estimated. To match the micro CFSM time
step τc, the macro SPH time step ∆t = 1.5 × 10−8 s = τc/10, and the simulation requires a
total of 333,600 macro time steps. The macro and micro simulations are synchronized every
300 macro (30 micro) time steps.
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Figure 5. The sketch of the simple long rectangular cavity (unit: mm). 
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Figure 5. The sketch of the simple long rectangular cavity (unit: mm).

The simulated velocity magnitude, track line quantity, average number of entangle-
ments Zave and orientation degree S distributions of injection molding in the simple long
rectangular cavity at times t = 2.25 × 10−4 s, 1.62 × 10−3 s, 3.33 × 10−3 s and 4.95 × 10−3 s
are shown in Figure 6a–d, respectively. The animations corresponding to the above results
can be found in Supplementary Material Figures S1–S4. At the beginning of the injection,
Zave and S near the cavity wall rapidly decrease and increase, respectively, which is similar
to the previous Poiseuille flow example. During the injection process, the velocity distribu-
tion seems to remain stable in the polymer melt most of the time. The track line quantity
of the rightmost column of melt particles at t = 0 s is defined as zero. Then the track line
quantity of each column of particles is increased by one from right to left and remains
constant for each particle during the simulation. As seen in the track line quantity result,
melt tumbling occurs near the melt front (free surface) and the injection piston (moving
boundary), and the micro Zave and S results are also affected. Zave and S in the center area
of the melt changes little at the beginning of the injection. As the melt near the cavity wall
gradually tumbles to the center area, it experiences shearing near the cavity wall and the
piston. Hence the melt with lower Zave and higher S gradually occupies the center area.
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For a more detailed view of the simulation results, 3 melt particles are chosen and
their traces with the injection piston (x = 0 in Figure 7a) as the reference frame are shown
in Figure 7a, and their changes in average number of entanglements Zave and orientation
degree S over time are shown in Figure 7b,c, respectively. At time t = 0 s, all 3 chosen
particles are at x = 0.005 m as marked by the 3 crosses in Figure 7a, and particle 1 abuts
against the inner cavity wall, particle 3 is at the center of the melt, and particle 2 is at the
midpoint of the above two. During the injection, particle 1 remains against the inner wall
and is subjected to intense shearing until it moves close to the piston, meanwhile its Zave
is reduced to a minimum, and its S increases to a maximum and then decreases due to
relaxation. Then particle 1 gradually tumbles to the middle of the injection piston and
moves away from it, the shearing should be weak near the frictionless piston, but two flows
converge near the middle of the piston, which causes Zave decreases slightly after a rapid
increase while S does the opposite. After that, particle 1 gradually moves close to the melt
center, and the shearing is weak away from the inner wall, Zave increases slowly and S
remains at a low value with slight drop. As for particle 2, as it tumbles close to the inner
wall, it is subjected to shearing weaker than particle 1, hence it has a slower rate of Zave
decrease and S increase and relaxation. Then as particle 2 moves towards the piston, its
Zave and S almost remain constant. Next, as particle 2 tumbles away from the inner wall, it
is subjected to weakened shearing, and its Zave increases a bit but remains lower than that
of particle 1, its S decreases but remains slightly higher than that of particle 1. Particle 3
stays in the middle of the y direction in the melt, and slowly move to the melt front because
of the fountain flow effect. There is tensile force near the melt front, hence Zave of particle 3
decreases due to stretching orientation, and S of particle 3 becomes negative, indicating
the tendency of biaxial orientation of polymer chains. As particle 3 moves closer to the
melt front, it has a greater degree of stretch orientation, and its Zave decreases more slowly
and tends to be constant, and its S become positive, indicating the polymer chains being
uniaxially oriented again. At last, after the melt front contacts the right cavity wall, particle
3 encounters transient pressure and shear, and its Zave suddenly decreases, and its S has a
big fluctuation.
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simple long rectangular cavity. 

Figure 7. The multiscale simulation results of (a) particle traces and the changes in (b) average
number of entanglements and (c) orientation degree over time of 3 chosen melt particles in the simple
long rectangular cavity.
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In contrast with the Poiseuille flow example, the above flow patterns mainly occur
near the melt front and in the barrel of an injection molding machine. The melt near the
melt front is also disentangled and oriented but less than that close to the cavity wall. When
the injection molding filling stage is over, the stretching-oriented melt front may cause
shrinkage and warpage at the end edge of a product. As indicated above, the sheared melt
near the injection piston can tumble to the middle, and this part of melt in the barrel may
enter the runner system or even the product cavity through the injection gate. To prevent
this part of the melt from entering the product cavity, the runner system should be long
enough and have corners.

3.3. Injection Molding Filling in a Rectangular Cavity with a Circular Obstacle

In order to further analyze the evolution of polymer chain conformation in injection
molding, on the basis of the simple rectangular cavity in Section 3.2, a small circular obstacle
is added to the center of the cavity, and the multiscale simulation results in this section can
be compared with that in Section 3.2. The sketch of the rectangular cavity with a circular
obstacle is shown in Figure 8. The circular obstacle is regarded as fixed wall boundary. The
velocity of the injection piston, the initial particle spacing, and the simulation macro and
micro time step and synchronization are just the same as in Section 3.2.
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Figure 8. The sketch of the rectangular cavity with a circular obstacle (unit: mm). 
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Figure 8. The sketch of the rectangular cavity with a circular obstacle (unit: mm).

The simulated velocity magnitude, track line quantity, average number of entangle-
ments Zave and orientation degree S distributions of injection molding in the rectangular
cavity with circular obstacle at times t = 1.62 × 10−3 s, 2.43 × 10−3 s, 3.33 × 10−3 s,
4.32 × 10−3 s and 4.95 × 10−3 s are shown in Figure 9a–d, respectively. The animations
corresponding to the above results can be found in Supplementary Material Figures S5–S8.
The results at time t = 1.62 × 10−3 s are the same as in Figure 6, as the melt is not in contact
with the obstacle at that time. After the melt contacts with the obstacle, the melt is split
in half, and then rapidly merged back together. After the melt passes the obstacle, the
shape of the melt front changes significantly, and tends to change back to its original shape
as the injection progresses. Furthermore, more melt near the melt front (indicated by red
color in Figure 9b) tumbles to the cavity wall due to the fountain flow effect compared
with the result in Section 3.2 without obstacle in Figure 6. When the melt is passing the
obstacle, the velocity of the melt on the upper and lower sides of the obstacle increases.
However, due to the characteristic of Poiseuille flow, strong shearing occurs only close to
the cavity walls and the obstacle, thus two banded areas on the upper and lower sides
of the obstacle and symmetrical about the obstacle with higher Zave and lower S can be
seen in Figure 9c,d, respectively, at time t = 3.33 × 10−3 s. Then traces of the two banded
areas are still evident in the Zave result in Figure 9c but become blurred in the S result in
Figure 9d at time t = 4.32 × 10−3 s due to relaxation.
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Figure 9. The multiscale simulation results of (a) velocity magnitude, (b) track line quantity, (c) aver-
age number of entanglements and (d) orientation degree distributions of injection molding in the
rectangular cavity with circular obstacle at different times as indicated.

For comparison, the multiscale simulation results of the same 3 chosen particles
as in Figure 7 are plotted. Their traces with the injection piston (x = 0 in Figure 10a)
as the reference frame are shown in Figure 10a, and their changes in average number
of entanglements Zave and orientation degree S over time are shown in Figure 10b,c,
respectively. Before the melt contacts with the obstacle, the results are the same as in
Section 3.2. As seen in Figure 10a, traces of all the 3 chosen particles are slightly affected
by the obstacle. Particle 1 is closest to the obstacle when it just tumbles to the middle of
the injection piston and is moving away from it. As particle 1 and the obstacle are still a
certain distance away, the flow stress particle 1 is subjected to are not very large, and Zave of
particle 1 decreases a bit and then continuously increases when particle 1 moves away from
the obstacle. Meanwhile S of particle 1 has a small fluctuation, which indicates that the flow
stress particle 1 is subjected to is normal stress dominated with little shearing. Compared
to results in Figure 7, particle 2 is pushed closer to the inner wall when the melt passes
the obstacle, and then tumbles more away from the inner wall, hence Zave decreases a bit
more when the melt passes the obstacle and then increases more, while S has the opposite
tendency. As for particle 3, as it stays in the middle of the y direction in the melt, particle 3
hits the obstacle head-on, and then moves close to the obstacle and eventually moves away
from the obstacle with one half of the split melt, and then moves back to the middle as the
melt rapidly merged back together. When particle 3 moves close to the obstacle, particle 3
is subjected to intense shearing, and Zave rapidly decreases to minimum. S of particle 3
first instantaneously decreases to negative due to transient pressure when particle 3 hits
the obstacle, and then rapidly increases to maximum. After particle 3 moves away from
the obstacle, Zave rapidly increases, and S rapidly decreases. Due to the influence of the
obstacle on the fountain flow at the melt front, particle 3 moves closer to the melt front
than the result in Figure 7a, and is subjected to more intense stretching, which causes Zave
decrease and S increase. At last, after the melt front contacts the right cavity wall, Zave of
particle 3 further decreases, while S does the opposite.
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Figure 10. The multiscale simulation results of (a) particle traces and the changes in (b) average 

number of entanglements and (c) orientation degree over time of 3 chosen melt particles in the 

rectangular cavity with circular obstacle. 
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number of entanglements and (c) orientation degree over time of 3 chosen melt particles in the
rectangular cavity with circular obstacle.

Obstacles are common in injection molds and correspond to features such as holes in
injection molded parts. As indicated above, melt close to the obstacle is subjected to intense
shearing and briefly split in half after passing through the obstacle. If the obstacle is away
from the end edge of the product cavity, the influence of obstacle on the melt front will
gradually weaken. However, weld line may occur in the product where melt is briefly split
in half after passing through the obstacle, and cause appearance and performance issues.

4. Conclusions

In this work, a multiscale simulation of injection molding filling flow is implemented
in various examples. The multiscale simulation approach is established by combining an
improved SPH method and CFSM. A modified low-dissipation Riemann solver with some
other improvements is used in the SPH method to achieve the macro injection molding
filling simulation. The GPC experiment is carried out to obtain the GEX distribution
parameters used in the CFSM. For each simulation example, the macro velocity results,
and the micro average number of entanglements Zave and orientation degree S results
of multiscale simulation are demonstrated and discussed. In the two injection molding
filling examples, the above results together with the tracking line quantity results of the
two examples are compared. Some changing trends of Zave and S are obtained. In the
Poiseuille flow example, distribution of velocity in the x direction reaches steady state
rapidly with high-shear steep area near the wall boundary and a low-shear plateau area
far from the wall boundary. Zave and S change negligibly in the plateau area. At a higher
shear rate, Zave decreases faster and eventually reaches equilibrium at a smaller minimum,
and S increases faster and reaches a higher maximum, but then decreases when the shear
rate is too high, and eventually equilibrates to a similar value regardless of the shear rate.
The variance in the plateau area and near the wall boundary causes the skin-core structure
along the thickness direction in a thin-walled injection molded product. In the example of



Polymers 2022, 14, 4334 16 of 18

injection molding filling in a simple long rectangular cavity, melt tumbling occurs near the
melt front and the injection piston. Zave and S in the melt center area changes little at the
beginning of the injection. As the melt near the cavity wall gradually tumbles to the center
area, the sheared melt with lower Zave and higher S gradually occupies the center area.
The runner system should be long enough with corners to prevent the above sheared melt
from entering the product cavity. The stretching-oriented melt front may cause shrinkage
and warpage at the end edge of a product. In the example of injection molding filling in a
rectangular cavity with a circular obstacle, the melt is split in half after contact with the
obstacle, and then rapidly merged back together. After the melt passes the obstacle, the
shape of the melt front tends to change back to its original shape as the injection progresses,
and more melt near the melt front tumbles to the cavity wall due to the fountain flow
effect compared with the example of injection filling in a simple long rectangular cavity
without obstacle. Furthermore, multiscale simulation results of 3 chosen particles in the
two injection molding filling examples are compared. The comparison indicates that the
obstacle has little effect on the overall trace of particles, but obviously disturbs the changing
trends of Zave and S. The closer the particle is to the obstacle, the more the result is affected.
Weld line may occur in the product where melt is briefly split in half after passing through
the obstacle, and the influence of obstacle on the melt front will gradually weaken when
the melt front moves far away.

In this work, all the multiscale numerical examples are 2D isothermal problems. In
the future work, the macro SPH method can be extended to 3D problems and incorporate
heat conduction and phase transitions to simulate injection molding packing and cooling
processes after filling stage. More rheological experiments are needed to extend the CFSM
parameter database to various polymer melts at different temperatures. The micro statistical
local stress can be transferred back to the macro simulation to enable a complete multiscale
simulation of viscoelastic polymer melt.
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//www.mdpi.com/xxx/s1, Figure S1: Animation of velocity magnitude distribution over time
of injection molding in the simple long rectangular cavity; Figure S2: Animation of track line
quantity distribution over time of injection molding in the simple long rectangular cavity; Figure S3:
Animation of average entanglement number distribution over time of injection molding in the
simple long rectangular cavity; Figure S4: Animation of orientation degree distribution over time of
injection molding in the simple long rectangular cavity; Figure S5: Animation of velocity magnitude
distribution over time of injection molding in the rectangular cavity with circular obstacle; Figure S6:
Animation of track line quantity distribution over time of injection molding in the rectangular cavity
with circular obstacle; Figure S7: Animation of average entanglement number distribution over
time of injection molding in the rectangular cavity with circular obstacle; Figure S8: Animation
of orientation degree distribution over time of injection molding in the rectangular cavity with
circular obstacle.
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