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This study investigated the effects of yellow mealworm meal (YM) replacing soybean meal (SBM) at
different proportions (0%, 15%, 30% and 45%, referred as YM0, YM15, YM30 and YM45, respectively) on
the flesh quality of Nile tilapia. A total of 360 fish (70.0 ± 0.12 g) were randomly divided into 4 groups (3
tanks per group). Fish were fed the experimental diet twice daily for 10 wk. The results showed that
muscle protein content significantly decreased in YM30 and YM45, while the lipid content significantly
decreased in YM45 (P < 0.05). The essential amino acids and flavor amino acids of the muscle were not
affected by the YM substitution, while saturated fatty acid content decreased in YM30 and YM45
compared with YM0 (P < 0.05). Fillets in YM45 had higher hardness, gumminess, and a higher proportion
of thin myofibers (�100 mm, P < 0.05) than those in other groups. Further analysis revealed that
apoptosis and atrophy related genes were up-regulated, while the muscle antioxidant capacity decreased
significantly in YM45 (P < 0.05), which may be related to the high acid value in YM45 diet. Our findings
indicated that YM could replace up to 30% SBM without substantially altering the flesh quality. When the
replacement ratio increased to 45%, the flesh quality would change. Special attention should be paid to
avoid feed rancidity which may affect the flesh quality of fish.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Aquaculture is one of the fastest-growing food-producing sec-
tors. From 2000 to 2018, the contribution of global aquaculture
production to global fish production increased from 25.7% to 46%,
and it is expected to reach 50% by 2030 (FAO, 2020; Tran et al.,
2022). Due to the high environmental cost of protein-rich
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terrestrial plant cultivation, soybean meal (SBM), the most
commonly used plant protein source for omnivorous fish, has
become more expensive. The price of SBM has doubled in 2022
compared with that in 2019 in China (National Bureau of Statistics
of the People’s Republic of China, 2022, National Bureau of
Statiastics of the People’s Republic of China, 2019). Exploring
alternative protein sources is increasingly urgent (Hua et al., 2019).

Yellow mealworm (Tenebrio molitor) meal (YM) could be a
promising protein source, because its crude protein content ranges
from 47% to 60%, which is similar to or even higher than the protein
content of SBM (Bernard, 2016; Makkar et al., 2014). In addition to
having a favorable nutritional composition, YM also possesses
environmental benefits (Makkar et al., 2014; Tran et al., 2022).
Nowadays, the feasibility of YM as an alternative protein source for
fishmeal has been explored in a variety of fishes (Henry et al., 2018;
Sankian et al., 2018; Su et al., 2017). However, little attention has
been paid to the effect of YM as a substitute for SBM.
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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With the increase in consumer health awareness, flesh quality
has gained more and more attention. Sensory quality and nutri-
tional value are two main aspects of flesh quality (Espe, 2008).
Sensory quality is usually evaluated by texture parameters,
including hardness, gumminess, cohesiveness, chewiness, and
water-holding capacity (Gin�es et al., 2004). Nutritional value in-
cludes the content of protein, lipid, unsaturated fatty acids, essen-
tial amino acids, etc (Mathew et al., 2019). It has been reported that
dietary components are the main contributors to flesh quality
(Wang et al., 2022). A study on rainbow trout (Oncorhynchus
mykiss) revealed that substituting fishmeal with increasing levels of
full-fat YM did not influence the fillet proximate composition, but
decreased the ratios of polyunsaturated fatty acid/saturated fatty
acid (PUFA/SFA) and n-3/n-6 (Iaconisi et al., 2018). Fillet firmness of
Litopenaeus vannamei was unchanged, while the concentration of
eicosapentaenoic acid and docosahexaenoic acid decreased with
increasing levels of fishmeal substituted by YM (Panini et al., 2017).
However, the effect of YM replacing SBM on fish flesh quality re-
mains unknown.

Nile tilapia (Oreochromis niloticus) is the third-largest farmed
fish all over the world with a total production of 4,525 thousand
tonnes (Dawood et al., 2022). Nile tilapia has fast growth, physio-
logical strength, high marketability, and excellent flesh quality
(Khanjani and Sharifinia, 2021). Nowadays, SBM is the most
commonly used plant protein source in tilapia feeds (El-Saidy and
Saad, 2011). The feasibility of replacing SBM with YM has been
verified in juvenile tilapia (Tubin et al., 2020), but its influence on
fish flesh quality has not been investigated. Hence, in this study, YM
was used to partially replace SBM to feed Nile tilapia for 10 wk, and
the influence of the protein substitution on the fillet nutrient
composition and texture properties was detected.

2. Materials and methods

2.1. Ethical statement

This experiment was approved by the Animal Experiment Ethics
Committee of East China Normal University, and was conducted
according to the requirements of the Care and Use of Laboratory
Animals in China (20201002).

2.2. Experimental diets and feeding trial

Four isonitrogenous and isoenergetic experimental diets were
formulated by replacing 0%, 15%, 30%, and 45% of SBM with YM
referred to as YM0, YM15, YM30, and YM45, respectively. The
formulation and proximate composition of the experimental diets
were shown in Supplementary Table S1. Feed processing operations
were consistent with a previous study (Wu et al., 2022). The diets
were stored in a dry and dark place at room temperature
(25 ± 5 �C).

Nile tilapia (male) were purchased from Tianfa Fry Development
Co. Ltd (Guangzhou, China). All fish were acclimated and reared to
70 g for the subsequent experiment. During the acclimation, fish
were fed with a commercial feed containing 330 g/kg protein and
50 g/kg lipid (Tongwei, China). Three hundred and sixty healthy
tilapia (70.0 ± 0.12 g) were randomly divided into 4 groups: YM0,
YM15, YM30, and YM45 (3 tanks per group, 30 fish per tank).
During the experiment, fish were fed twice daily (08:00 and 17:00).
The feeding amount was 4% of body weight. After feeding, diet
residue was collected and dried at 60 �C for the calculation of feed
intake. The total weight of fish in each tank was weighed and
recorded fortnightly and the feeding amount was adjusted
accordingly. The experiment was carried out in an indoor-
recirculating aquaculture system (Shanghai Haisheng, China). The
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water temperature was maintained at 26 to 28 �C using an auto-
matic temperature controller. The dissolved oxygen was main-
tained above 6.5 mg/L by continuous aeration. The ammonia
nitrogen was <0.02 mg/L, and the photoperiod was set at a 12 h/
12 h light/dark cycle using an automatic time controller. The
experiment lasted for 10 wk.

2.3. Sample collection

Before sampling, all fish were fasted for 24 h and weighed to
calculate the average body weight. Fish were anesthetized with
MS-222 (120 mg/L, Sigma, USA). Nine fish from each treatment (3
individuals per tank) were used to measure body length, liver
weight, condition factor (CF), hepatosomatic index (HSI), and
carcass ratio. After removing scales and skin, the muscle above the
right lateral line was dissected and sliced into 0.5-cm thick sections
for texture analysis. The muscle above the left lateral line was
collected for histological, biochemical, and molecular biological
analysis. Another 6 fish (2 individuals per tank) were used for
whole-body composition analysis. All samples were collected on
ice and kept at �80 �C.

2.4. Whole-body, muscle, and feed biochemical composition
analysis

The muscle moisture content was detected by drying the sam-
ples to a constant weight with a vacuum freeze dryer (Scientz-
30ND, Scientz, China). The crude protein, crude lipid, and the
moisture content of whole-body and feeding diet were determined
according to our previous work (Wu et al., 2022). The content of
hydroxyproline (A030-2-1) and glycogen (A043-1-1) in muscle was
determined using commercial assay kits (Nanjing Jiancheng
Bioengineering Institute, China). The acid value of the diets was
tested according to the GB/T 5009.229-2016 national standard.

2.5. Amino acid and fatty acid analysis

The amino acid compositionwas determined by using an L-8900
amino acid automatic analyzer (Hitachi, Japan), and the fatty acid
methyl ester analysis was performed by GCMS-QP2010 SE (Shi-
madzu, Japan) according to the previous study (Wu et al., 2022).
The relative proportions (% total fatty acids) of fatty acids were
calculated by using the peak area ratio.

2.6. Texture analysis

A CT3-1500 texture analyzer (Brookfield, USA) was used to
measure the texture parameters of 9 muscle samples from each
treatment. The samples were compressed at a rate of 30 mm per
minute using a 6 mm diameter metal probe. The target esteem of
compression was 0.5 mm. The software TexturePro Adapt 2 (CNS
Farnell Ltd., Great Britain) was used to calculate the hardness,
gumminess, springiness, and cohesiveness based on forceetime
curves (Wu et al., 2021).

2.7. Histological analysis

Six dorsal white muscle samples of each treatment (2 in-
dividuals per tank) were used for histological analysis. Muscles
were fixed in 4% paraformaldehyde and then embedded in paraffin.
The 5-mm thick muscle section was processed for hematoxylin-
eosin analysis according to a previously reported method (Limbu
et al., 2018) and was photographed using a 200� optical micro-
scope (Nikon, Japan). The diameter of the muscle fiber was
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represented by the longest axis length by using imaging software
Nis-Elements version 4.60 (Nikon, Japan).

2.8. Quantitative real-time PCR

Total RNA extraction and cDNA synthesis were conducted ac-
cording to the reference (Li et al., 2022) by using 6 muscle samples
per group. Both elonggation factor 1a (ef1a) and b-actinwere used
as the reference genes. The 2�DDCt method was used to estimate the
relative expression level of genes. The primer sequences were listed
in Supplementary Table S2.

2.9. Statistical analysis

The results were presented as mean ± standard error of the
mean (SEM). Normal distribution was tested by the Shapiro-Wilk
test. Statistical analyses were conducted by using one-way anal-
ysis of variance (ANOVA) followed by Duncan's multiple range
tests. SPSS 23.0 (IBM, USA) was used to conduct statistical analysis.
Bar graphs were produced by GraphPad Prism 7.0 software.

3. Results

3.1. Growth performance and whole-body proximate composition

As shown in Supplementary Table S3, with the increase in YM
substitution level, there were no significant differences in weight
gain (WG), specific growth rate (SGR), condition factor (CF), feed
conversion ratio (FCR), protein efficiency ratio (PER) and hep-
atosomatic index (HSI) among the treatments (P > 0.05). The
carcass ratio increased significantly in YM45 compared with YM0
(P < 0.05). Whole-body moisture, crude protein, and ash content
were not affected by YM substitution (P > 0.05), while crude lipid
content increased significantly in YM45 (P < 0.05).

3.2. Flesh nutritional value

As shown in Table 1, muscle moisture was similar among
groups (P > 0.05). Muscle crude protein content in YM30 and
Table 1
Fillet proximate composition, amino acid, and fatty acid composition of Nile tilapia fed w

Item YM0 YM

Proximate composition, % wet matter
Moisture 77.46 ± 0.24 77.
Crude protein 21.08 ± 0.31a 20.
Crude lipid 2.32 ± 0.10a 2.0
Hydroxyproline, mg/g tissue 366.79 ± 32.63 363
Glycogen, mg/g tissue 0.87 ± 0.13 0.8

Amino acid composition, mg/g dry matter
EAA2 344.48 ± 5.62 353
DAA3 385.82 ± 6.76 397
FAA4 400.82 ± 6.92 412

Fatty acid composition, % total fatty acids
SFA 32.21 ± 0.59a 30.
MUFA 26.70 ± 1.15b 27.
PUFA 41.08 ± 0.98 42.
n-3PUFA 5.20 ± 0.28 5.6
n-6PUFA 35.89 ± 0.72 36.
n-3/n-6 0.14 ± 0.01 0.1

YM ¼ yellow mealworm meal; EAA ¼ essential amino acids; DAA ¼ delicious amino acid
fatty acids; PUFA ¼ polyunsaturated fatty acids.
Values were presented as mean ± SEM (proximate composition and fatty acid composi
superscripts were significantly different (P < 0.05).

1 YM0, YM15, YM30, and YM45 represent using 0%, 15%, 30%, and 45% yellow mealwo
2 EAA includes threonine, valine, methionine, isoleucine, leucine, phenylalanine, and l
3 DAA includes glutamic acid, alanine, aspartic acid, glycine, and arginine (Zhang et al
4 FAA includes glutamic acid, alanine, aspartic acid, glycine, phenylalanine, and tyrosi
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YM45 was significantly lower than that in YM0 (P < 0.05).
Compared with YM0, muscle crude lipid content decreased
significantly in YM45 (P < 0.05). The content of hydroxyproline
and glycogen in muscle didn't differ significantly among treat-
ments (P > 0.05). The content of essential amino acids (EAA),
delicious amino acids (DAA), and flavor amino acids (FAA) in the
muscle was not affected by the protein source replacement
(P > 0.05). YM30 and YM45 showed significantly decreased SFA
content compared to YM0 (P < 0.05). The amount of mono-
unsaturated fatty acids (MUFA) increased in the muscle of YM30
and YM45, but only showed significance in YM30 (P < 0.05). The
proportions of n-3 PUFA and n-6 PUFA, and the n-3/n-6 ratio were
not affected by YM substitution (P > 0.05).
3.3. Texture properties

As shown in Fig. 1, muscle hardness and gumminess were
significantly higher in YM45 than in YM0 (P < 0.05, Fig. 1a and b).
The muscle springiness was significantly reduced in YM30 and
YM45 (P < 0.05, Fig. 1c). The muscle cohesiveness and centrifugal
loss were similar among groups (P > 0.05, Fig. 1d and e).
3.4. Myofiber histological characteristics and the expression level of
myogenesis regulation and apoptosis-related genes

There were no significant differences in the average diameter of
myofibers among treatments (P > 0.05), but the myofiber diameter
distribution differed (Fig. 2e and f). In YM45, the proportion of
myofiber with a diameter less than 100 mm increased significantly
(P < 0.05), while the proportion of myofiber with a diameter more
than 100 mm decreased significantly (P < 0.05, Fig. 2f).

To investigate the possible reason for the change in myofiber
diameter, the expression levels of myogenesis (myogenic differen-
tiation 2 [myod2] and myogenin [myog]), muscle atrophy (myo-
statin [mstn] and atrogin-1), and apoptosis (caspase8, caspase9,
caspase3, and caspase7) related genes were assessed (Fig. 3). The
expression level ofmyod2 andmyogwere unchanged (P > 0.05), but
the expression levels of mstn and atrogin-1 in YM45 were signifi-
cantly higher than those in YM0 (P < 0.05). Compared with YM0,
ith the experimental diets for 10 wk1.

15 YM30 YM45

45 ± 0.23 77.05 ± 0.28 78.12 ± 0.52
63 ± 0.16ab 20.04 ± 0.28b 20.06 ± 0.47b

4 ± 0.10ab 2.41 ± 0.25a 1.79 ± 0.09b

.92 ± 27.52 367.74 ± 35.75 366.51 ± 41.16
3 ± 0.10 0.73 ± 0.07 0.79 ± 0.12

.11 ± 1.42 335.35 ± 10.51 354.45 ± 3.96

.49 ± 4.17 373.21 ± 10.01 393.39 ± 4.37

.24 ± 5.07 387.59 ± 10.74 408.52 ± 4.29

74 ± 0.66ab 30.16 ± 0.63b 30.40 ± 0.29b

14 ± 0.89b 31.04 ± 1.69a 28.11 ± 0.69ab

12 ± 1.28 38.78 ± 1.94 41.49 ± 0.80
9 ± 0.34 5.00 ± 0.47 5.61 ± 0.17
44 ± 0.99 33.79 ± 1.47 35.88 ± 0.72
6 ± 0.01 0.15 ± 0.01 0.16 ± 0.01

s; FAA ¼ flavor amino acids; SFA ¼ saturated fatty acids; MUFA ¼ monounsaturated

tion n ¼ 6, amino acid composition n ¼ 4). Values in the same row with different

rm meal to replace soybean meal, respectively.
ysine (Zhang et al., 2021).
., 2021).
ne (Zhang et al., 2021).



Fig. 1. Texture properties in the fillet of Nile tilapia fed with the experimental diets for 10 wk. YM ¼ yellow mealworm meal. YM0, YM15, YM30, and YM45 represent using 0%, 15%,
30%, and 45% yellow mealworm meal to replace soybean meal, respectively. (a) Muscle hardness, (b) muscle gumminess, (c) muscle springiness, (d) muscle cohesiveness, and (e)
muscle centrifugal loss. Values were presented as mean ± SEM (n ¼ 9). Bars with different letters indicated significant differences (P < 0.05).

Fig. 2. Myofiber characteristics in the muscle of Nile tilapia fed with the experimental diets for 10 wk. YM ¼ yellow mealworm meal. YM0, YM15, YM30, and YM45 represent using
0%, 15%, 30%, and 45% yellow mealworm meal to replace soybean meal, respectively (aed) Muscle histological sections of YM0, YM15, YM30, and YM45 groups under
200 � magnification (scale bars indicate 100 mm, double-ended arrows illustrate long-axis distance). (e) The average diameter of myofiber (mm). (f) Myofiber diameter distribution
(percentage of myofiber diameter within a certain range). Values were presented as mean ± SEM (n ¼ 6). Bars with different letters indicated significant differences (P < 0.05).
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the transcript levels of caspase8 and caspase9 increased with a
higher YM substitution level and showed significance in YM45
(P < 0.05). The apoptosis effector caspase3 did not showa difference
among treatments (P > 0.05), but caspase7 was significantly up-
regulated in YM45 (P < 0.05).
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3.5. Anti-oxidative capacity of the muscle and the acid value of diets

In muscle of YM30 and YM45, superoxide dismutase (SOD) ac-
tivity was significantly higher than that in YM0 (P < 0.05, Fig. 4a),
while total antioxidation capacity (T-AOC) declined significantly as



Fig. 3. The expression level of the genes related to myogenesis regulation and apoptosis in the fillet of Nile tilapia fed with the experimental diets for 10 wk. YM ¼ yellow
mealworm meal. YM0, YM15, YM30, and YM45 represent using 0%, 15%, 30%, and 45% yellow mealwormmeal to replace soybean meal, respectively. (a) The relative expression level
of myogenesis regulation-related genes. (b) The relative expression level of muscle apoptosis-related genes. myod2 ¼ myogenic differentiation 2; myog ¼ myogenin;
mstn ¼ myostatin. Values were presented as mean ± SEM (n ¼ 6). Bars with different letters indicated significant differences (P < 0.05).
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YM substitution levels increased with the lowest value observed in
YM45 (P < 0.05, Fig. 4b). Besides, malondialdehyde (MDA) content
increased significantly in YM substitution groups than in YM0
(P < 0.05, Fig. 4c).

At the beginning of the experiment, the acid value of diets was
similar among groups (Fig. 5a, P > 0.05). While at the end of the
experiment, the YM45 diet had a significantly higher acid value
than the other groups (Fig. 5b, P < 0.05).

4. Discussion

It has been reported that including YM up to 10% in the diet did
not influence the growth performance, carcass composition, or
hematological indexes of Nile tilapia (Tubin et al., 2020). In the
present study, the mealwormmeal inclusion level in YM45 is 12.6%
of the diet, which is similar to the result of Tubin et al. (2020). In the
present study, we raised big fishwith an initial weight of 70± 0.12 g
for 10 wk to detect the flesh quality, thus the specific growth rate is
relatively low compared with the juvenile tilapia (Soderberg, 1997).

Amino acid and fatty acid composition are important indicators
of nutritional value. In the present study, muscle EAA was not
affected by YM substitution. Similar results were found in
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mandarin fish (Siniperca scherzeri) when they were fed with
increasing levels of YM (Sankian et al., 2018). The proportions of
DAA and FAA are important factors affecting flesh flavor (Zhang
et al., 2021). In this study, the DAA and FAA in fillet muscle were
not affected by YM substitution. It has been found that SFA and
MUFA were not affected by YM substitution at 25% and 50% in
blackspot seabream (Pagellus bogaraveo) fillet (Iaconisi et al., 2017),
but the fillet of mandarin fish had higher SFA and MUFAwhen they
were fed with diets containing 10% to 30% YM in place of fishmeal
(Sankian et al., 2018). In the present study, the proporation of SFA
decreased in the muscle of YM30 and YM45, while the MUFA
increased in the muscle of YM30. The discrepancy may be caused
by the different fish species or culturing environments (Xu et al.,
2020).

Texture is a primary flesh sensory factor (Zhang et al., 2022). In
the present study, we found that higher YM substitution (45%)
changed flesh texture, as was manifested by the increased hard-
ness, gumminess, and decreased springiness. It has been reported
that high collagen content is associatedwith firm flesh texture (Nyu
et al., 2007). However, the hydroxyproline content, which is used to
reflect the collagen content, did not change among treatments.
Reductions in myofiber diameter and muscle lipid content could



Fig. 4. The antioxidation parameters of fillet in Nile tilapia fed with the experimental diets for 10 wk. YM ¼ yellow mealworm meal. YM0, YM15, YM30, and YM45 represent using
0%, 15%, 30%, and 45% yellow mealworm meal to replace soybean meal, respectively. (a) Superoxide dismutase (SOD) activity in fillet. (b) Total antioxidant capacity (T-AOC) of fillet.
(c) Malondialdehyde (MDA) content in fillet. Values were presented as mean ± SEM (n ¼ 6). Bars with different letters indicated significant differences (P < 0.05).

Fig. 5. The acid value of diets at the start and the end of the experiment. YM ¼ yellow mealworm meal. YM0, YM15, YM30, and YM45 represent using 0%, 15%, 30%, and 45% yellow
mealworm meal to replace soybean meal, respectively. (a) The acid value of the experimental diets at the start of the experiment. (b) The acid value of the experimental diets at the
end of the experiment. Values were presented as mean ± SEM (n ¼ 3). Bars with different letters indicated significant differences (P < 0.05).
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also increase muscle hardness (Zhang et al., 2021; Zhao et al., 2018).
Consistently, we found that the proportion of small-diameter
myofiber increased, while the crude muscle lipid decreased in
YM45. However, it is noteworthy that the whole-body crude lipid
increased in YM45. We detected the liver crude lipid content and
mesenteric fat index, and found that both parameters increased
significantly in YM45 (data not shown). We speculate that the
protein source substitution might cause more lipid accumulation in
visceral organs instead of muscle. In mammals, it has been reported
that dietary amino acid imbalance and dietary protein malnutrition
both induces fat deposition in the liver (Otani et al., 2020), sug-
gesting that amino acid imbanlance or decreased protein di-
gestibility in YM substitution groups may disturb the lipid
metabolism in fish.

The regulation of myofiber diameter is a complex process that is
influenced by many factors, including myogenesis, muscle atrophy,
and apoptosis. In a study of Atlantic salmon (Salmo salar), Østbye
et al. (2018) indicated that muscle hardness had a positive corre-
lation with myogenesis. Our results showed that the expression
level of myod and myog, which are positive regulators of myo-
genesis, were unaffected, implying that myogenesis was not the
main reason for myofiber diameter distribution change. Muscle
atrophy could also influence the myofiber diameter (Liu et al.,
113
2020). The mstn and atrogin-1 are two reliable atrophy indicators
(Aravena-Canales et al., 2021; Rodriguez et al., 2014). The up-
regulation of both genes indicated that muscle atrophy increased
in YM45. During atrophy, protein degradation overwhelms protein
synthesis, leading to the loss of muscle protein (Kitajima et al.,
2020). Apoptosis activation was negatively correlated with myo-
fiber diameter as well (Stratos et al., 2012). In this study, the
expression of apoptosis initiator caspase8 and caspase9, and
apoptosis effector caspase7, were all up-regulated in YM45. These
results suggested that muscle atrophy and apoptosis may account
for the altered distribution of myofibers in YM45, resulting in the
change in muscle texture.

Oxidized lipids could cause oxidative stress (Song et al., 2018),
which can lead to atrophy and apoptosis (Andrianjafiniony et al.,
2010; Powers et al., 2012). Fresh mealworms are perishable
owing to microbial growth, lipid oxidation, the Maillard reaction,
and enzymatic reactions (Borremans et al., 2020). Thus, the acid
value of diets was measured. At the end of the experiment, the acid
value of diets in YM45 increased significantly than that in other
groups, suggesting that rancidity occurred in the feed of YM45. The
significantly decreased T-AOC implied that the anti-oxidant ca-
pacity was disturbed in the muscle of YM45. We speculate that
rancidity in YM45 caused muscle oxidative stress, apoptosis, and
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atrophy, which altered myofiber diameter distribution, and finally
influenced flesh texture.

5. Conclusion

In summary, our results indicated that YM could replace up to
30% SBM in Nile tilapia diets without substantially altering the flesh
quality. When the replacement ratio was increased up to 45%, the
hardness and gumminess increased, while springiness decreased in
Nile tilapia muscle. More attention should be paid to the rancidity
of feeding diet when using YM as a feed protein source.
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