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ABSTRACT
The use of a finite mixture of normal distributions in model-based clustering allows us to capture non-
Gaussian data clusters. However, identifying the clusters from the normal components is challenging and
in general either achieved by imposing constraints on the model or by using post-processing procedures.
Within the Bayesian framework, we propose a different approach based on sparse finitemixtures to achieve
identifiability. We specify a hierarchical prior, where the hyperparameters are carefully selected such that
they are reflective of the cluster structure aimed at. In addition, this prior allows us to estimate the model
using standard MCMC sampling methods. In combination with a post-processing approach which resolves
the label switching issue and results in an identified model, our approach allows us to simultaneously (1)
determine the number of clusters, (2) flexibly approximate the cluster distributions in a semiparametric
way using finite mixtures of normals and (3) identify cluster-specific parameters and classify observations.
The proposed approach is illustrated in two simulation studies and on benchmark datasets. Supplementary
materials for this article are available online.

1. Introduction

In many areas of applied statistics like economics, finance, or
public health it is often desirable to find groups of similar objects
in a dataset through the use of clustering techniques. A flex-
ible approach to clustering data is based on mixture models,
whereby the data in eachmixture component are assumed to fol-
low a parametric distribution with component-specific param-
eters varying over the components. This so-called model-based
clustering approach (Fraley and Raftery 2002) is based on the
notion that the component densities can be regarded as the “pro-
totype shape of clusters to look for” (Hennig 2010) and each
mixture componentmay be interpreted as a distinct data cluster.

Most commonly, a finite mixture model with Gaussian com-
ponent densities is fitted to the data to identify homoge-
neous data clusters within a heterogeneous population. How-
ever, assuming such a simple parametric form for the compo-
nent densities implies a strong assumption about the shape of
the clusters andmay lead to overfitting the number of clusters as
well as a poor classification, if not supported by the data. Hence,
amajor limitation of Gaussianmixtures in the context ofmodel-
based clustering results from the presence of non-Gaussian data
clusters, as typically encountered in practical applications.

Recent research demonstrates the usefulness of mixtures of
parametric non-Gaussian component densities such as the skew
normal or skew-t distribution to capture non-Gaussian data
clusters, see Frühwirth-Schnatter and Pyne (2010), Lee and
McLachlan (2014), and Vrbik and McNicholas (2014), among
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others. However, as stated by Li (2005), for many applications it
is difficult to decidewhich parametric distribution is appropriate
to characterize a data cluster, especially in higher dimensions.
In addition, the shape of the cluster densities can be of a form
which is not easily captured by a parametric distribution. To
better accommodate such data, recent advances in model-based
clustering focused on designingmixture models withmore flex-
ible, not necessarily parametric cluster densities.

A rather appealing approach, known as mixture of mixtures,
models the non-Gaussian cluster distributions themselves by
Gaussian mixtures, exploiting the ability of normal mixtures
to accurately approximate a wide class of probability distribu-
tions. Compared to a mixture with Gaussian components, mix-
ture of mixtures models impose a two-level hierarchical struc-
ture which is particularly appealing in a clustering context. On
the higher level, Gaussian components are grouped together to
formnon-Gaussian cluster distributionswhich are used for clus-
tering the data. The individual Gaussian component densities
appearing on the lower level of the model influence the cluster-
ing procedure only indirectly by accommodating possibly non-
Gaussian, but otherwise homogeneous cluster distributions in a
semiparametric way. This powerful and very flexible approach
has been employed in various ways, both within the framework
of finite and infinite mixtures.

Statistical inference for finite mixtures is generally not easy
due to problems such as label switching, spurious modes and
unboundedness of the mixture likelihood (see, e.g., Frühwirth-
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Schnatter 2006, chap. 2), but estimation of amixture of mixtures
model is particularly challenging due to additional identifiabil-
ity issues. Since exchanging subcomponents between clusters
on the lower level leads to different cluster distributions, while
the density of the higher level mixture distribution remains the
same, a mixture of mixtures model is not identifiable from the
mixture likelihood in the absence of additional information.
For example, strong identifiability constraints on the locations
and the covariance matrices of the Gaussian components were
imposed by Bartolucci (2005) for univariate data and by Di Zio,
Guarnera, and Rocci (2007) for multivariate data to estimate
identified finite mixtures of Gaussian mixtures.

A different strand of literature pursues the idea of creating
meaningful clusters after having fitted a standard Gaussianmix-
ture model to the data. The clusters are determined by suc-
cessively merging components according to some criterion, for
example, the closeness of the means (Li 2005), the modality of
the obtained mixture density (Chan et al. 2008; Hennig 2010),
the degree of overlapping measured by misclassification proba-
bilities (Melnykov 2016), or the entropy of the resulting partition
(Baudry et al. 2010). However, such two-step approaches might
miss the general cluster structure, see Appendix E for an exam-
ple.

In the present article, we identify the mixture of mixtures
model within a Bayesian framework through a hierarchical prior
construction and propose a method to simultaneously select a
suitable number of clusters. In our approach, both the identifi-
cation of the model and the estimation of the number of clusters
is achieved by employing a selectively informative prior on the
model parameters.

Our choice of prior parameters is driven by assumptions on
the cluster shapes assumed to be present in the data, thus being
in line with Hennig (2010) who emphasizes that, “it rather has
to be decided by the statistician under which conditions different
Gaussian mixture components should be regarded as a common
cluster.” This prior specification introduces dependence among
the subcomponent densities within each cluster, by pulling the
subcomponent means on the lower level toward the cluster cen-
ter, making the cluster distributions themselves dense and con-
nected. On the higher level, the prior is based on the notion that
the cluster centers are quite distinct from each other compared
to the spread of the clusters. The choice of the hyperparame-
ters of this hierarchical prior turns out to be crucial in achieving
identification and is guided by a variance decomposition of the
data.

Regarding the estimation of the number of clusters, a sparse
hierarchical mixture of mixtures model is derived as an exten-
sion of the sparse finite mixture model introduced by Malsiner-
Walli, Frühwirth-Schnatter, and Grün (2016). There, based on
theoretical results derived by Rousseau and Mengersen (2011),
an overfitting Gaussian mixture with K components is specified
where a sparse prior on the mixture weights has the effect of
assigning the observations to fewer than K components. Thus,
the number of clusters can be estimated by the most frequent
number of nonempty components encountered during Markov
chain Monte Carlo (MCMC) sampling. In this article, rather
than using a singlemultivariate Gaussian distribution, wemodel
the component densities in a semiparametric way through a
Gaussian mixture distribution, and again use a sparse prior on

the cluster weights to automatically select a suitable number of
clusters on the upper level.

Specifying a sparse prior on the weights is closely related to
Bayesian nonparametric (BNP) Gaussian mixture models such
as Dirichlet process mixtures (DPMs; Ferguson 1983; Escobar
andWest 1995). The sparse prior on the cluster weights induces
clustering of the observations, similar as for DPMs which have
been applied in a clustering context by Quintana and Iglesias
(2003), Medvedovic, Yeung, and Bumgarner (2004), and Dahl
(2006), among others. The hierarchical mixture of mixtures
model we introduce is similar to hierarchical BNP approaches
such as the hierarchical DPM (Teh et al. 2006). Very closely
related BNP approaches are the nested DPM (Rodriguez, Dun-
son, and Gelfand 2008), the infinite mixture of infinite Gaus-
sianmixtures (Yerebakan, Rajwa, andDundar 2014), and species
mixture models (Argiento, Cremaschi, and Guglielmi 2014)
which directly work on the partition of the data. We discuss in
Sections 2.4 and 3.1 similarities as well as differences between
our approach and BNP models.

We finally note that the implementation effort to estimate our
model is moderate and standardMCMCmethods based on data
augmentation and Gibbs sampling (see Frühwirth-Schnatter
2006) can be used. Several approaches proposed in the literature
can be used to post-process the MCMC draws to obtain a clus-
tering of the data and to perform cluster-specific inference. For
our simulation studies and applications, we adapt and extend the
method suggested by Frühwirth-Schnatter (2006, 2011) which
determines a unique labeling for the MCMC draws by cluster-
ing the draws in the point process representation.

The rest of the article is organized as follows. Section 2
describes the proposed strategy, including detailed prior spec-
ifications, and relates our method to the two-layer BNP
approaches in Rodriguez, Dunson, and Gelfand (2008) and
Yerebakan, Rajwa, and Dundar (2014). Clustering and model
estimation issues are discussed in Section 3. The performance
of the proposed strategy is evaluated in Section 4 in simulation
studies and for various benchmark datasets. Section 5 concludes.

2. Sparse Hierarchical Mixture of Mixtures Model

2.1 Model Definition

Following previous work on hierarchical mixtures of mixtures,
we assume that N observations yi, i = 1, . . . ,N of dimension
dim(yi) = r are drawn independently from a finite mixture dis-
tribution with K components,

p(yi|�, η) =
K∑

k=1

ηk pk(yi|θk), � = (θ1, . . . , θK), (1)

with each component distribution pk(yi|θk) being a mixture of
L normal subcomponents:

pk(yi|θk) =
L∑

l=1

wkl fN (yi|μkl,�kl ). (2)

To distinguish the component distributions on the upper level
from the Gaussian components on the lower level, we will
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refer to the former ones as “cluster distributions”. For cluster-
ing the observations based on Bayes’ rule, the cluster weights
η = (η1, . . . , ηK) and the cluster densities pk(yi|θk) on the upper
level (1) are relevant.

Since the number of data clusters is unknown and needs to
be inferred from the data, we assume that (1) is an overfitting
mixture, that is, the specified number of clusters K exceeds the
number of clusters present in the data. Following the concept
of sparse finite mixtures (Malsiner-Walli, Frühwirth-Schnatter,
and Grün 2016), we choose a symmetric Dirichlet distribution
as prior for the weight distribution, that is, η|e0 ∼ DirK (e0), and
base our choice of e0 on the results of Rousseau and Mengersen
(2011) concerning the asymptotic behavior of the posterior dis-
tribution of an overfitting mixture model. They show that this
behavior is determined by the hyperparameter e0 of theDirichlet
prior on the weights. In particular, they prove that, if e0 < d/2,
where d is the dimension of the cluster-specific parameters θk,
then the posterior expectation of the weights associated with
superfluous clusters asymptotically converges to zero.

Hence, we specify a sparse prior on the cluster weights η by
choosing e0 � d/2 so that superfluous clusters are emptied dur-
ing MCMC sampling and the number of nonempty clusters on
the cluster level is an estimator for the unknown number of data
clusters. In this way, the specification of a sparse cluster weight
prior in an overfitting mixture of mixtures model provides an
“automatic tool” to select the number of clusters, avoiding the
expensive computation of marginal likelihoods as, for example,
in Frühwirth-Schnatter (2004). Empirical results in Malsiner-
Walli, Frühwirth-Schnatter, and Grün (2016) indicate that e0
needs to be chosen very small, for example, e0 = 0.001, to actu-
ally empty all superfluous clusters in the finite sample case.

On the lower level (2), in each cluster k, a semipara-
metric approximation of the cluster distributions is achieved
by mixing L multivariate Gaussian subcomponent densities
fN (yi|μkl,�kl ), l = 1, . . . , L, according to the subcomponent
weight vectorwk = (wk1, . . . ,wkL). The cluster-specific param-
eter vector

θk = (wk,μk1, . . . ,μkL,�k1, . . . ,�kL) (3)

consists of wk as well as the means μkl and covariance matri-
ces �kl of all Gaussian subcomponent densities. L is typically
unknown, but as we are not interested in estimating the “true”
number of subcomponents L forming the cluster, we only ensure
that L is chosen sufficiently large to obtain an accurate approxi-
mation of the cluster distributions. While the choice of L is not
crucial to ensure a good model fit as long as L is sufficiently
large, a too generous choice of L should be avoided for computa-
tional reasons as the computational complexity of the estimation
increases with the number of subcomponents L.

By choosing the prior wk ∼ DirL(d0) with d0 = d/2 + 2,
the approximation of the cluster density is obtained by fill-
ing all L subcomponents, thus avoiding empty subcomponents.
This choice is motivated again by the results of Rousseau and
Mengersen (2011) who show that, if d0 > d/2, the posterior
density asymptotically handles an overfitting mixture by split-
ting “true” components into two or more identical components.

2.2 Identification Through Hierarchical Priors

When fitting the finite mixture model (1) with semiparamet-
ric cluster densities given by (2), we face a special identifiability
problem, since the likelihood is entirely agnostic about which
subcomponents form a cluster. Indeed, the likelihood is com-
pletely ignorant concerning the issue which of the K · L compo-
nents belong together, since (1) can be written as an expanded
Gaussian mixture with K · L components with weights w̃kl =
ηkwkl ,

p(yi|�, η) =
K∑

k=1

L∑
l=1

w̃kl fN (yi|μkl,�kl ). (4)

These K · L components can be permuted in (K · L)! different
ways and the resulting ordering can be used to group them into
K different cluster densities, without changing the mixture like-
lihood (4). Hence, the identification of (1), up to label switching
on the upper level, hinges entirely on the prior distribution.

Subsequently, we suggest a hierarchical prior that addresses
these issues explicitly. Conditional on a set of fixed hyperparam-
eters φ0 = (e0, d0, c0, g0,G0,B0,m0,M0, ν), the weight distri-
bution η|e0 ∼ DirK (e0) and the K cluster-specific parameter
vectors θk|φ0

iid∼ p(θk|φ0) are independent a priori, that is:

p(η, θ1, . . . , θK |φ0) = p(η|e0)
K∏

k=1

p(θk|φ0). (5)

This prior formulation ensures that the K non-Gaussian clus-
ter distributions of the upper level mixture (1) are invariant to
permutations. We further assume that within each cluster k, the
prior distribution p(θk|φ0) admits the following block indepen-
dence structure:

p(θk|φ0) = p(wk|d0)p(μk1, . . . ,μkL|B0,m0,M0, ν)

p(�k1, . . . ,�kL|c0, g0,G0), (6)

wherewk|d0 iid∼ DirL(d0). Conditional on φ0, the subcomponent
means μk1, . . . ,μkL are dependent a priori as are the subcom-
ponent covariance matrices �k1, . . . ,�kL. However, they are
assumed to be exchangeable to guarantee that within each clus-
ter k, the L Gaussian subcomponents in (2) can be permuted
without changing the prior.

To create this dependence, a hierarchical “random effects”
prior is formulated, where, on the upper level, conditional
on the fixed upper level hyperparameters (g0,G0,m0,M0, ν),
cluster-specific random hyperparameters (C0k, b0k), and �k =
diag(λk1, . . . , λkr), are drawn independently for each k =
1, . . . ,K from a set of three independent base distributions:

C0k|g0,G0
iid∼ Wr(g0,G0), b0k|m0,M0

iid∼ Nr(m0,M0),

(λk1, . . . , λkr)|ν iid∼ G(ν, ν), (7)

where Nr() and Wr() denote the r-multivariate normal and
Wishart distribution for the parametrization see e.g. Frühwirth-
Schnatter 2006, respectively, and G() the gamma distribution,
parameterized such that E(λkl |ν) = 1.

On the lower level, conditional on the cluster-specific ran-
dom hyperparameters (C0k, b0k, �k) and the fixed lower level
hyperparameters (B0, c0), the L subcomponent means μkl and
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covariance matrices �kl are drawn independently for all l =
1, . . . , L:

μkl |B0, b0k,�k
iid∼ Nr(b0k,

√
�kB0

√
�k),

�−1
kl |c0,C0k

iid∼ Wr(c0,C0k). (8)

2.3 Tuning the Hyperparameters

To identify the mixture of mixtures model given in (1) and (2)
through the prior defined in Section 2.2, the fixed hyperparam-
eters φ0 have to be chosen carefully. In addition, we select them
in a way to take the data scaling into account, avoiding the need
to standardize the data prior to data analysis.

First, it is essential to clarify what kind of shapes and forms
are aimed at as cluster distributions. We give the following
(vague) characterization of a data cluster: a data cluster is a very
“dense” region of data points, with possibly no “gaps” within the
cluster distribution, whereas different clusters should be located
well-separated from each other, that is, here large “gaps” between
the cluster distributions are desired. We confine ourselves to
the investigation of clusters with approximately convex cluster
shapes, where the cluster center can be seen as a suitable repre-
sentative for the entire cluster. Regarding volume, orientation, or
asymmetry of the data clusters we are looking for, no constraints
on the cluster shapes and forms are imposed.

Based on this cluster concept, our aim is tomodel a dense and
connected cluster distribution by a mixture of normal subcom-
ponents. Various strategies regarding the modeling of the sub-
component means and covariance matrices could be employed.
We decided to allow for flexible shapes for the single sub-
components, ensuring that they strongly overlap at the same
time. An alternative approach would be to use constrained sim-
ple shaped subcomponents, for example, subcomponents with
identical isotropic covariance matrices. However, in this case, a
large number of subcomponents might be needed to cover the
whole cluster region and shrinkage of the subcomponent means
toward the common cluster center may not be possible. Since
then some of the subcomponents have to be located far away
from the cluster center to fit also boundary points, considerable
distances have to be allowed between subcomponent means.
This induces the risk of gapswithin the cluster distribution and a
connected cluster distribution may not result. Therefore, in our
approach the cluster distributions are estimated as mixtures of
only a few but unconstrained, highly dispersed and heavily over-
lapping subcomponents where the means are strongly pulled

toward the cluster center. In this way, a connected cluster dis-
tribution is ensured.

In a Bayesian framework, we need to translate these model-
ing purposes into appropriate choices of hyperparameters. On
the upper level, the covariance matrix M0 controls the amount
of prior shrinkage of the cluster centers b0k toward the overall
data center m0, which we specify as the midpoint of the data.
To obtain a prior, where the cluster centers b0k are allowed to be
widely spread apart and almost no shrinkage toward m0 takes
place, we choose M0 � Sy, where Sy is the sample covariance
matrix of all data, for exampleM0 = 10Sy.

Our strategy for appropriately specifying the hyperparame-
ters G0 and B0 is based on the variance decomposition of the
mixture of mixtures model, which splits cov(Y) into the dif-
ferent sources of variation. For a finite mixture model with K
clusters, as given in (1), the total heterogeneity cov(Y) can be
decomposed in the following way (Frühwirth-Schnatter 2006,
p. 170):

cov(Y) =
K∑

k=1

ηk�k +
K∑

k=1

ηkμkμ
′
k − μμ′

= (1 − φB)cov(Y) + φBcov(Y), (9)

where the cluster means μk and the cluster covariance matrices
�k are the first and second central moments of the cluster distri-
bution pk(yi|θk) and μ = ∑

k ηkμk is the mixture mean. In this
decomposition, φB is the proportion of the total heterogeneity
explained by the variability of the clustermeansμk and (1 − φB)

is the proportion explained by the average variability within the
clusters. The larger φB, the more the clusters are separated, as
illustrated in Figure 1 for a three-component standard Gaussian
mixture with varying values of φB.

For a mixture of mixtures model, the heterogeneity (1 −
φB)cov(Y) explained within a cluster can be split further into
two sources of variability, namely the proportion φW explained
by the variability of the subcomponent means μkl around the
cluster centerμk, and the proportion (1 − φW ) explained by the
average variability within the subcomponents:

cov(Y) =
K∑

k=1

ηk�k +
K∑

k=1

ηkμkμ
′
k − μμ′ =

K∑
k=1

ηk

L∑
l=1

wkl�kl

+
K∑

k=1

ηk

( L∑
l=1

wklμklμ
′
kl − μkμ

′
k

)
+

K∑
k=1

ηkμkμ
′
k − μμ′

= (1−φW )(1−φB)cov(Y)+φW (1−φB)cov(Y)+φBcov(Y).

(10)

Figure . Variance decomposition of amixture distribution. Scatterplots of samples froma standard normalmixture distributionwith three components and equalweights,
with a varying amount of heterogeneity φB explained by the variation of the component means, φB = 0.1, φB = 0.5, and φB = 0.9 (from left to right).
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Based on this variance decomposition, we select the proportions
φB and φW and incorporate them into the specification of the
hyperparameters of our hierarchical prior.

φB defines the proportion of variability explained by the dif-
ferent cluster means. We suggest to specify φB not too large,
for example, to use φB = 0.5. This specification may seem to
be counterintuitive as to model well-separated clusters it would
seem appropriate to select φB large. However, if φB is large,
the major part of the total heterogeneity of the data is already
explained by the variation (and separation) of the cluster means,
and, as a consequence, only a small amount of heterogeneity is
left for the within-cluster variability. This within-cluster vari-
ability in turn will get even more diminished by the variabil-
ity explained by the subcomponent means leading to a small
amount of variability left for the subcomponents. Thus for large
values of φB, estimation of tight subcomponent densities would
result, undermining our modeling aims.

φW defines the proportion of within-cluster variability
explained by the subcomponent means. φW also controls how
strongly the subcomponentmeans are pulled together and influ-
ences the overlap of the subcomponent densities. To achieve
strong shrinkage of the subcomponent means toward the clus-
ter center, we select small values of φW , for example, φW = 0.1.
Larger values of φW may introduce gaps within a cluster, which
we want to avoid.

Given φB and φW , we specify the scale matrixG0 of the prior
on C0k such that the a priori expectation of the first term in the
variance decomposition (10), given by

E

( K∑
k=1

ηk

L∑
l=1

wkl�kl

)
=

K∑
k=1

E(ηk)

L∑
l=1

E(wkl )E(E(�kl |C0k))

= g0/(c0 − (r + 1)/2)G−1
0 ,

matches the desired amount of heterogeneity explained by a sub-
component:

g0/(c0 − (r + 1)/2)G−1
0 = (1 − φW )(1 − φB)cov(Y). (11)

We replace cov(Y) in (11) with the main diagonal of the sample
covariance Sy to take only the scaling of the data into account
(see, e.g., Frühwirth-Schnatter 2006). This gives the following
specification for G0:

G−1
0 = (1 − φW )(1 − φB)(c0 − (r + 1)/2)/g0 · diag(Sy). (12)

Specification of the prior of the subcomponent covariance
matrices �k1, . . . ,�kL is completed by defining the scalar prior
hyperparameters c0 and g0. Frühwirth-Schnatter (2006, Section
6.3.2, p. 192) suggested to set c0 > 2 + (r − 1)/2. In this way,
the eigenvalues of �kl�

−1
km are bounded away from 0 avoiding

singular matrices. We set c0 = 2.5 + (r − 1)/2 to allow for a
large variability of �kl . The Wishart density is regular if g0 >

(r − 1)/2 and in the following we set g0 = 0.5 + (r − 1)/2.
Regarding the prior specification of the subcomponent

means μk1, . . . ,μkL, we select the scale matrix B0 to concen-
trate a lot of mass near the cluster center b0k, pulling μkl toward
b0k. Matching the a priori expectation of the second term in the

variance decomposition (10), given by

E

( K∑
k=1

ηk

( L∑
l=1

wklμklμ
′
kl − μkμ

′
k

))

=
K∑

k=1

E(ηk)

L∑
l=1

E(wkl )E(μklμ
′
kl − μkμ

′
k) = B0,

to the desired proportion of explained heterogeneity and, using
oncemore only themain diagonal of Sy we obtainB0 = φW (1 −
φB)diag(Sy), which incorporates our idea that only a small pro-
portion φW of the within-cluster variability should be explained
by the variability of the subcomponent means.

After having chosen φB and φW , basically the cluster struc-
ture and shape is a priori determined. However, to allow for
more flexibility in capturing the unknown cluster shapes in the
sense that within each cluster the amount of shrinkage of the
subcomponent meansμkl toward the cluster center b0k need not
to be the same for all dimensions, for each cluster k and each
dimension j additionally a random adaptation factor λk j is intro-
duced in (8) which adjusts B0. The gamma prior for λk j in (7)
implies that the prior expectation of the covariance matrix of
μkl equals B0. However, λk j acts as a local adjustment factor for
cluster k which allows to shrink (or inflate) the variance of sub-
component means μkl j in dimension j to adapt to a more (or
less) dense cluster distribution as specified by B0. To allow only
for small adjustments of the specified B0, we choose ν = 10, in
this way almost 90% of the a priori values of λk j are between 0.5
and 1.5. This hierarchical prior specification forμkl corresponds
to the normal gamma prior (Griffin and Brown 2010) which
has been applied by Frühwirth-Schnatter (2011) and Malsiner-
Walli, Frühwirth-Schnatter, and Grün (2016) in the context of
finite mixture models for variable selection.

2.4 Relation to BNPMixtures

Our approach bears resemblance to various approaches in BNP
modeling. First of all, the concept of sparse finite mixtures as
used in Malsiner-Walli, Frühwirth-Schnatter, and Grün (2016)
is related to Dirichlet process (DP) mixtures (Müller and Mitra
2013) where the discrete mixing distribution in the finite mix-
ture (1) is substituted by a random distribution G ∼ DP(α,H),
drawn from a DP prior with precision parameter α and base
measureH. As a draw G from a DP is almost surely discrete, the
correspondingmodel has a representation as an infinitemixture:

p(y) =
∞∑
k=1

ηk pk(y|θk), (13)

with iid atoms θk
iid∼ H drawn from the base measure H and

weights ηk = vk
∏k−1

j=1(1 − v j) obeying the stick breaking rep-

resentation with vk
iid∼ B (1, α) (Sethuraman 1994).

If the hyperparameter in the weight distribution η of a sparse
finite mixture is chosen as e0 = α/K, that is η ∼ DirK (α/K),
and the component parameters θk

iid∼ H are iid draws from
H, then as K increases, the sparse finite mixture in Equa-
tion (1) converges to a DP mixture with mixing distribution
G ∼ DP(α,H), see Green and Richardson (2001). For example,
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the sparse finite Gaussianmixture introduced inMalsiner-Walli,
Frühwirth-Schnatter, and Grün (2016) converges to a Dirichlet
process Gaussianmixture asK increases, with (μk,�k) being iid
draws from the appropriate base measure H.

The more general sparse finite mixture of mixtures model
introduced in this article also converges to a Dirichlet process
mixture, where the atoms are finite mixtures indexed by the
parameter θk defined in (3). The parameters θk are iid draws
from the base measure (6), with strong dependence among the
means μk1, . . . ,μkL and covariances �k1, . . . ,�kL within each
cluster k. This dependence is achieved through the two-layer
hierarchical prior described in (7) and (8) and is essential to
create well-connected clusters from the subcomponents, as out-
lined in Section 2.3.

Also in the BNP framework models have been introduced
that create dependence, either in the atoms and/or in theweights
attached to the atoms. For instance, the nested DP process of
Rodriguez, Dunson, and Gelfand (2008) allows us to cluster
distributions across N units. Within each unit i, i = 1, . . . ,N,
repeated (univariate) measurements yit , t = 1, . . . ,Ni arise as
independent realizations of a DP Gaussian mixture with ran-
dom mixing distribution Gi. The Gi’s are iid draws from a DP,
in which the basemeasure is itself a Dirichlet process DP(β,H),
that is,Gi

iid∼ DP(α,DP(β,H)). Hence, two distributionsGi and
Gj either share the same weights and atoms sampled from H,
or the weights and atoms are entirely different. If only a single
observation yi is available in each unit, that is, Ni = 1, then the
nested DP is related to our model. In particular, it has a two-
layer representation as in (1) and (2), however, with both K and
L being infinite. The nested DP can, in principal, be extended to
multivariate observations yi. In this case, p(yi) takes the same
form as in (13), with the same stick breaking representation for
the cluster weights η1, η2, . . .. On the lower level, each cluster
distribution pk(yi|θk) is a DP Gaussian mixture:

pk(yi|θk) =
∞∑
l=1

wkl fN (yi|μkl,�kl ), (14)

where the component weights wkl are derived from the stick
breaking representation wkl = ukl

∏l−1
j=1(1 − uk j), l = 1, 2, . . .

where ukl
iid∼ B (1, β). For the nested DP, dependence is intro-

duced only on the level of the weights and sticks, as the com-
ponent parameters μkl,�kl

iid∼ H are iid draws from the base
measure H. This lack of prior dependence among the atoms
(μkl,�kl ) is likely to be an obstacle in a clustering context.

The BNP approach most closely related to our model is the
infinite mixture of infinite Gaussian mixtures (I2GMM) model
of Yerebakan, Rajwa, and Dundar (2014) which also deals with
clustering multivariate observations from non-Gaussian com-
ponent densities.1 The I2GMMmodel has a two-layer hierarchi-
cal representation like the nestedDP.On the top level, iid cluster-
specific locations b0k and covariances �k are drawn from a ran-
dom distribution G ∼ DP(α,H) arising from a DP prior with
base measure H being equal to the conjugate normal-inverse-
Wishart distribution. A cluster-specific DP is introduced on the
lower level as for the nested DP; however, the I2GMM model

 We would like to thank a reviewer for pointing us to this article.

is more suited for clustering, as prior dependence is also intro-
duced among the atoms belonging to the same cluster.More pre-
cisely, yi ∼ Nr(μi,�k), with μi

iid∼ Gk, where Gk ∼ DP(β,Hk)

is a draw from a DP with cluster-specific base measure Hk =
Nr(b0k,�k/κ1).

It is easy to show that the I2GMMmodel has an infinite two-
layer representation as in (13) and (14), with exactly the same
stick breaking representation.2 However, the I2GMM model
has a constrained form on the lower level, with homoscedastic
covariances �kl ≡ �k, whereas the locations μkl scatter around
the cluster centers b0k as in our model:

(b0k,�k)
iid∼ H, μkl |b0k,�k

iid∼ Hk. (15)

In our sparse mixture of mixtures model, we found it useful to
base the density estimator on heteroscedastic covariances �kl ,
to better accommodate the non-Gaussianity of the cluster den-
sities with a fairly small number L of subcomponents. It should
be noted that our semiparametric density estimator is allowed
to display nonconvex shapes, as illustrated in Figure C.2 in the
Appendix. Nevertheless, we could have considered a mixture
in (2) where �kl ≡ �k, with the same base measure for the
atoms (μk1, . . . ,μkL,�k) as in (15). In this case, the relation-
ship between our sparse finite mixture and the I2GMM model
would become even more apparent: by choosing e0 = α/K and
d0 = β/L and letting K and L go to infinity, our model would
converge to the I2GMMmodel.

3. Clustering and Posterior Inference

3.1 Clustering and Selecting the Number of Clusters

For posterior inference, two sequences of allocation variables
are introduced, namely the cluster assignment indicators S =
(S1, . . . , SN ) and the within-cluster allocation variables I =
(I1, . . . , IN ). More specifically, Si ∈ {1, . . . ,K} assigns each
observation yi to cluster Si on the upper level of the mixture
of mixtures model. On the lower level, Ii ∈ {1, . . . , L} assigns
observation yi to subcomponent Ii. Hence, the pair (Si, Ii) car-
ries all the information needed to assign each observation to a
unique component in the expanded mixture (4).

Note that for all observations yi and y j belonging to the
same cluster, the upper level indicators Si = S j will be the same,
while the lower level indicators Ii 	= I j might be different, mean-
ing that they belong to different subcomponents within the
same cluster. It should be noted that the Dirichlet prior wk ∼
DirL(d0), with d0 > d/2, on the weight distribution ensures
overlapping densities within each cluster, in particular if L is
overfitting. Hence, the indicators Ii will typically cover all possi-
ble values {1, . . . , L} within each cluster.

For clustering, only the upper level indicators S are explored,
integrating implicitly over the uncertainty of assignment to the
subcomponents on the lower level. A cluster Ck = {i|Si = k} is
thus a subset of the data indices {1, . . . ,N}, containing all obser-
vations with identical upper level indicators. Hence, the indica-
tors S define a randompartitionP = {C1, . . . ,CK0} of theN data

 Note that the notation in Yerebakan, Rajwa, andDundar () is slightly different,
with γ and α corresponding to α and β introduced above.
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points in the sense of Lau and Green (2007), as yi and y j belong
to the same cluster, if and only if Si = S j. The partition P con-
tains K0 = |P| clusters, where |P| is the cardinality of P . Due
to the Dirichlet prior η ∼ DirK (e0), with e0 close to 0 to obtain
a sparse finite mixture, K0 is a random number being a priori
much smaller than K.

For a sparse finite mixture model with K clusters,
the prior distribution over all random partitions P of N
observations is derived from the joint (marginal) prior
p(S) = ∫ ∏N

i=1 p(Si|η)p(η)d η which is given, for example,
in Frühwirth-Schnatter (2006, p. 66):

p(S) = 
(Ke0)

(N + Ke0)
(e0)K0

∏
k:Nk>0


(Nk + e0), (16)

whereNk = #{Si = k}. For a given partitionP withK0 data clus-
ters, there are K!/(K − K0)! assignment vectors S that belong to
the equivalence class defined by P . The prior distribution over
all random partitions P is then obtained by summing over all
assignment vectors S that belong to the equivalence class defined
by P :

p(P|K0) = K!
(K − K0)!


(Ke0)

(N + Ke0)
(e0)K0

∏
k:Nk>0


(Nk + e0),

(17)

which takes the form of a product partition model and there-
fore is invariant to permuting the cluster labels. Hence, it is pos-
sible to derive the prior predictive distribution p(Si|S−i), where
S−i denote all indicators, excluding Si. Let K−i

0 be the number of
nonempty clusters implied by S−i and letN−i

k be the correspond-
ing cluster sizes. From (16), we obtain the following probability
that Si is assigned to an existing cluster k:

Pr{Si = k|S−i,N−i
k > 0} = N−i

k + e0
N − 1 + e0K

. (18)

The prior probability that Si creates a new cluster with Si ∈ I =
{k|N−i

k = 0} is equal to
Pr{Si ∈ I|S−i} = (K − K−i

0 )Pr{Si = k∗|S−i, k∗ ∈ I}

= e0(K − K−i
0 )

N − 1 + e0K
. (19)

It is illuminating to investigate the prior probability to cre-
ate new clusters in detail. First of all, for e0 independent of
K, this probability not only depends on e0, but also increases
with K. Hence, a sparse finite mixture model based on the prior
η ∼ DK (e0) can be regarded as a two-parameter model, where
both e0 and K influence the a priori expected number of data
clusters K0 which is determined for a DP mixture solely by α.
A BNP two-parameter mixture is obtained from the Pitman–
Yor process (PYP) prior PY(β, α)withβ ∈ [0, 1), and α > −β

(Pitman and Yor 1997), with stickbreaking representation vk
iid∼

B (1 − β, α + kβ). The DP prior results as that special case
where β = 0.

Second, the prior probability (19) to create new clusters in
a sparse finite mixture model decreases, as the number K−i

0 of
nonempty clusters increases. This is in sharp contrast toDPmix-
tures where this probability is constant and PYPmixtures, where
this probability increases, see, for example, Fall andBarat (2014).

Finally, what distinguishes a sparse finite mixture model,
both from aDP as well as a PYPmixture, is the a priori expected
number of data clusters K0, as the number N of observations
increases. For K and e0 independent ofN, the probability to cre-
ate new clusters decreases, as N increases, and converges to 0,
as N goes to infinity. Therefore, K0 is asymptotically indepen-
dent of N for sparse finite mixtures, whereas for the DP pro-
cess K0 ∼ α log(N) (Korwar and Hollander 1973) andK0 ∼ Nβ

obeys a power law for PYP mixtures (Fall and Barat 2014). This
leads to quite different clustering behavior for these three types
of mixtures.

A well-known limitation of DP priors is that a priori the clus-
ter sizes are expected to be geometrically ordered, with one big
cluster, geometrically smaller clusters, and many singleton clus-
ters (Müller and Mitra 2013). PYP mixtures are known to be
more useful than the DPmixture for data withmany significant,
but small clusters. A common criticism concerning finite mix-
tures is that the number of clusters needs to be known a priori.
Since this is not the case for sparse finitemixtures, they are useful
in the context of clustering, in particular in cases where the data
arise from amoderate number of clusters, that does not increase
as the number of data points N increases.

3.2 MCMC Estimation and Posterior Inference

Bayesian estimation of the sparse hierarchical mixture of mix-
tures model is performed using MCMC methods based on
data augmentation and Gibbs sampling. We only need standard
Gibbs sampling steps, see the detailedMCMC sampling scheme
in Appendix A.

To perform inference based on the MCMC draws, that is, to
cluster the data, to estimate the number of clusters, to solve
the label switching problem on the higher level and to estimate
cluster-specific parameters, several existing procedures can be
easily adapted and applied to post-process the posterior draws of
a mixture of mixtures model, for example, those which are, for
instance, implemented in the R packages PReMiuM (Liverani
et al. 2015) and label.switching (Papastamoulis 2015).

For instance, the approach in PReMiuM is based on the
posterior probabilities of co-clustering, expressed through the
similarity matrix Pr{Si = S j|y} which can be estimated from
the M posterior draws S(m),m = 1, . . . ,M, see Appendix B
for details. Themethods implemented inlabel.switching
aim at resolving the label switching problemwhen fitting a finite
mixture model using Bayesian estimation. Note that in the case
of the mixture of mixtures model label switching occurs on two
levels. On the cluster level, the label switching problem is caused
by invariance of the mixture likelihood given in Equation (1)
with respect to reordering of the clusters. On this level, label
switching has to be resolved, since the single cluster distributions
need to be identified. On the subcomponent level, label switch-
ing happens due to the invariance of Equation (2) with respect
to reordering of the subcomponents. As we are only interested in
estimating the entire cluster distributions, it is not necessary to
identify the single subcomponents. Therefore, the label switch-
ing problem can be ignored on this level.

In this article, the post-processing approach employed first
performs a model selection step. The posterior draws of the
indicators S(m),m = 1, . . . ,M are used to infer the number of
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nonempty clusters K (m)
0 on the upper level of the mixture of

mixtures model and the number of data clusters is then esti-
mated as the mode. Conditional on the selected model, an iden-
tified model is obtained based on the point process represen-
tation of the estimated mixture. This method was introduced
in Frühwirth-Schnatter (2006, p. 96) and successfully applied
to model-based clustering in various applied research, see, for
example, Frühwirth-Schnatter (2011) for some review. This pro-
cedure was adapted to sparse finite mixtures by Frühwirth-
Schnatter (2011) and Malsiner-Walli, Frühwirth-Schnatter, and
Grün (2016) and is easily extended to deal with sparse mixture
ofmixturesmodels, see Appendix B formore details.Wewill use
this post-processing approach in our simulation studies and the
applications in Section 4 and Appendices C, D, and F to deter-
mine a partition of the data based on the maximum a posteriori
(MAP) estimates of the relabeled cluster assignments.

4. Simulation Studies and Applications

The performance of the proposed strategy for selecting the
unknown number of clusters and identifying the cluster distri-
butions is illustrated in two simulation studies. In the first simu-
lation study, we investigate whether we are able to capture dense
non-Gaussian data clusters and estimate the true number of data
clusters. Furthermore, the influence of the specified maximum
number of clusters K and subcomponents L on the clustering
results is studied. In the second simulation study, the sensitivity
of the a priori defined proportions φB and φW on the clustering
result is investigated. For a detailed description of the simulation
design and results, seeAppendixC.Overall, the results indicated
that our approach performedwell and yielded promising results.

To further evaluate our approach, we fit the sparse hierar-
chical mixture of mixtures model on benchmark datasets and
real data. First, we consider five datasets which were previously
used to benchmark algorithms in cluster analysis. For these
datasets, we additionally apply the “merging strategy” proposed
by Baudry et al. (2010) to compare the results to those of our
approach. For these benchmark datasets, class labels are avail-
able and we assess the performance by comparing how well
our approach is able to predict the class labels using the clus-
ter assignments, measured by the misclassification rate as well
as the adjusted Rand index.

To assess how the algorithm scales to larger datasets, we
investigate the application to two flow cytometry datasets. The
three-dimensional DLBCL dataset (Lee and McLachlan 2013)

consists of around 8000 observations and comes with manual
class labels which can be used as benchmark. The GvHD dataset
(Brinkman et al. 2007) consists of 12,441 observations, but no
class labels are available. We compare the clusters detected for
this dataset qualitatively to solutions previously reported in the
literature.

The detailed description of all investigated datasets as well
as of the derivation of the performance measures are given in
Appendix D. For the benchmark datasets, the number of esti-
mated clusters K̂0, the adjusted Rand index (adj), and misclassi-
fication rate (er) are reported in Table 1 for all estimated mod-
els. In the first columns of Table 1, the name of the dataset,
the number of observations N, the number of variables r and
the number of true classes Ktrue (if known) are reported. To
compare our approach to the merging approach proposed by
Baudry et al. (2010), we use the function Mclust of the R
package mclust (Fraley et al. 2012) to first fit a standard nor-
mal mixture distribution with the maximum number of com-
ponents K = 10. The number of estimated normal components
based on the BIC is reported in the column Mclust. Then,
the selected components are combined hierarchically to clus-
ters by calling function clustCombi from the same package
(column clustCombi). The number of clusters is chosen by
visual detection of the change point in the plot of the rescaled
differences between successive entropy values, as suggested by
Baudry et al. (2010). Furthermore, to compare our results to
those obtained if a cluster distribution is modeled by a single
normal distribution only, a sparse finite mixture model with
K = 10 (Malsiner-Walli, Frühwirth-Schnatter, and Grün 2016)
is fitted to the datasets (column SparseMix). The results of fitting
a sparse hierarchicalmixture ofmixturesmodel withK = 10 are
given in column SparseMixMix, where L = 5 is compared to our
default choice of L = 4 to investigate robustness with respect to
the choice of L. For each estimation, MCMC sampling is run for
4000 iterations after a burn-in of 4000 iterations.

As can be seen in Table 1, for all datasets the sparse hierarchi-
cal mixture of mixtures model is able to capture the data clusters
quite well both in terms of the estimated number of clusters and
the clustering quality measured by the misclassification rate as
well as the adjusted Rand index. In general, our approach is not
only outperforming the standardmodel-based clustering model
using mixtures of Gaussians regarding both measures, but also
the approach proposed by Baudry et al. (2010). In addition, it
can be noted that for all datasets the estimation results remain
quite stable, if the number of subcomponents L is increased
to 5, see the last column in Table 1. The results for the Yeast

Table . Results for the estimated number of data clusters K̂0 for various benchmark datasets, using the functionsMclust to fit a standardmixturemodelwithK = 10 and
clustCombi to estimate a mixture with combined components (columnMclust), using a sparse finite mixture model with K = 10 (column SparseMix), and estimating
a sparse hierarchical mixture of mixtures model with K = 10, φB = 0.5 and φW = 0.1, and L = 4, 5 (column SparseMixMix). Priors and hyperparameter specifications are
selected as described in Section . In parentheses, the adjusted Rand index (“” corresponds to perfect classification) and the proportion of misclassified observations (“”
corresponds to perfect classification) are reported.

Mclust SparseMix SparseMixMix
K = 10 K = 10 K = 10

Dataset N r K true Mclust clustCombi L = 1 L = 4 L = 5

Yeast     (., .)  (−., .)  (., .) 2 (., .)  (., .)
Flea beetles     (., .)  (., .)  (., .) 3 (., .)  (., .)
AIS     (., .)  (., .)  (., .) 2 (., .)  (., .)
Wisconsin     (., .)  (., .)  (., .) 2 (., .)  (., .)
Flower     (., .)  (., .)  (., .) 4 (., .)  (., .)
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Figure . Flow cytometry dataset DLBCL. Scatterplot of the clustering results.

dataset are of particular interest as they indicate that clust-
Combi completely fails. Although the misclassification rate of
25% implies that only a quarter of the observations is assigned
to “wrong” clusters, inspection of the clustering obtained reveals
that almost all observations are lumped together in a single,
very large cluster, whereas the few remaining observations are
split into five very small clusters. This bad clustering quality is
better reflected by the adjusted Rand index which takes a neg-
ative value (adj = −0.02), is “worse than would be expected
by guessing” (Franczak, Browne, and McNicholas 2012). For
the flower dataset, more results are given in Appendix D,
where the obtained clustering and cluster distributions are
illustrated.

To investigate the performance of our approach on larger
datasets, we fit the sparse hierarchical mixture of mixtures
model to two flow cytometry datasets. These applications also
allow us to indicate how the prior settings need to be adapted
if a different cluster structure is assumed to be present in the
data. As generally known, flow cytometry data exhibit non-
Gaussian characteristics such as skewness, multimodality, and
a large number of outliers, as can be seen in the scatterplot of
two variables of the GvHD dataset in Figure 3.

Thus, we specified a sparse hierarchical mixture of mixtures
model with K = 30 clusters and increased the number of sub-
components forming a cluster to L = 15 to handle more com-
plex shapes of the cluster distributions given the large amount
of data. Since the flow cytometry data clusters have a lot of
outliers similar to the clusters generated by shifted asymmet-
ric Laplace (SAL) distributions (see Appendix F), we substi-
tute the hyperprior C0k ∼ Wr(g0,G0) by the fixed value C0k =

g0G−1
0 and setλk j ≡ 1, j = 1, . . . , r to prevent thatwithin a clus-

ter the subcomponent covariance matrices are overly shrunken
and become too similar. In this way, subcomponent covariance
matrices are allowed to vary considerably within a cluster and
capture both a dense cluster region around the cluster center and
scattered regions at the boundary of the cluster.We fit this sparse
hierarchical mixture of mixtures model to the DLBCL data after
removing 251 dead cells.

For most MCMC runs after a few hundred iterations, all but
four clusters become empty during MCMC sampling. The esti-
mated four cluster solution coincides almost exactly with the
cluster solution obtained with manual gating; the adjusted Rand
index is 0.95 and the error rate equals 0.03. This error rate out-
performs the error rate of 0.056 reported by Lee andMcLachlan
(2013). In Figure 2, the estimated four cluster solution is visual-
ized.

When fitting a sparse hierarchical mixture of mixturesmodel
to the GvHD data, the classifications resulting from different
runs of the MCMC algorithm seem to be rather stable. The
obtained solutions differ mainly in the size of the two large
clusters with low expressions. These, however, are supposed to
not contain any information regarding the development of the
disease. On the right-hand side of Figure 3, the results of one
specific run are shown in a heatmap. In this run, we found
eight clusters which are similar to those reported by Frühwirth-
Schnatter and Pyne (2010) when fitting a skew-tmixture model
to these data. In the heatmap, each row represents the location
of a six-dimensional cluster, and each column represents a par-
ticular marker (variable). The red, white, and blue colors denote
high, medium, and low expressions.

Figure . Flow cytometry dataset GvHD. Scatterplot of two variables (“FSC,” “CD”) (left-hand side), and heatmap of the clustering results by fitting a sparse hierarchical
mixture ofmixturesmodel (right-hand side). In the heatmap, each row represents the location of a six-dimensional cluster, and each column represents a particularmarker.
The red, white, and blue colors denote high, medium, and low expression, respectively.
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As in Frühwirth-Schnatter and Pyne (2010), we identified
two larger clusters (43% and 20.4%, first two rows in the
heatmap) with rather low expressions in the last four variables.
We also identified a smaller cluster (3.8%, forth row from the
bottom) representing live cells (high values in the first two vari-
ables) with a unique signature in the other four variables (high
values in all four variables). Also, two other small clusters can
be identified (second and third rows from the bottom) which
have a signature very similar to the clusters found by Frühwirth-
Schnatter and Pyne (2010), and thus our results confirm their
findings.

5. Discussion

We propose suitable priors for fitting an identified mixture
of normal mixtures model within the Bayesian framework of
model-based clustering. This approach allows for (1) auto-
matic determination of the number of clusters and (2) semi-
parametric approximation of non-Gaussian cluster distributions
by mixtures of normals. We only require the assumption that
the cluster distributions are dense and connected. Our approach
consists in the specification of structured informative priors on
allmodel parameters. This imposes a rigid hierarchical structure
on the normal subcomponents and allows for simultaneous esti-
mation of the number of clusters and their approximating distri-
butions. This is in contrast to the two-step merging approaches,
where in the first step the data distribution is approximated by a
suitable normal mixture model. However, because this approx-
imation is made without taking the data clusters into account
which are reconstructed only in the second step of the pro-
cedure, the general cluster structure might be missed by these
approaches.

As we noted in our simulation studies, the way in which
the cluster mixture distributions are modeled by the subcom-
ponent densities is crucial for the clustering result. Enforcing
overlapping subcomponent densities is essential to avoid that
a single subcomponent becomes too narrow thus leading to a
small a posteriori cluster probability for observations from this
subcomponent. Also, enforcing that observations are assigned
to all subcomponents during MCMC sampling is important as
the estimation of empty subcomponents would bias the result-
ing cluster distribution because of the “prior” subcomponents.
For modeling large, overlapping subcomponent densities, cru-
cial model parameters are the a priori specified covariance
matrix of the subcomponent means and the scale matrix of the
inverse Wishart prior for the subcomponent covariance matri-
ces. We select both crucial hyperparameters based on the vari-
ance decomposition of a mixture of mixtures model.

We found a prior setting which is able to capture dense and
connected data clusters in a range of benchmark datasets. How-
ever, if interest lies in detection of different cluster shapes, a dif-
ferent tuning of the prior parameters may be required. There-
fore, it would be interesting to investigate in more detail how we
can use certain prior settings to estimate specific kinds of data
clusters. Then, it would be possible to give recommendations
which prior settings have to be used to capture certain types
of data clusters. For instance, mixtures of shifted asymmetric
Laplace (SAL) distributions, introduced by Franczak, Browne,
and McNicholas (2012), have cluster distributions which are

nondense and have a strongly asymmetric shape with comet-
like tails. In this case, the prior specifications given in Section 2
are not able to capture the clusters and need to be tuned to cap-
ture this special kind of data clusters, see the example given in
Appendix F.

Although our approach to estimate the number of clusters
worked well for many datasets, we encountered mixing prob-
lems with the blocked conditional Gibbs sampler outlined in
Appendix A, in particular in high-dimensional spaces with large
datasets. To alleviate this problem, a collapsed sampler similar to
Fall and Barat (2014) could be derived for finite mixtures. How-
ever, we leave this for future research.

Supplementary Materials

Appendix containing (A) theMCMC scheme to estimate a mixture of mix-
tures model, (B) a detailed description of the post-processing strategy
based on the point process representation, (C) the simulation stud-
ies described in Section 4, (D) a description of the datasets studied
in Section 4, (E) an illustration of issues with the merging approach,
and (F) estimation of data clusters generated by a SAL-distribution
(Franczak, Browne, and McNicholas 2012). (Appendix.pdf)

R Code implementing the sparse hierarchical mixture of mixtures model
(Code.zip).
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