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A B S T R A C T

Background: The recently-proposed National Institute on Aging and Alzheimer’s Association research framework
organizes Alzheimer’s disease (AD) biomarkers based on amyloid/tau/neurodegeneration (AT(N)). This study
investigated the mediating effect of structural change in brain MRI on changes in cognitive function according to
initial AT(N) profiles.
Methods: We included 576 subjects (cognitively unimpaired (N = 136), mild cognitive impairment (N = 294),
dementia (N = 146)) from the Alzheimer’s disease Neuroimaging Initiative study. The parallel-process latent
growth curve model was applied to test the mediational effect of cortical thickness growth trajectory between
the initial AT(N) profiles and cognitive growth trajectory.
Results: In Alzheimer’s continuum, only the A + T + (N)+ profile showed a mediational effect of the cortical
thickness growth trajectory. A + T − (N)− was not sufficient to induce direct or indirect effects on cognitive
dysfunction, and A + T + (N)− showed a significant direct path from an altered cortical thickness to cognitive
decline.
Conclusion: The sequential effect between changes in brain MRI and cognition varied by baseline AT(N) profile,
suggesting the dynamic changes in the relationships among biomarkers in the current cascade model.

1. Introduction

Alzheimer’s disease (AD) is the most common cause of cognitive

impairment among the elderly. Recently, the pathophysiologic se-
quential changes in amyloid-β (Aβ), pathologic tau, and neurodegen-
eration were conceptualized as the [AT(N)] system constituting a new
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biomarker definition of AD (Jack et al., 2018).
The cerebrospinal fluid (CSF) has been used to detect and track Aβ,

pathologic tau, and neurodegeneration in AD across clinical stages
(Olsson et al., 2016). The best identified example includes CSF mea-
surement of the 42-aminoacid form of Aβ (Aβ1-42), which is found at
low concentration in subjects with AD because of cortical amyloid de-
position, phosphorylated tau (P-tau) at high concentration reflecting
cortical tangle formation (Seppälä et al., 2012), and total tau (T-tau) at
high concentration due to cortical neuronal injury (de Souza et al.,
2012). According to the AT(N) system, CSF Aβ abnormality reflects
“Alzheimer’s pathophysiologic change,” CSF Aβ and P-tau abnormality
reflects “AD,” and the neurodegeneration is indicated by abnormal T-
tau (Jack et al., 2018). The National Institute on Aging and Alzheimer’s
Association (NIA-AA) also adopted atrophy observed on structural MRI
as a neurodegenerative marker of AD along with hypometabolism on
[18F]-fluorodeoxyglucose (FDG)-positron emission tomography (PET)
(Jack et al., 2018). Among the neurodegenerative markers, brain MRI
has been consistently reported to be effective in detecting structural
change in dementia (Jack et al., 1997) as well as predicting MCI pro-
gression (Visser et al., 1999), but the temporal effects of these bio-
markers on cognitive decline have not been studied with the media-
tional hypothesis in a multimodal framework.

The “modified amyloid cascade hypothesis” involves sequential
change from amyloidosis, pathologic tau, and neurodegeneration to
cognitive decline (Jack and Holtzman, 2013). Some studies have at-
tempted to explain the possible causal relationships between these
biomarkers and their effect on cognition using longitudinal mediation
models (Fletcher et al., 2018; Mattsson et al., 2015; Villeneuve et al.,
2014). To test and explore the hypothesis on the role of biomarkers in
terms of the AT(N) system, these modeling approaches can be applied
in the sequence of events. The current study used a parallel-process
latent growth curve model (PPLGCM) (Cheong et al., 2003) to identify
the mediating effects of change in an AD-signature cortical region of
interest for pathways between AT(N) profiles determined by CSF
components of Aβ, t-tau and p-tau and cognitive change, in each of the
Alzheimer's continuum biomarker profiles (i.e. A+) in the AT(N)
schema. Our hypothesis was that the mediating role of structural MRI in
the assumed sequential chain would vary according to the different
AT(N) profiles at baseline.

2. Methods

2.1. Subjects

Data used in this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was started in 2003 as a public–private partnership, by Principal
Investigator Michael W. Weiner. The principal aim of ADNI has been to
investigate whether serial MRI, PET, other biological markers, neu-
ropsychological and clinical assessments can be combined to measure
the progression of MCI and early AD. For the latest information, see
www.adni-info.org.

Data used in this study were downloaded from the ADNI database
on the 21th January 2018. The population for this study included all
subjects with brain MRI measures (up to the 24-month) and neu-
ropsychological measures (up to the 36-month visit) for at least two
time points and obtainable baseline CSF measures. Table 1 summarizes
ADNI diagnostic criteria for subjective with cognitively unimpaired
(CU), MCI and dementia (Petersen et al., 2010). Subjects with cogni-
tively unimpaired (CU) are distinguished from MCI by Clinical De-
mentia Rating score of 0 versus 0.5, respectively. Diagnosis of MCI was
made based on the presence of objective memory impairment without
meeting the criteria for dementia. All participants had a Mini Mental
State Examination (MMSE) score of 24 to 30, a global Clinical Dementia
Rating (CDR) score of 0.5, a CDR memory score of 0.5 or higher, and a
score that indicated impairment on the delayed recall of Story A of the

Wechsler Memory Scale-Revised (≥16 years of education:< 11;
8–15 years of education: ≤9; 0–7 years of education: ≤6). Diagnosis of
dementia was made based on the presence of objective memory im-
pairment and all subjects had a MMSE score of between 20 and 24, CDR
score of 0.5 or 1, and a score that indicated impairment on the delayed
recall of Story A of the Wechsler Memory Scale-Revised (≥16 years of
education: ≤8; 8–15 years of education: ≤4; 0–7 years of education:
≤2). A final total of 576 subjects from the ADNI-1/GO/2 cohort were
included in this study.

2.2. MRI measures

All participants were imaged using a 1.5-T and 3-T MRI scanner
(GE, Philips or Siemens). Data were collected at multiple sites with a
standardized MRI protocol that was made by evaluating and comparing
3D T1-weighted sequences for morphometric analyses. As longitudinal
mediator, MRI data were taken at five time points: baseline, month 6,
month 12, month 18, month 24 and month 36. MRI acquisition and
processing were performed according to standard protocol(Jack et al.,
2008).

Regional volumes were estimated automatically by the Freesurfer
image analysis tool obtainable freely for download (http://surfer.nmr.
mgh.harvard.edu). The ADNI1 1.5 T MR data were run on Freesurfer
version 4.3, and 3 T MR data of ADNI1 and ADNI2 were run on
Freesurfer version 5.1. Each scan was segmented in accordance with an
atlas defined by Freesurfer (Fischl and Dale, 2000). We calculated mean
cortical thickness of the AD-signature area (Dickerson et al., 2009) that
is composed of eight bilateral regions including the medial temporal
gyrus, temporal pole, inferior temporal gyrus, and superior frontal
gyrus. The average cortical thickness in these regions were computed
that each subject had a single value representing AD-signature of cor-
tical thickness (Busovaca et al., 2016).

2.3. CSF biomarker measures

The standardized protocol for CSF analysis and sample collection in
ADNI is available elsewhere (Shaw, 2008). In brief, after executing the
quality control studies and organizing the validity of the platform, the
baseline CSF Aβ1–42, t-Tau and p-Tau181p were measured by In-
nogenetics (INNO-BIA AlzBio3, Ghent, Belgium) immunoassay kit and
the multiplex xMAP Luminex platform. This system can measure the
biomarkers simultaneously in the same sample in ADNI subjects and in
an age-matched cohort of autopsy-confirmed AD cases (Shaw et al.,
2009).

2.4. Classification of AT(N) profiles

In current study, AT(N) profiles were classified by CSF abnormality
with CSF Aβ1–42 of more than 192 pg/ml as A+, p-Tau181p more than
23 pg/ml as T + and t-Tau more than 93 pg/ml as N+(Shaw et al.,
2009). Baseline means and standard deviations for raw CSF variables
and AT(N) profiles based on them are presented in Table 2.

2.5. Neuropsychological measures

Longitudinal neuropsychological data such as MMSE, Alzheimer’s
Disease Scale Cognitive Subscale (ADAS-cog) (Rosen et al., 1984), and
CDR-Sum of Boxes score were evaluated at baseline. Among them,
ADAS-cog was used as longitudinal outcome measure and taken at five
time points: baseline, month 6, month 12, month 18, month 24 and
month 36. Compared with the MRI mediation process, measured from
baseline to month 24, the outcome changes of ADAS-cog increased to
include another year to attenuated issues regarding concurrent causa-
tion (Salthouse, 2011).
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2.6. Statistical analysis

As displayed in Fig. 1, the mediational process was modeled by
associating baseline AT(N) profiles by CSF measures (predictors) and
latent growth factors for MRI measures (mediator) and cognitive
function also indexing changes over time(outcome). By baseline AT(N)
profiles using initial CSF values, we compared each of Alzheimer’s
continuum profiles (A + T − (N)−, A + T + (N)−, A + T + (N)+)
with normal AD biomarker (A − T − (N)−) as reference profile to
calculate β coefficients. To improve the validity of the mediation ana-
lysis, all models were controlled for the following covariates: initial
clinical diagnosis (normal control as the reference), gender, age at
baseline, educational level, and ApoE status (coded as ε4 present versus
absent).

A structural equation model approach to build and evaluate LGCMs
(Meredith and Tisak, 1990; Muthén and Curran, 1997; Singer and
Willett, 2003; Tucker‐Drob and Salthouse, 2013) was used for differ-
entiating the direct versus indirect effects of the initial AT(N) profiles
by CSF abnormality (CSF Aβ1–42 of less than 192 pg/ml as A+, p-
Tau181p more than 23 pg/ml as T+ and t-Tau more than 93 pg/ml as N

+) on the potential mediating effects of changes in cortical thickness
and the rate of decline in cognitive function comprising the causal
pathway of a parallel change process. The simultaneous modeling of the
growth trajectories of the mediator and outcome as well as of the
mediational process was performed with the PPLGCM (Cheong et al.,
2003; MacKinnon et al., 2004). The hypothesis regarding the media-
tional or indirect effects was tested by parameter estimates obtained
from the effect of the initial AT(N) profiles on the growth rate of the
cortical thickness and the growth rate of the cognition by a two-wave
PPLGC mediation model (Fig. 1). The growth variables included vectors
for the slope (Muthén and Curran, 1997) on the pathway of the AT(N)
profiles → AD-signature slope → ADAS-cog slope. By using the vector of
repeated measures of individuals over the timepoints for the MRI
mediator and the cognitive outcome, the mediational effect of the in-
itial AT(N) profiles by CSF measures through the MRI slope was βa*βb
and the direct effect on the cognitive slope was βc. Both effects are
representative of linear change over the study period and conditional
on the combined effect of all the predictors in the model.

LGC modeling can define changes over time with regard to un-
observed latent factors, estimate parameters concurrently, and include

Table 1
Classification of ADNI to distinguish CU, MCI and dementia.

CU MCI Dementia

Subjective memory
complaint

None Yes Yes

MMSE score ≥24 ≥24 Between 20 and 24 (Exceptions for 24 and
25 for participants with less than 8 years of
education)

Logical memory score ≥9 for 16 or more years of education
≥5 for 8–15 years of education
≥3 for 0–7 years of education

≤8 for 16 or more years of education
≤4 for 8–15 years of education
≤2 for 0–7 years of education

≤8 for 16 or more years of education
≤4 for 8–15 years of education
≤2 for 0–7 years of education

CDR CDR = 0
Memory Box score must be 0

CDR = 0.5
Memory Box score of at least 0.5

CDR = 0.5 or 1.0

General cognition and
functional status

Cognitively normal based on the absence of
significant impairment in cognitive functions or
activities of daily living

General cognition and functional performance
sufficiently preserved such that a diagnosis of
dementia cannot be made

NINCDS/ADRDA criteria for probable AD

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; CU, cognitively unimpaired; MCI, mild cognitive impairment; MMSE, Mini-Mental State
Examination; CDR, The Clinical Dementia Rating Scale; NINCDS/ADRDA, National Institute of Neurological and Communication Disorders and Stroke/Alzheimer’s
Disease and Related Disorders Association. This table was adapted and modified from the procedure manuals for ADNI1, ADNI GO, and ADNI 2 available at http://
adni.loni.usc.edu/methods/documents/.

Table 2
Descriptive statistics of study variables at baseline.

CU
(N = 136)

MCI
(N = 294)

Dementia
(N = 146)

Total
(N = 576)

p

Demographic characteristics
Age 74.7 ± 5.5 73.4 ± 7.2 74.4 ± 7.8 74.0 ± 7.0 0.776
Male, n (%) 71 (52.2) 184 (62.6) 81 (55.5) 336 (58.3) 0.092
Education in years 16.0 ± 2.8 15.9 ± 2.9 15.3 ± 3.0 15.8 ± 2.9 0.034
APOE ε4 carrier, n (%) 37 (27.2) 166 (56.5) 118 (73.9) 311 (54.0) <0.001
Cognition
ADAS-cog-13 10.0 ± 4.6 17.2 ± 6.8 29.5 ± 7.9 18.6 ± 9.6 <0.001
CSF biomarkers
Aβ 190.9 ± 54.7 158.3 ± 48.3 134.8 ± 33.7 160.0 ± 50.6 <0.001
p-Tau 25.4 ± 14.8 39.7 ± 23.4 49.5 ± 27.5 38.8 ± 24.4 <0.001
t-Tau 64.7 ± 28.8 98.2 ± 57.1 126.7 ± 60.8 97.5 ± 57.1 <0.001
AT(N) profiles, n(%) <0.001
- A − T − (N)− 65 (47.8) 63 (21.4) 5 (3.4) 133 (23.1)
- A + T − (N)− 28 (20.6) 26 (8.8) 10 (6.9) 64 (11.1)
- A + T + (N)− 25 (18.4) 82 (27.9) 33 (22.6) 140 (24.3)
- A + T+(N)+ 18 (13.2) 123 (41.8) 98 (67.1) 239 (41.5)
Mean cortical thickness
AD signature 2.60 ± 0.16 2.44 ± 0.20 2.27 ± 0.22 2.44 ± 0.22 <0.001

Abbreviations: CU, cognitively unimpaired; MCI, mild cognitive impairment; APOE, apolipoprotein E; MMSE, Mini-Mental State Examination; ADAS-cog, Alzheimer’s
Disease Assessment Scale Cognitive subscale; CDR-SB, The Clinical Dementia Rating Scale Sum of Boxes; CSF, cerebrospinal fluid; Aβ, beta amyloid; p-Tau, phos-
phorylated tau; t-Tau, total tau.
Values are presented as mean ± SD unless otherwise stated.
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measurement errors that result in complex multivariate modeling
(Rovine and Molenaar, 2001; Singer and Willett, 2003). PPLGC mod-
eling with a univariate two-factor LGCM was used to examine the
presence of change in the MRI mediator and cognitive outcome and
whether the AT(N) profile could change these trajectories. This latent
growth model estimated MRI cortical thickness and cognitive measures
with two latent factors defining the intercept and the slope of the
“growth” curve, respectively. The control variables were also selected
in these models. To explore the marginal growth trends and growth
shape, subject-specific mean functions were plotted and time-based
LGCM was adopted. After examining the shape of the trajectories and
confirming growth, the models were combined to simultaneously in-
corporate two outcomes and the longitudinal mediational effects of MRI
measures estimating the parameters.

The significance of the mediational effect was examined using 95%
bias-corrected bootstrapped asymmetric confidence intervals (CIs) in
the PPLGCMs (Preacher and Hayes, 2008). Bias-corrected bootstrapped
asymmetric CIs do not require the mediational effect estimate sampling
distribution to be normal (MacKinnon et al., 2004). All mediation was
tested with 10,000 bootstrap replications. If the spectrum of the 95%
bias-corrected CI for the given point estimate did not include 0, the
effect was considered significant. The normal approximation of the CIs
was investigated for all single direct paths in the model.

The hypothesized models were assessed with multiple fit indexes
including the root mean square error of approximation (RMSEA)
(Bollen and Long, 1993), the comparative fist index (CFI) (Bentler and
Bonett, 1980) and the Tucker-Lewis Index (TLI) (Tucker and Lewis,
1973). The models with RMSEA lower than 0.08 and with CFI and TLI
values higher than 0.9 were regarded to adequately fit the data (Hoyle,
1995). Residual diagnostics procedures were performed to assess pos-
sible model misspecification (Wang et al., 2005). To analyzing long-
itudinal measurement change of ADAS-Cog across AT(N) profiles, fac-
torial invariance was assessed using a confirmatory factor analysis
(CFA). Establishing factorial invariance consists of a hierarchy of levels
that include configural, weak, strong, strict and structural invariance,
which are evaluated in a measurement model (Horn and McArdle,
1992; McArdle, 2009; Meredith, 1993; Muthen and Muthen, 2017;
Widaman and Reise, 1997).

Evidence of invariance between the less restrictive model (e.g.,
configural invariance model) and more restrictive model (e.g., weak
measurement invariance models) were based on recommendations from
the literature (Chen, 2007; Cheung and Rensvold, 2002; Wang and
Wang, 2019). The configural model was then used to compare against
the more restrictive measurement invariance. The values of the change
in CFI (△CFI) smaller than or equal to 0.01 indicates that the hy-
pothesis of invariance should not be rejected. For △TLI, the critical
value is 0.01. The Chi-square difference test was also reported for each
comparison. Descriptive analyses were analyzed using R (Version 3.5.0,
The R Foundation for Statistical Computing, Vienna, Austria; 64-bit
platform). Growth curve model analyses were performed with Mplus,
Version 8.3 (Muthen and Muthen, 2017) using a full information
maximum likelihood estimator.

3. Results

As presented in Table 2, the final sample included 576 subjects with
available data, diagnosed at study entry as CU (N = 136), MCI
(N = 294), and Dementia (N = 146). The participants were mostly
male (58.3%), ranging in age from 55 to 90 years (M = 74.0,
SD = 7.0), reported an average of 15.8 years of education (SD = 2.9;
range, 4–20 years), and approximately 54% were carriers of more than
one APOE-ε4 allele. Table 2 also shows global cognition at baseline
measured by the MMSE (Folstein et al., 1975).

The bivariate correlations among baseline predictors (CSF mea-
sures), the longitudinal mediator (MRI), and longitudinal outcome
(cognition) are reported in Fig. 2. MRI mediators and cognitive out-
comes were negatively correlated across all data collection timepoints.
Moreover, most CSF measures were correlated with both longitudinal
MRI and cognitive measures. Because all variables appeared to be
correlated with cognitive outcomes, it was appropriate to include them
in the multiple comparison.

3.1. Univariate latent growth curve model for the MRI mediator

Table 3 presents the results of the univariate LGCMs for the MRI
mediator as an outcome measure. The models fit the data well

AD-signature6AD-signature0 AD-signature12

ADAS cog6ADAS cog0 ADAS cog12 ADAS cog18 ADAS cog36
Outcome : 
Cognition

ADAS cog
Slope

AD-signature18

ADAS cog24

AD-signature24

AD-
signature 

Slope

AT(N) 
profiles

Mediator: 
MRI

c

b
Predictor: CSF

Covariates

Fig. 1. Schematic figure of the parallel process growth curve model to test the effect of CSF measures on the rate of cognitive change via rate of change in cortical
thickness over time. The subscripts for AD-signature and ADAS cog refer to the months collected in the ADNI data. Latent variable slopes (circles) were regressed on
the observed variables (squares) of the CSF adjusted by age, sex, APOE, educational level, and initial clinical diagnosis. Residual error variances are represented by
two-headed curved arrows for observed and latent variables.
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according to the overall fit indices (CFI, range: 0.998–1.000; TLI,
0.998–1.002; RMSEA, 0.000–0.035). The linear LGCM showed good fit
and appeared appropriate for the data.

The shape of the growth curve was also investigated using in-
dividual and mean plots. As a result, the mean of the slope growth
factor of the unconditional models for the AD signature was negative
and statistically significant (−0.049, P < .001). The negative rate of
change in the slope suggested that the MRI scores decreased by ap-
proximately 0.04 points between each evaluation. The statistically
significant variance of intercepts and slopes indicated that they had
important individual variability around their mean values across five
timepoints. Subjects varied in their initial MRI cortical thickness and
their rates of change over time. The effect of baseline CSF measures on
initial and longitudinal changes in cortical thickness varied by AT(N)
profile. The A + T + (N)+ profile by CSF measures revealed a sig-
nificant negative regression coefficient for the MRI measure slope
growth factor compared to those with normal AD biomarker profile
(A − T − (N)−). That is, AD with an A + T + (N)+ CSF profile was
associated with faster decline in AD-specific cortical thickness.

3.2. Univariate latent growth curve model for cognitive outcome

The results for each univariate LGCM, including ADAS-Cog13 as the
cognitive outcome, are reported in Table 4. All models yielded a good
fit based on established criteria (Hoyle, 1995); the CFI and TLI values
ranged between 0.983 and 0.995 and 0.977–0.993, respectively, and

the RMSEA values varied between 0.029 and 0.053. The mean growth
trajectory for the unconditional (without covariates) model was posi-
tive and significant (2.346, P < .001) for an average decline of ap-
proximately 2.3 points/year in the ADAS-cog-13 score. In the condi-
tional model, the variances of the intercept and growth factors showed
statistically significant variability at baseline and change in cognition
over time (P < .05). All Alzheimer’s continuums, (A + T − (N)−,
A + T + (N)−, and A + T + (N)+), revealed positive and significant
effects on the baseline status and change in cognitive function over time
except for the intercept of A + T − (N)− (0.994, P= .270). The effect
of Alzheimer’s pathophysiologic change (A + T − (N)−) on the in-
tercept was statistically insignificant although significant on the slope.

3.3. Mediation tests and parallel process LGCMs

One of the primary goals of this study was to test the mediational
effect of changes in MRI measures on the relationship between baseline
AT(N) profiles by CSF biomarkers and changes in cognitive perfor-
mance. That is, we tested the hypothesis that different AT(N) stages by
CSF measures would result in structural changes in the brain and that
these changes could increase cognitive decline over a 3-year period.

To this end, the MRI mediator LGCM was combined with the cog-
nitive outcome growth model in a PPLGCM and regressed on the initial
AT(N) profile, sex, education, age, APOE, and diagnosis at entry. The
relationships among predictors and the latent growth factors describing
the mediational process were estimated separately for each analyte and

Fig. 2. Bivariate correlation matrix between variables. The red color indicates a positive correlation, whereas the yellow indicates a negative correlation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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hypothesized as shown in Fig. 1. The values of the point estimates of
these relationships and 95% CIs are presented by the AT(N) profiles in
Fig. 3.

The role of decline in MRI cortical thickness as a process variable
mediating the effects of the initial AT(N) profiles on changes in cog-
nitive function varied even in the Alzheimer’s continuum, and the
mediating effect of changes in cortical thickness on changes in cogni-
tion was statistically significant only for the A + T + (N)+ profile
(1.373, P = .024). That is, only in the A + T + (N)+ profile, a de-
creased slope of cortical thickness mediated the initial CSF profiles and
cognitive decline over time. Additionally, the direct path from the in-
itial CSF profile to the MRI slope was also significant only for the
A+ T+ (N)+ profile (-0.026, P < .001) and the direct paths from the
longitudinal changes of MRI measures to those of cognitive perfor-
mance were significant for AD (e.g., A + T+ (N)− and A+ T+ (N)+
profiles) (Fig. 3).

3.4. Evaluation of longitudinal factorial (measurement and structural)
invariance

The weak invariance model (M1), fit the data well (Supplementary
Table 1). When the weak invariance model is compared with the con-
figural invariance model (M0), changes of CFI and TLI were within
acceptable values (△CFI = −0.002, △TLI = 0.001 for
A + T − (N)−, △CFI = −0.008, △TLI = −0.005 for
A + T+ (N)−, △CFI =−0.011, △TLI < 0.001 for A + T+ (N)+).
This indicates that the metric of factor scores was invariant across
AT(N) profiles. The next restrictive model, the strong invariance model
(M2) also fit the data well. This constrained the factor loadings and
item intercept to create the strong invariance model, resulted in the
demonstration of strong invariance (△CFI = −0.005, △TLI = 0.000
for A + T − (N)−, △CFI = −0.014, △TLI = −0.001 for
A + T + (N)−, △CFI = −0.02, △TLI = 0.001 for A + T + (N)+).
This indicates that both factor loadings and intercept are invariant
across AT(N) profiles. The last more restrictive model, which con-
strained the factor loadings, intercept, and residual variances, to pro-
duce the strict invariance model (M3) was then inspected. The changes
of the fit indices were within the recommended values
(△CFI = −0.031, △TLI = −0.025 for A + T − (N)−,
△CFI = −0.011, △TLI = −0.006 for A + T + (N)−,
△CFI = −0.038, △TLI = −0.025 for A + T + (N)+). When com-
paring structural invariance model (M4) with the less restrictive model
(M2) (i.e., strong measurement invariance model), the differences of
several fit indices are within the acceptable values (△CFI = −0.029,
△TLI = −0.032 for A + T − (N)−, △CFI = −0.034,
△TLI = −0.038 for A + T + (N)−, △CFI = −0.025,
△TLI = −0.0027 for A + T + (N)+). In longitudinal factorial in-
variance across AT(N) profiles, at least the third level of factorial in-
variance, strong factorial invariance, must be met. The overall con-
clusion is that there is a reasonable level of longitudinal factorial
invariance for the CFA model of AD spectrum across AT(N) profiles
group.

4. Discussion

This study attempted to examine the dynamic association between
the initial AT(N) profiles by CSF and longitudinal change in brain MRI
and cognitive function after controlling for demographic variables,
baseline clinical diagnosis, and APOE status in Alzheimer’s continuum.
Adopting a simultaneous longitudinal scheme, the sequential effect
between brain MRI and cognition according to the AT(N) profiles was
analyzed. It was tested whether the relationship between the initial
AT(N) profiles and the growth trajectory for cognitive decline was
mediated by the growth trajectory of cortical thickness. In the
A + T + (N)− profile, a direct path from an altered level of cortical
thickness was hypothesized to result in cognitive decline. Only in theTa
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Table 4
Univariate Latent growth curve model results for ADAS-Cog 13 as outcome (n = 576).

Model 1a Model 2b Model 3b Model 4b

ADAS-Cog 13 RMSEA = 0.053
(0.033, 0.074),
CFI = 0.993, TLI = 0.993

p RMSEA = 0.049 (0.019, 0.073),
CFI = 0.983, TLI = 0.977

p RMSEA = 0.044
(0.020, 0.064),
CFI = 0.989, TLI = 0.985

p RMSEA = 0.029
(0.000, 0.048),
CFI = 0.995, TLI = 0.993

p

Intercept 18.419 0.000 −1.723 0.734 6.535 0.171 4.014 0.289
Slope 2.346 0.000 −1.112 0.542 0.166 0.930 0.501 0.811
Variance (intercept) 85.693 0.000 24.268 0.000 28.983 0.000 30.232 0.000
Variance (slope) 10.688 0.000 1.126 0.039 2.327 0.000 6.559 0.000
Covariance (intercept

and slope)
20.821 0.000 2.619 0.004 5.201 0.000 4.272 0.000

ATN (A − T − (N)− vs. A + T − (N)−)
Intercept on ADAS-
Cog

0.994 0.270

Slope on ADAS-Cog 0.815 0.011
ATN (A − T − (N)− vs. A + T + (N)−)
Intercept on ADAS-
Cog

2.221 0.011

Slope on ADAS-Cog 1.164 0.001
ATN (A − T − (N)− vs. A + T + (N)+)
Intercept on ADAS-
Cog

4.876 0.000

Slope on ADAS-Cog 2.550 0.000

RMSEA, Root Mean Standardized Error of Approximation; CFI, Confirmatory Fit Index; TLI, Tucker Lewis Index.
a Unconditional latent growth curve model (model with no covariates).
b Models also included all control variables, namely, age, education, gender, ApoE status, and diagnosis at baseline.

Fig. 3. Mediational effects of brain magnetic resonance imaging (MRI) on baseline cerebrospinal fluid (CSF) to cognitive slope The diagram of the mediation model
pathways is presented above the table. Showing direct pathways among initial CSF, MRI slope, and cognitive slope (i.e., a, b, and c). The strength of the mediation
pathway (i.e., i) is the multiplication product of the component edge weights in these pathways (i.e., βa*βb). Abbreviations: CSF, cerebrospinal fluid, CI, confidential
interval NOTE. Regression coefficients are computed by bootstrap sampling with 10,000 iteration after adjusted for age, gender, education, ApoE and diagnosis at
entry. In the table, β coefficients and 95% confidence intervals are displayed. Coefficients significance at 95% confidence level are in bold.
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A + T + (N)+ profile, the initial CSF measures appeared to result in
cognitive decline mediated by cortical thickness in addition to the di-
rect path from the initial CSF profile to brain MRI as well as from brain
MRI to cognitive decline. To our knowledge, this is the first study using
PPLGCM to test the biomarker sequence hypothesis based on the AT(N)
system.

These findings suggested a dynamic causal sequence that identifies
change in cortical thickness as a mediator between antecedent change
in the AT(N) profile by CSF and subsequent cognitive decline. Based on
the new biomarker profiles by the NIA-AA research framework (Jack
et al., 2018), there was different sequential change among the
A + T − (N)−, A + T + (N)−, and A + T+ (N)+ profiles compared
to the normal AD biomarker (A − T − (N)−). At the category of
Alzheimer’s pathologic change (A + T − (N)−), there were no sig-
nificant direct or indirect paths among the initial CSF profile, MRI
slope, and cognitive slope. From the category of AD (A + T + (N)−
and A + T + (N)+), a relationship was observed between the brain
MRI and cognition slopes (Fig. 3). Another direct path between the
initial CSF profile and the brain MRI slope became significant in the
A + T + (N)+ profile in addition to the indirect path mediated by the
MRI slope. Although the A+ T+ (N)− and A+ T+ (N)+ profiles are
both categorized as “Alzheimer’s disease” in NIA-AA research frame-
work, the A + T + (N)+ profile is distinct from the A + T + (N)−
profile because the former contains (N) positivity, which is an indicator
of neurodegeneration or neuronal injury of varying causality. This
implies that the A + T + (N)+ profile might be related to other pos-
sible comorbid conditions as well as to AD pathology and that these
combined pathologies may increase the possibility of activation of other
biomarker pathways. Consequently, these findings provide support for
the NIA-AA research framework model that defines biomarker profiles
based on the AT(N) system where the presence of more abnormal
biomarker groups represents more advanced pathologic stages
(Mormino et al., 2014). In addition to sequential change in AD bio-
markers by “modified amyloid cascade hypothesis” (Jack et al., 2013),
our results suggested another relationship among biomarkers and cog-
nition. Consistent with the findings of previous studies, primarily cross-
sectional (Vemuri et al., 2010), an initial pathologic CSF profile such as
the A + T − (N)− did not directly affect the cognitive or MRI slope in
our study. However, the MRI slope began to affect the cognitive slope
starting at the A + T + (N)− profile, then mediational test modeling
changes in brain MRI, as a mediator of the effect of the CSF profile on
cognitive change across time, were significant at the A + T + (N)+
profile in addition to the direct effect from the initial CSF profile to the
MRI slope. This finding extended the scope of research from sequential
ordering of events (Petrella et al., 2019; Young et al., 2014) to long-
itudinal mediation using the PPLGCM, which considered changes in
structural MRI and cognitive function across time. Investigation using
this model has only been performed for FDG uptake using PET as a
mediator between CSF profiles and cognitive change (Dowling et al.,
2015). Although structural MRI and FDG PET are placed in the same
(N) biomarker group, there is some difference because atrophy on MRI
reflects loss of the neuropil (Barkhof et al., 2007), while FDG PET shows
functional impairment of neurons in addition to shrinkage of the neu-
ropil (Chételat et al., 2016). Additionally, brain MRI is more widely
used in clinical practice according to the diagnostic guidelines of de-
mentia (Wang et al., 2017) that we used the AD signature of cortical
thickness including the eight bilateral regions (Busovaca et al., 2016).
According to recent mediation model, sequence of Aβ, tau, atrophy and
cognitive change vary by brain region and disease state for non-
demented cohort (Fletcher et al., 2018). Another study found the
mediational effect of neurodegenerative marker such as FDG-PET or
brain MRI between initial Aβ pathology and episodic memory for MCI
(Mattsson et al., 2015) and this effect can be affected by vascular risk
and brain region (Villeneuve et al., 2014). These studies using media-
tional model gave insight for causal relationship among AD biomarkers
based on cognitive stage, and our study investigated another

mediational effect focused on AT(N) system with PPLGC model that
consider time-dependent effects of biomarkers. Additionally, one of the
big differences between previous mediational studies and ours is that
they used individual CSF measurement (Aβ1-42, pTau181p, t-Tau) as
continuous variables but we used them as categorical variables for ATN
profiles. When we performed mediational analysis using CSF measures
as continuous variables, Aβ1-42 showed significant effects for all of the
direct and indirect pathways while Tau did not reveal significant direct
effect from CSF (pTau181p, t-Tau) to MRI slope (Supplementary
Table 2).

Our study adopted PPLGC modeling to validate the newly-devel-
oped biological definition of AD by the NIA-AA research framework
(Jack et al., 2018). One of the main changes of the research framework
was that it defined AD biologically, separating cognitive impairment as
a subsequent symptom of the preceding AD pathology. In line with this
notion, we examined longitudinal ADNI data representing the whole
range of the AD continuum from CU to dementia to investigate tem-
poral change based on the initial AT(N) profiles. In the research fra-
mework, CSF biomarkers and brain imaging are placed into common
groups but fundamental difference and discordance between them
should be recognized (Gordon et al., 2016a; Vos et al., 2016) because
CSF biomarkers measure the concentration of protein at a given time-
point, while imaging measures the neuropathologic or neurodegen-
erative loading accumulated over time (Alexopoulos et al., 2014;
Blennow and Hampel, 2003; Gordon et al., 2016b). This discordance
was also observed in our study where the A + T+ (N)− profile by CSF
measures without neurodegeneration already showed a direct effect
between the MRI slope (i.e., another (N) marker) and cognitive slope.
However, initial CSF did not directly affect the cognitive slope across
the entire Alzheimer’s continuum even in the A + T + (N)+ profile.
Taking together these observations, the hypothetical biomarker se-
quence might be appropriate because the number of significant direct
and indirect pathways between biomarkers increased across Alzhei-
mer’s continuum, but detailed effects between biomarkers across time
must be considered in the future. Our study showed that sequential
changes of AT(N) profiles by initial CSF measures according to research
framework did not reflect sequential changes of biomarkers and cog-
nition although the number of significant direct or indirect pathways
increased across Alzheimer’s continuum. Presently, the AT(N) bio-
marker system of the research framework does not include the notion of
time-dependent effects of biomarkers because it is an unbiased system
for grouping biomarkers and classifying participants (Jack et al., 2016).
So our finding will be useful for designing detailed clinical trials using
NIA-AA Research Framework based on AT(N) profiles in the future.

This study has several limitations. First, Alzheimer’s continuum
included the A + T-(N) + profile, which was not included in our study
because there were no subjects with this profile in the ADNI data. This
was not in line with previous studies that reported approximately 35
(8.0%) of 435 subjects (Jack et al., 2017) and 19 (2.3%) of 814 subjects
(Soldan et al., 2019) with this profile for CU individuals, and this dis-
crepancy according to study cohorts may be the target of a future study.
Second, we defined the AT(N) classification based on initial CSF bio-
markers, but it could also be defined by imaging markers that valida-
tion of mediational effects using this image-based AT(N) classification
may be necessary to strengthen our results. Third, a better model for
assessing the temporal sequence of events and reducing concurrent
causation might have been achieved by using longitudinal CSF bio-
markers rather than initial categorization by the AT(N) classification.
Although using biomarkers as continuous measures might be better for
research purposes, denoting abnormal cutoff points is necessary to
support decision making for individual patients in the clinic as well as
subject selection in clinical trials. This study attempted to prove causal
inference by mediation analysis investigating the effect of changes in
cortical thickness on changes in cognition according to the initial AT(N)
classification, and this was consistent with the supposition of the re-
search framework that the presence of more biomarker abnormalities
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denotes more advanced stages of the disease (Mormino et al., 2014).
More appropriate modeling approaches employed by longitudinal stu-
dies are required to validate the complex sequence of events that results
in neurodegeneration and cognitive dysfunction in AD.

5. Conclusions

Our findings demonstrate the hypothetical biomarker sequence re-
lated to mediation effect is different according to AT(N) profile. These
suggest the need to consider dynamic changes in the relationship
among biomarkers in current cascade model.
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