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Although statistical evidence is clear regarding the dangerousness of unstable angina (UA), a form of coronary heart disease (CHD)
characterised by high mortality and morbidity globally, it is important to recognise that diagnostic precision for the condition
is unfavourable. In the present research, to gain insight into candidate biomarkers, the author draws on 1H NMR-based serum
metabolic profiling to analyze the unstable angina pectoris (UAP) metabolic signatures; this constitutes an effective way to produce
medical diagnosis. 101 unstable angina pectoris patients and 132 healthy controls were enrolled and 22 serum samples from each
group were analyzed. Effective separation was noted regarding the UAP and control groups, and, for the former group considered
in relation to their counterpart, the serum concentrations of Lac, m-I, lipid, VLDL, 3-HB, and LDL were higher whereas the
concentrations of Thr, Cr, Cho, PC/GPC, Glu, Gln, Lys, HDL, Ile, Leu, and Val were lower. The conclusion drawn in view of the
results is that the plasma metabolomics examined by 1H NMR displayed promise for biomarker identification for UA. In addition
to this, the analysis illuminated the metabolic processes of UA.

1. Introduction

Unstable angina pectoris (UAP) is a frequently encoun-
tered complication of coronary heart disease (CHD), and
approximately one-third of the population in developed
nations experiences the condition prior to turning 70 years
old. It results in the hospitalisation of over one million
patients each year, and it is a leading factor that contributes
to patient deaths [1, 2]. A range of clinical presentations
are associated with the condition, and they result from a
blockage in the coronary flow. Such blockages can occur as a
consequence of various pathophysiological mechanisms, pri-
mary among which are intracoronary atheromatous plaque
rupture, platelet aggregation, and thrombus formation [3].
At present, the diagnosis of UA takes place with reference to
angina symptoms and electrocardiogram modifications [4].
Nevertheless, it is important to recognise the limitations of
this approach, which mainly relate to the lack of objectivity
regarding symptoms and the nature of the variations in ECG.
Despite the fact that coronary angiography is characterised
by diagnostic reliability and accuracy for UA, it can only

be carried out invasively, thereby meaning that certain indi-
viduals are not willing to undergo it. Crucial considerations
when diagnosing UAP in clinical practice include patient
symptoms, which manifest in the form of high cholesterol,
triglyceride-rich lipoprotein particles (primarily VLDL and
LDL), and lower levels of cholesterol in HDL particles [5].
However, it is important to note that higher levels are not
common to every UA patient and, moreover, they can arise
for patients who have different forms of CHD [6].

Research has demonstrated that the pathogenesis of
numerous health conditions is linked to metabolite incon-
sistencies in body tissues and fluids [7]. Metabolomics is
useful because it facilitates the quantitative assessment of
small molecule metabolites within an organism, and it is
possible to employ the method for the purpose of evaluating
the way in which the concentration of certain metabolites
varies in relation to pathophysiological stimuli [8]. The
process has been employed to diagnose CHD with H-
nuclear magnetic resonance spectroscopy (NMR), and it
facilitates the differential evaluation of the levels of numerous
endogenous and exogenous molecules; for this reason, the
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literature reports that it significantly influences the examina-
tion of physiological status, condition diagnosis, biomarker
identification, and the detection of the pathways affected
by disease or treatment [9]. One of the key quantitative
and nondestructive techniques drawn on in clinical settings
is high-resolution NMR spectroscopy, which is viewed as
advantageous owing to its robustness and reliability, along
with the fact that it can be reproduced and repeated [10, 11]. In
recent years, this technique has yielded favourable results in
biomarker discovery for cardiovascular conditions, including
myocardial ischemia [12], heart failure [13], and hypertension
[14].

Owing to the way in which it can be obtained straight-
forwardly from patients in all age groups, serum constitutes
an ideal biological fluid for medical examinations. In the
present research, 1H NMR is applied to serum samples
gathered from UAP patients and healthy participants who
have previously received diagnosis and confirmation by
coronary angiography.Metabolite profile variance is recorded
in relation to the serum of each group in view of physiological
and pathological differences, and it is important to recognise
that advanced characterisation and authentication using a
significant sample size could facilitate their establishment as
clinically useful biomarkers.

2. Materials and Methods

2.1. Plasma Collection. A completely randomized design was
used in this research, and the sample size was calculated
according to the design.The research received approval from
the Ethics Committee of the Tianjin Medical University
General Hospital and TianjinMedical University, andwritten
consent was gathered from every participant. From January
2015 to June 2015, 101 individuals who received coronary
angiography for UA diagnosis and diagnosed as UAP at
the Department of Cardiology, Tianjin Medical University
General Hospital were registered for this study.The inclusion
criteria were based on UA diagnosis and selective coronary
angiography. Angina symptoms were new in onset, getting
progressively worse, or arising with minimal activity, unac-
companied by ECG changes of ST elevation, and angiograph-
ically documented organic stenosis 𝑍 > 75% in a minimum
of one major coronary artery. The exclusion criteria include
(1) participants had a history of myocardial infarction,
coronary revascularisation, heart failure, liver/renal disease,
inflammatory conditions, or metabolic disease; (2) partici-
pants who were not willing to sign the written consent form
were removed; (3) the cases were removed where clinical
information was lacking or missing and therefore statistical
analysis could not be performed. A 132-person control group,
constituted of individuals in full health, was constructed by
drawing on voluntary support at the medical examination
center at TianjinMedical University General Hospital. Table 1
overviews the demographic data pertaining to each of the
sample groups.

Before 24 hours had elapsed after being admitted, each
patient was set into an overnight fasting state and, the
following morning, a 5-mL sample of peripheral venous

blood was obtained. Centrifuging was employed at 3000 rpm
for a period of 10 minutes at 4∘C, and the serum was subject
to storage at 80∘C while awaiting analysis. Additionally,
following the patients’ enrolment onto the study, information
was gathered regarding demographic data, medical history,
personal history, and signs, and data from four conventional
diagnostic methods was logged. Notably, the collation of
patient histories and the data from diagnostic methods was
informed by pertinent specialists.

2.2. Sample Preparation and 1HNMR Spectroscopic Analysis of
Serum. The 1H NMR analysis of serum samples took place
in the manner as already accounted for [15], and serum
samples storage at −80∘C took place before 3 hours had
elapsed following collection to maintain the samples for
urinalysis. 22 samples from UAP group and 22 samples from
the control group were randomly selected. Thawing of the
samples took place a single time in the context of a biosafety
fume hood, and preparation took place by combining 550 𝜇l
of serum with 55 𝜇l of 1.5mol/l deuterated phosphate buffer
(NaH2PO4 and K2HPO4, including 0.1% TSP (sodium 3-
(trimethylsilyl)propionate-2,2,3,3-d4), pH 7.47). Where the
serumwas not sufficient, D2Oup to 550𝜇l was added. In turn,
the serum-buffer combination was set to rest for 5 minutes
at room temperature, and this was followed by centrifuging
at 10,000 rpm at 4∘C for a period of 10 minutes, the purpose
of which was to remove floating debris. The next step was to
transfer the supernatant (550 𝜇l) into a 5mmNMR tube, and
TSP was used as a chemical shift reference (𝛿 0.0), and D2O
provided a lock signal.

Every NMR spectra were subject to measurement at a
1H frequency of 600.11MHz, and this was carried out by
employing a Bruker Avance AVIII 600 spectrometer at 298K
(Bruker Biospin, Rheinstetten, Germany). A conventional
one-dimensional (1D) NMR spectrum was used to facilitate
water presaturation, and this served as a standard repre-
sentation of the overall metabolite composition. To weaken
signals from macromolecules by the CPMG (Carr-Purcell-
Meiboom-Gill) pulse sequence, the researcher employed
an interpulse delay of 3𝜇s, a mixing time of 100ms, and
irradiation of the water resonance. A BPP-LED (bipolar-pair
longitudinal eddy) current pulse sequence was employed for
the purpose of detecting large macromolecule signals, and
a two-dimensional 1H-1H COSY (correlation spectroscopy)
and TOCSY (total correlation spectroscopy) were also per-
formed for selected plasma samples to facilitate resonance
assignment.

Before Fourier transformation, an exponential window
function of 1.0Hz was employed to multiply free induction
decay (FID), and these were subject to correction for phase
and baseline distortions. This was carried out by utilising
TopSpin 2.0 (Bruker). Chemical shifts were referenced to
the peak of the anomeric proton of 𝛼-glucose at 𝛿 5.23,
and NMR spectra (𝛿 0.5–8.5) were subject to binning with
regions 0.002 ppm wide; in turn, automatic integration took
place by employing the AMIX package (v.3.8.3, Bruker
Biospin, Germany). For the purpose of bypassing the impacts
associated with imperfect water suppression, the 𝛿 4.55–5.13
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Table 1: Demographic and clinical characteristics of unstable angina patients and healthy controls.

Controls
𝑛 = 132

UAP group
𝑛 = 101

𝜒2/𝑡/𝑈 P

Male 72 (54.55%) 53 (52.48%) 0.099 0.753
Age (years) 61.04 ± 7.38 63.18 ± 9.65 1.265 0.209
Hypertension 71 (53.79%) 60 (59.40%) 0.734 0.392
Diabetes 28 (21.21%) 30 (29.70%) 2.206 0.137
Smoking 40 (30.30%) 48 (47.52%) 7.220 0.007∗

SBP (mmHg) 136.88 ± 19.62 133.98 ± 17.50 0.792 0.430
DBP (mmHg) 83.10 ± 10.72 79.41 ± 8.53 1.927 0.057
HR (BPM) 69.25 ± 10.95 70.06 ± 10.02 0.391 0.697
BMI (Kg/m2) 26.12 ± 3.24 25.14 ± 2.99 0.202 0.117
WC (cm) 97.90 ± 10.11 85.80 ± 8.61 1.119 0.266
LV (mm) 47.22 ± 3.62 47.74 ± 4.82 0.610 0.543
EF (%) 63.98 ± 3.80 62.42 ± 6.72 1.430 0.156
TC (mmol/L) 4.41 ± 1.02 4.32 ± 1.02 0.451 0.653
TG (mmol/L) 1.29 (0.84, 1.59) 1.51 (1.00, 1.84) 2.235 0.025
HDL-C (mmol/L) 1.27 (0.97, 1.52) 1.06 (0.84, 1.27) 2.857 0.004∗

LDL-C (mmol/L) 2.54 ± 0.89 3.35 ± 0.89 2.026 0.038∗

GLU (mmol/L) 5.63 (5.00, 6.00) 6.37 (5.10, 6.60) 1.087 0.277
CR (umol/L) 65.65 (56.00, 73.00) 68.98 (58.00, 76.00) 1.047 0.295
UA (mmol/L) 301.63 ± 80.37 309.96 ± 84.25 0.513 0.609
Data are presented as mean ± SD. SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; BMI: body mass index; WC: waist circumference;
LV: left ventricular end diastolic diameter; EF: left ventricular ejection fraction; TC: total cholesterol; TG: triglycerides; HDL-C: high density lipoprotein
cholesterol; LDL-C: low density lipoprotein cholesterol; GLU: blood glucose; CR: creatinine; UA: uric acid. ∗ indicates statistically different between groups.

region was extracted, thereby meaning that the spectra over
the ranges 𝛿 0.5–4.55 and 𝛿 5.13–8.5 were chosen and limited
to 3663 regions, each being 0.002 ppm wide. Normalisation
took place for every internal region to the total of every
integral region for each spectrum before pattern recognition
analysis.

Principal component analysis (PCA) was initially
employed for detecting the CPMG spectra from each serum
sample in order to derive an outline of data distribution and
similarities between the samples, for instance, in terms of
clustering and outliers.This was facilitated by drawing on the
Simca-P 11.0 software (Umetrics, Sweden). Following this,
the partial least-squares discriminant analysis (PLS-DA)
was utilised with unit variance scaling to facilitate a more
in-depth analysis of the NMR spectral data. A tenfold cross-
validation method was used to get Q2 and R2, as these two
values represent predictive ability and the explained variance
of the model, respectively. In order to further confirm the
validation of the PLS-DA model quality, permutation tests
including a randomly permuting class membership and
running 200 iterations were carried out. Then, the OPLS-DA
was used to maximize covariance between the measured data
and the response variable.

2.3. Statistical Analysis. The SAS software package (V 9.2,
Cary, NC, USA) was employed to conduct statistical tests,
and a ProcMixed analysis of variance-covariance was applied
to the data before conducting Tukey’s multiple comparisons

test. The information is presented in the form of the mean ±
standard error of the means, and a P value lower than 0.05 is
considered as statistically significant.

3. Results

Since serum, when considered in relation to any other
biological fluid, is characterised by its high level of availability
and metabolite richness following a series of biochemical
procedures, it is a useful way inwhich to gain bio-information
regarding an organism’s metabolism. As noted, the present
study has examined 22 UA patients and 22 AS controls, and
the spectra of 1H NMR measurements for serum samples
from each group are displayed in Figure 1. Previously con-
ducted research along with the in-house NMR database was
referenced to facilitate resonance assignments [16, 17].

The first step was to conduct PCA for the purpose
of detecting group separation depending on NMR signal
variability (see Figure 2; 𝑅2𝑋 = 53.0%, 𝑄2 = 28.9%). Figure 2
illustrates an effective separation trend regarding each sam-
ple, but a degree of overlying results have been detected; con-
sequently, no significant variance can be observed between
the UAP and control groups in terms of the PCA plot score.

PLS-DA is useful in maximizing variance between UAP
and control groups and facilitating the screening of metabo-
lites, and this is carried out by eliminating systematic varia-
tions which bear no relation to pathological status. PLS-DA
model (Figure 3(a)) showed the score plot of UAP and control
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Figure 1: Representative spectra of 1H NMR from UAP and
control groups. The different metabolites are as follows: 1-MH,
1-methylhistidine; Ace, acetic acid; Act, acetone; Cit, citric acid;
Cr, creatinine; DMA, dimethylamine; EA, ethanol amine; Eth,
ethanol; For, formic acid; Glc, glucose; Glu, glutamic acid; Gly,
glycine; G, glycerinum; GPC, glycerophosphoryl choline; HDL,
high-density lipoprotein; HX, hypoxanthine; IB, isobutyrate; Ile,
isoleucine; L1, LDL, CH3-(CH2)𝑛-; L2, VLDL, CH3-(CH2)𝑛-; L4,
VLDL, CH3-(CH2)𝑛-; L5, VLDL, -CH2-CH2-C=O; L6, Lipid,
-CH2-CH=CH-; L7, Lipid, -CH2-C=O; L8, Lipid, =CH-CH2-CH=;
L9, Lipid, -CH=CH-; Lac, lactic acid; Leu, leucine; Lys, lysine; M,
malonic acid;Met,methionine;Mol,methyl alcohol; NAG, n-acetyl-
glycoprotein; PC, phosphocholine; Phe, phenylalanine; Py, pyruvic
acid; Suc, succinic acid; Thr, threonine; TMAO, trimethylamine;
Urea, Uric Acid; Val, valine.

groups were rendered clearly distinct with 𝑅2𝑋 = 0.550, 𝑅2𝑌
= 0.884, and Q2 = 0.824. The parameters used to describe
the PLS-DA model were considerably heightened, thereby
indicating the robustness of the model. For the purpose of
validating the model’s performance, the author conducted a
200-iteration permutation test. Figure 3(b) illustrates that the
validation plot of the initial PLS-DAmodel is neither random
nor overfitting, and this can be seen with reference to the fact
that the permutated Q2 and R2 values are far less than the
associated initial values.

For the purpose of eliminating the impact of individ-
ual variance and, furthermore, to illuminate the modified
metabolites governing the separation regarding each group,
the OPLS-DA model was formulated. The cross-validation
parameters Q2Y were employed to generate a description of
the model’s quality, and this also served to provide insight
into the degree to which the model was predictable; in
combination with this, R2Y was used to represent the total
explained variation. Regarding score plot of OPLS-DAmodel
(𝑅2𝑌 = 0.894 and𝑄2𝑌 = 0.877), notable biochemical variance
regarding the respective sample groups was observed (see
Figure 4(a)), and the metabolic variations for UAP group
were summarized in a color-coded coefficient plot (see
Figure 4(b)). Themetabolites displaying considerable change
(𝑃 < 0.05) were detected on the basis of the absolute cut-off
value regarding correlation coefficients. Furthermore, with
𝑟 > 0.423, the serum samples of the UAP group displayed

upregulation of Lac, m-I, lipid, VLDL, 3-HB, TMAO, and
LDL. Correspondingly, samples displayed downregulation of
Thr, Cr, Cho, PC/GPC, Glu, Gln, Lys, TC, Ile, Leu, and Val.
Table 2 presents a summary of the metabolic variation.

4. Discussion

It is important to recognise that patients with UA could
be provided with pharmaceuticals to facilitate prevention.
In order to identify the biomarkers linked to UA and,
furthermore, to note the difference between these and the
biomarkers stemming frommedication, 101UApatients and a
132-person control group comprised of healthy patients were
enrolled and 22 samples from UAP group and 22 samples
from control group were analyzed in this research. This
methodological approach has also contributed to the devel-
opment of insight regarding the degree to which biomarkers
for UA diagnosis are reliable.

Thepresent research has found that plasmametabolomics
with the 1H NMR metabolomics technique illuminated the
nature of the metabolic differences regarding UAP and con-
trol groups.The ensuing examination of the profiles of serum
samples from the UAP group had the capacity to differentiate
between it and the latter group, and it facilitated the provision
of a metabolic fingerprint of the disease. In this way, the
promising nature of metabolomic spectrum in evaluating
the disease has been emphasised. In addition, the method
was employed for the purpose of evaluating the degree to
which it is accurate and reliable in UAP diagnosis, and it
has demonstrated a more effective performance regarding
specificity and sensitivity.

The experimental findings have allowed the author to
detect the 18 central metabolites governing the differentiation
between UAP and control groups. Regarding these metabo-
lites, the levels of Lac, m-I, lipid, VLDL, 3-HB, TMAO, and
LDL were upregulated in UAP group in comparison to the
healthy control group, while Thr, Creatine, Cho, PC/GPC,
Glu, Gln, Lys, TC, Ile, Leu, and Val were downregulated
in relation to the controls. In view of this, it is possible to
conclude that phospholipid and amino acid metabolism is
disrupted in regard to the UA patients. Park et al. showed
increased level of lipid metabolites were associated with a
higher risk of myocardial infarction [18]. As phospholipids
are a critical feature of every cell membrane, they have the
potential to formulate lipid bilayers. In addition to this,
phospholipids play a role in varied cell processes, including
apoptosis, cell-cell interaction, cell proliferation, and cell
differentiation [19]. Recently conducted research also demon-
strated that phospholipid metabolism performed a critical
function regarding the pathogenesis of metabolic syndrome
and hepatic steatosis, and this subsequently resulted in the
incremental progression of CVD [20]. Disturbed phospho-
lipid metabolism played an important role in cardiovascular
pathophysiology, and this included necrotic core formation,
plaque erosion or rupture, and platelet aggregation [21].
In view of this, it is justifiable to conclude that disturbed
phospholipid metabolism is critical for the development of
UA.
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Figure 2: PCA score plot for UAP and control groups; score plots displaying discrimination regarding UAP (red circles) and controls (black
squares) (𝑅2𝑋 = 0.530 and Q2 = 0.289).
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circles) and healthy controls (black squares), and OPLS-DA corresponding correlation coefficient loading plots (b) of key metabolites.

Table 2: OPLS-DA coefficients derived from the CPMG NMR data of metabolites in serum samples obtained from different groups.

Metabolites 1H (ppm) and multiplicityb
𝑟a

UAP −
control

LDL 0.85(br), 1.28(br) 0.751
Glycerophosphocholine 3.23(s) −0.669

Threonine 4.25(m) −0.658

Phosphocholine 3.21(s) −0.626

TC 0.70(br) −0.624

3-Hydroxybutyrate 1.20(d), 2.31(dd), 2.41(dd), 4.16(m) 0.577

1-Methylhistidine 7.07(s), 7.81(s) −0.556

Lipid, -CH2-C=O 2.24(br) 0.537

Phenylalanine 7.33(d), 7.37(t), 7.42(m) −0.530

Lipid, =CH-CH2-CH= 2.78(br) 0.527

Glutamate 2.08(m), 2.12(m), 2.35(m), 3.78(m) −0.500

Creatine 3.04(s), 3.93(s) −0.491

Lysine 1.45(m), 1.71(m), 1.91(m), 3.01(m), 3.76(m) −0.490

Glutamine 2.14(m), 2.45(m), 3.78(m) −0.486

Choline 3.20(s) −0.480

Leucine 0.96(t) −0.478

Valine 0.99(d), 1.04(d) −0.473

myo-inositol 3.28(t), 3.56(dd), 3.61(m), 4.06(t) 0.468

Isoleucine 0.94(t), 1.01(d) −0.452

VLDL 0.88(br), 1.30(br), 1.58(br) 0.441
Lactate 1.33(d), 4.11(q) 0.431
TMAO 3.27(s) 0.430
aCorrelation coefficients: positive and negative signs indicate positive and negative correlation in the concentrations, respectively. The correlation coefficient
of |𝑟| > 0.423 was used as the cutoff value for the statistical significance based on the discrimination significance at the level of 𝑃 = 0.05 and df (degree of
freedom) = 20. “−” means the correlation coefficient |𝑟| is less than 0.423. Multiplicityb: s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet of doublets; m:
multiplet; br: broad single peak.
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The increased level of serum creatinine is a marker of
acute coronary syndrome, in patients with a creatinine level
of 1.0mg/ml have a 10–35% higher motility than the control
group [22]. Saygitov et al. also showed that the increased
blood urea nitrogen together with serum creatinine level
was the independent risk factors of high motility in ACS
patients [23]. The majority of creatinine transitions into
phosphocreatine and produces ATP by the reversible capacity
of the enzyme. It transitions into creatinine in the absence of
the enzyme in nonstandard scenarios.This highlights that the
lower level of creatinine in the serum of UAP group indicates
the inability of UAP group to generate ATP conventionally;
consequently, the requirement exists for a greater quantity of
creatine to transition into phosphocreatine, thereby produc-
ing ATP [24].

The metabolite levels for amino acids in this research,
including Thr, Gln, Lys, Ile, Leu, and Val, were considerably
reduced for the UA patients when considered in relation to
the healthy controls. The energy metabolism of myocardium
cells was disturbed in UA patients and these cells have to find
alternative substrates to provide energy [25, 26]. Glutamine,
a critical resource for gluconeogenesis, is classified as a
form of glucogenic amino acid, and glutamine itself is a
critical component of the TCA cycle; moreover, it performs
a crucial function in numerous metabolic pathways, in par-
ticular regarding the maintenance of amino acid homeostasis
[27]. Some researches drew on metabolomics profiling for
the purpose of comparing cardiac extraction and plasma
substrates, and the results indicated that CHD experienced
a lower level of glutamate or glutamine [28]. Nishimura
et al. showed that Val decreased the damage induced by
metabolic disorder and hypoxia in a rabbit model [29]. In
the present study, the lower level could potentially result
from the amino acid metabolism disorder, where lysine
has the potential of reducing the concentrations of blood
triglycerides to hinder cardiovascular and cerebrovascular
disease.

To conclude, the metabolomics technique has offered
a high degree of utility in the context of this initiative to
improve the under diagnosis of UAP. The present study’s
findings indicate 18 possible biomarkers associated with UAP
were identified through analysis and serum metabolomics
is a highly effective way to detect biomarkers which can
facilitate subsequent differentiation regarding UAP patients
and controls. In view of this, the technique of metabolomics
is valuable in enhancing the under diagnosis of UAP, and it
is further notable that the detected metabolite biomarkers,
in functioning as predicative factors, have the potential to
be used to formulate a classification model; this could be
drawn on to facilitate the preliminary diagnoses of UA
patients, thereby creating the opportunity to provide person-
ally tailored clinical solutions to patients. At the same time,
effective treatment would be facilitated in a viable timeframe,
thereby avoiding the further development of the disease to
myocardial infarction and cardiac death. Biomarkers of this
kind have similar potential to offer further insight into the
biological mechanisms of UA, and these can facilitate valu-
able hints on the basis of which practitioners can heighten
treatment standards.
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