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INTRODUCTION

Liver volume assessment is an important component of a 
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Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and 
signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance 
imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity.
Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset 
(110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity 
score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with 
a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 
40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, 
including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR 
(aLSSR), LSSR x LVBSA, and aLSSR x LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined 
the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%.
Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-
Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the 
liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR x LVBSA showed the strongest correlation 
with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 
0.895–0.959) to diagnose ICG-R15 ≥ 20%.
Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing 
functional liver capacity using gadoxetic acid-enhanced HBP-MRI.
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clinical workup before hepatic resection or living donor liver 
transplantation because remnant liver volume is a major 
predictor of post-hepatectomy liver failure and morbidity 
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[1-4]. Volumes of the liver and spleen are usually assessed 
using cross-sectional imaging, such as CT or MRI. Gadoxetic 
acid-enhanced MRI has potential advantages when used for 
liver volumetry because its signal intensity (SI) measured 
on hepatobiliary phase (HBP) images reflects liver function 
[5,6]. Therefore, gadoxetic acid-enhanced HBP images allow 
for simultaneous assessment of liver function and volume. 
Previous studies have demonstrated that liver SI normalized 
using spleen SI on HBP images, alone or in combination 
with liver volume measurement, positively correlates with 
liver function [7] and predicts the risk of post-hepatectomy 
liver failure [8,9].

Despite the clinical value of volumetric and functional 
liver assessment using gadoxetic acid-enhanced MRI, 
the time-consuming nature of the segmentation process 
limits its routine use. Although some image processing-
based algorithms have been developed to facilitate the 
segmentation process [10-15], they are not fully automated 
and require user intervention. Additionally, deep learning 
has recently gained attention by showing promising results 
in liver segmentation using CT or MRI [16-21], but most 
previous studies in this regard were preliminary and focused 
mainly on its technical feasibility [18-21]. Furthermore, no 
deep learning algorithm (DLA) has yet been validated for its 
utility in assessing functional liver volume using gadoxetic 
acid-enhanced HBP-MRI. To accomplish this, an accurate 
measurement of not only liver volume but also SI of both 
the liver and spleen is required, with the spleen data used 
as the internal signal reference. This study aimed to develop 
and test a DLA for fully automated measurement of the 
volume and SI of the liver and spleen using gadoxetic acid-
enhanced HBP-MRI and evaluate the clinical utility of DLA-
assisted assessment of functional liver capacity.

MATERIALS AND METHODS

This study was approved by the Institutional Review 
Boards of the three participating institutions (Asan Medical 
Center, Pusan National University Hospital, and Pusan 
National University Yangsan Hospital) (IRB No. 2018-
0507). The requirement for informed consent from the 
patient was waived due to the retrospective nature of the 
analysis.

Datasets for the Development and Testing of the DLA
The development dataset consisted of gadoxetic acid-

enhanced HBP-MRI data from 1014 subjects. The eligibility 

criteria for the development dataset included an age 
of ≥ 18 years, liver biopsy, hepatic resection, or liver 
transplantation conducted between January 2008 and 
December 2016 at our institution (Asan Medical Center), 
and the availability of gadoxetic acid-enhanced liver MRI 
results. Subjects were excluded if they had large (≥ 10 cm) or 
multiple (≥ 10) hepatic tumors on imaging, a history of liver 
or spleen surgery, a history of portal vein embolization, 
or a tumor thrombus in the major portal vein on imaging. 
Among the 5866 eligible subjects, 1014 were randomly 
selected and constituted the development dataset.

DLA performance was tested using data from 200 
randomly selected patients who underwent a liver donor 
workup or resection for hepatic neoplasm in our institution 
in 2017 (n = 170) or two other tertiary institutions (Pusan 
National University Hospital and Pusan National University 
Yangsan Hospital) (n = 30) between 2012 and 2017. The 
exclusion criteria for this test dataset were the same as 
those used for the development dataset. To test the DLA 
using MRI data acquired with various imaging techniques, 
we included MRI data obtained from outside institutions 
for 60 patients who had been referred to our hospital. 
Therefore, the test dataset included 110 internal and 90 
external MRI data points (Fig. 1). MRI data with imaging 
artifacts were not excluded from the development and test 
datasets to address the performance of DLA in real-world 
clinical practice.

MRI examinations were performed at 1.5T or 3T using 
various types of scanners. HBP-MRI was performed using 
the breath-hold T1-weighted fat-suppressed three-
dimensional spoiled gradient echo sequence acquired 
15–30 minutes after a bolus injection of 0.025 mmoL/kg 
gadoxetic acid (Bayer Health Care). Supplementary Table 1 
presents details of the MRI techniques used in the included 
study subjects.

Ground Truth
We generated ground truth segmentation maps of the 

liver and spleen by outlining organ margins while excluding 
any focal hepatic lesions and vessels on HBP-MRI using in-
house software plugged into ImageJ software (https://
imagej.nih.gov/ij/). To obtain a sufficient amount of 
labeled training data in a time-efficient manner, we first 
trained the prototype DLA using the 100 HBP-MRI data 
selected from the development dataset and the ground 
truth segmentation maps that were manually drawn by 
an abdominal radiologist. The remaining MRI data in the 
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development dataset were first processed by this prototype 
DLA, and then a radiology technician manually edited the 
liver and spleen masks generated by the algorithm. For the 
test dataset, the ground truth segmentation maps were 
drawn manually by a technician without using the prototype 
DLA. An abdominal radiologist reviewed all ground truth 
segmentation maps in the development and test datasets 
and corrected any inaccuracies.

Development and Technical Testing of the DLA
The DLA for automated segmentation of the liver 

and spleen on HBP-MRI was designed by modifying a 
previously reported algorithm for CT-based liver and spleen 
segmentation [17]. The development dataset was divided 
into training and tuning sets (8:2 ratio). The tuning set 
was used to select the architecture and hyperparameters 
of the DLA. The final DLA was based on the DeepLabV3+ 

Fig. 1. Study materials.
A. Flow diagram of the development and test datasets for the development and technical testing of the deep learning algorithm. B. Flow diagram 
for the study population for evaluating the clinical utility of functional liver capacity assessment. ICG = indocyanine green, PV = portal vein, 
PVE = portal vein embolization, TACE = transarterial chemoembolization

Subjects who underwent a liver resection, 
liver transplantation, or liver biopsy 

between 2008 and 2016 at our institution

Eligible subjects (n = 5866)

Development dataset (n = 1014)

Eligible subjects (n = 1045)

170 randomly selected
  - MR examination at our institution (n = 110)
  - MR examination at an external hospital (n = 60)

Test dataset (n = 200)
  - MR examination at our institution (n = 110)
  - MR examination at an external hospital (n = 90)

Eligible subjects (n = 248)

30 randomly selected

Subjects fulfilling the inclusion criteria (n = 6524)
  - Age ≥ 18 years old
  - Gadoxetic acid-enhanced MRI

Subjects who underwent liver resection 
for liver tumor or living liver donor 
work-up in 2017 at our institution

Subjects fulfilling the inclusion criteria (n = 1255)
  - Age ≥ 18 years old
  - Gadoxetic acid-enhanced MRI

Subjects fulfilling the inclusion criteria (n = 275)
  - Age ≥ 18 years old
  - Gadoxetic acid-enhanced MRI

Subjects who underwent liver resection for a 
liver tumor or living liver donor work-up from 

2012 to 2017 at two external university hospitals

Excluded (n = 658)
  - �Large or multiple tumors (n = 238)
  - Previous liver surgery (n = 197)
  - �Previous PVE (n = 192)
  - �Tumor thrombus in the major PV  

  (n = 31)

Random selection

Excluded (n = 27)
  - �Large or multiple tumors (n = 14)
  - Previous liver surgery (n = 6)
  - �Previous PVE (n = 2)
  - �Tumor thrombus in the major PV  

  (n = 5)

Excluded (n = 180)
  - �Large or multiple tumors (n = 78)
  - Previous liver surgery (n = 48)
  - �Previous PVE (n = 47)
  - �Tumor thrombus in the major PV  

  (n = 7)

A

Subjects who underwent a liver resection
for liver tumor or liver donation in 2017

at our institution

Study population for clinical utility evaluation
(n = 276)

Subjects fulfilling the inclusion criteria (n = 302)
  - Age ≥ 18 years old
  - Gadoxetic acid-enhanced MRI
  - ICG test on the same day as the MRI scan

Excluded (n = 27)
  - �Unreliable ICG results due to hemolysis (n = 9)
  - �TACE or systemic chemotherapy within 3 months  

  of the MRI (n = 8)
  - �Prior PVE or tumor thrombus in the major PV (n = 6)
  - �Bile duct obstruction (n = 4)

B
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[22]. After processing the input images, the DLA generated 
segmentation masks with the same resolution as that of 
the input images. The source code is available at https://
github.com/wltjr1007/MRSeg. Further details of this 
DLA development process are provided in Supplementary 
Materials and Supplementary Figure 1.

Technical testing of the DLA was performed using the 
test dataset. The segmentation performance of the DLA 
was analyzed using the Dice similarity score (DSS), which 
was calculated as 2 x true positive pixels/([2 x true 
positive pixels] + false negative pixels + false positive 
pixels). Volumes and SIs of the whole liver and spleen were 
measured using the DLA-generated segmentation results 
and then compared with those measured using the ground 
truth segmentation results. Volumes were calculated by 
summing consecutive areas of the organ, multiplied by 
section intervals, and expressed in cm3.

Adjusted Liver-to-Spleen SI Ratio Corrected for MRI 
Parameter Effects

We adopted liver-to-spleen SI ratio (LSSR), that is, liver 
SI divided by spleen SI, as the liver functional metric on 
HBP-MRI, as used in previous studies [7-9]. However, the 
LSSR is affected by the MRI parameters, especially the 
repetition time (TR) and flip angle (FA), which determine 
the T1 contrast. Therefore, we attempted to correct for 
the effects of the MR parameter on the LSSR through 
computer simulation. Details of this simulation and the 
clinical feasibility study are provided in the Supplementary 
Materials. Briefly, the equation for the LSSR on T1-weighted 
spoiled gradient echo MRI can be simplified as follows:

                  sin α (1–e–TR/T1Liver)           sin α (1–e–TR/T1Spleen)
LSSR = (_________________) / (__________________) 
             (1–(cos α)e–TR/T1Liver)         (1–(cos α)e–TR/T1Spleen)

where α is FA, T1Liver is liver T1, and T1Spleen is spleen T1. 
Through a computer simulation, we found combinations of 
T1Liver, T1Spleen, and resultant spleen-to-liver T1 ratios (i.e., 
the reciprocals of liver-to-spleen T1 ratio) that corresponded 
to a given LSSR, TR, and FA. An adjusted LSSR (aLSSR) was 
then calculated as the median value of the spleen-to-liver 
T1 ratio, as shown in Supplementary Figure 2.

The feasibility of aLSSR in correcting for the effects of 
the MRI parameter on LSSR was evaluated in a group of 221 
patients who underwent two sets of HBP-MRI using FAs of 
10° and 19° (see Supplementary Materials). The LSSRs were 
measured on two sets of HBP images, and the corresponding 

aLSSRs were calculated. The correlation between the values 
obtained from the FA 10° images and those from the FA 
19° images was evaluated.

Clinical Utility of DLA-Assisted Assessment of Functional 
Liver Capacity

The clinical utility of DLA-assisted assessment of 
functional liver capacity using HBP-MRI in assessing liver 
function was evaluated in 276 patients who underwent 
an indocyanine green (ICG) clearance test and gadoxetic 
acid-enhanced liver MRI on the same day as part of the 
living liver donor workup or preoperative evaluation before 
liver resection in 2017 at our institution (Fig. 1). The MRI 
techniques used are summarized in Supplementary Table 1.

The DLA was implemented using commercial software 
(GoCDSS; SmartCareworks Inc.). When the MRI data are 
uploaded, the software automatically performs liver and 
spleen segmentation. An abdominal radiologist reviewed 
the DLA-generated segmentation results and corrected any 
errors, and the time required to correct the segmentation 
error was recorded. The volume and SI of the whole liver 
and spleen were measured, and the following MRI-derived 
indices were calculated: liver volume normalized by body 
surface area (LVBSA) according to the Du Bois formula [23], 
LSSR, aLSSR, and combined volume-SI indices including 
LSSR x LVBSA and aLSSR x LVBSA. An ICG excretion test 
was performed as described previously [24], and the ICG 
plasma disappearance rate (ICG-PDR) and retention rate 
at 15 minutes (ICG-R15) were recorded. We then analyzed 
the correlation between the MRI-derived indices and the 
results of the ICG test (ICG-PDR and ICG-R15). For the 
selected MRI-derived indices, the diagnostic performance 
in predicting an ICG-R15 ≥ 20%, which is considered 
a contraindication for a major hepatectomy [25], was 
assessed.

Statistical Analysis
In the test dataset, the DSSs were compared among the 

subgroups of MRI and patient characteristics using the 
independent sample t test or the analysis of variance test. 
In the subset of 145 patients who underwent ICG test 
within 1 month of liver MRI, DSS was compared according 
to ICG-R15 categories (i.e., ICG-R15 ≤ 10%, 10% < ICG-R15 
< 20%, and ICG-R15 ≥ 20%). The agreement between DLA 
and ground truth for volume and SI measurements was 
evaluated using the Bland-Altman 95% limit of agreement 
(LOA) presented as the mean difference ± 1.96 x standard 

https://github.com/wltjr1007/MRSeg
https://github.com/wltjr1007/MRSeg
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deviation (SD) of the difference on a percentage scale, in 
which the mean difference represents systematic bias, and 
1.96 x SD of the difference represents the magnitude of the 
measurement error [26]. The correlation of LSSR and aLSSR 
between the two sets of HBP images was evaluated using 
linear regression analysis, and differences in regression 
slope from 1 and intercept from 0 were assessed.

In the clinical utility study, the correlations of MRI-
derived indices with ICG-PDR and ICG-R15 were evaluated 
using the Pearson’s correlation coefficient [27]. The 
diagnostic performance of the MRI-derived index to predict 
ICG-R15 ≥ 20% was evaluated using receiver operating 
characteristic (ROC) analysis. Statistical analyses were 

performed with SPSS version 21 (IBM Corp.) and MedCalc 
12.7.0 (MedCalc Software). Statistical significance was set 
at p < 0.05.

RESULTS

Technical Testing of the DLA
The characteristics of the development and test datasets 

are summarized in Table 1 and Supplementary Table 2. In 
the test dataset, the mean ± SD of DSS was 0.977 ± 0.009 
(range, 0.916–0.988) for the liver and 0.946 ± 0.025 (range, 
0.872–0.989) for the spleen. The segmentation performance 
of the DLA was not significantly different between the 

Table 1. Characteristics of the Development and Test Datasets and the Study Population Used for Clinical Utility Evaluation of the 
DLA

DLA Development and Test Study Population 
for Clinical Utility EvaluationDevelopment Dataset Test Dataset

Number of patients 1014 200 276
Male:female 738:276 153:47 191:85
Age, years* 54 ± 13 55 ± 13 40 ± 15
Underlying liver disease, %

None 227 (22.4) 32 (16.0) 103 (37.3)
Hepatitis B 572 (56.4) 142 (71.0) 76 (27.5)
Hepatitis C 35 (3.5) 8 (4.0) 4 (1.5)
Alcohol-induced 27 (2.7) 4 (2.0) 3 (1.1)
NAFLD 100 (9.9) 4 (2.0) 82 (29.7)
Other† 53 (5.2) 10 (5.0) 8 (2.9)

Hepatic mass
Absent, % 178 (17.6) 28 (14.0) 179 (64.9)
Present, % 836 (82.4) 172 (86.0) 97 (35.1)

Malignant 791 (78.0) 169 (84.5) 94 (34.1)
Benign‡ 45 (4.4) 3 (1.5) 3 (1.1)

Largest mass size, cm* 4.2 ± 4.1 3.1 ± 1.7 4.4 ± 3.7
Pathologic liver fibrosis stage, %

F0 354 (34.9) 60 (30.0) 179 (64.9)
F1 42 (4.1) 21 (10.5) 8 (2.9)
F2 113 (11.1) 29 (14.5) 21 (7.6)
F3 156 (15.4) 40 (20.0) 20 (7.2)
F4 349 (34.4) 50 (25.0) 32 (11.6)

Laboratory results*
AST, IU/mL 35.9 ± 46.6 30.7 ± 18.5 26.9 ± 25.6
ALT, IU/mL 31.9 ± 39.6 29.0 ± 17.9 26.0 ± 25.1
Total bilirubin, ng/mL 1.4 ± 4.3 0.7 ± 0.4 0.7 ± 0.3
Platelet count, 109/L 182.9 ± 77.9 179.7 ± 62.8 243.2 ± 69.6
PT (INR) 1.1 ± 0.3 1.1 ± 0.1 1.0 ± 0.1

Unless otherwise indicated, data are number of subjects, and data in parentheses are percentages. *Data are mean values ± standard 
deviation, †Including toxic hepatitis, hepatitis A, autoimmune hepatitis, Wilson’s disease, and hepatolithiasis, ‡Including hemangioma, 
angiomyolipoma, focal nodular hyperplasia, reactive lymphoid hyperplasia, adenoma, and cyst. ALT = alanine aminotransferase, AST = 
aspartate aminotransferase, DLA = deep learning algorithm, INR = international normalized ratio, NAFLD = non-alcoholic fatty liver 
disease, PT = prothrombin time
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internal (n = 110) and external (n = 90) test data and 
between the MRI field strengths for the liver and spleen 
(p ≥ 0.083). The DSS for liver segmentation did not differ 
according to the fibrosis stage (p = 0.766), while the DSS 
for spleen segmentation was higher in F4 than in F0 (p = 
0.005) and F2 (p = 0.021). The DSSs for the liver (p = 0.207) 
and spleen (p = 0.998) did not differ according to the 
liver function categories as assessed by ICG-R15 (Table 2). 
Representative segmentation results are shown in Figure 2.

The Bland-Altman 95% LOAs between the DLA and ground 
truth were 0.08% ± 3.70% and 0.20% ± 7.89% for liver 
and spleen volumes, respectively (Supplementary Fig. 3). 
In both internal and external test data, automated volume 
measurements using DLA did not result in a significant bias 
(range of mean difference, -0.06%–0.37%, p ≥ 0.200), and 
the measurement error was less than 4.28% and 8.01% for 
liver and spleen volumes, respectively (Table 3). Regarding 
the SI, the Bland-Altman 95% LOAs between the DLA and 
ground truth were -0.02% ± 1.28% for the liver SI and 
-0.01% ± 1.70% for the spleen SI; no significant bias was 
found for any of the SI indices measured by the DLA (p ≥ 
0.115).

Adjusted LSSR Corrected for Effects of MRI Parameters
A web-based algorithm to calculate an aLSSR by inputting 

a measured LSSR, TR, and FA is provided at https://i-pacs.
com/adjustedSIR. In patients who underwent two sets 
of HBP-MRI using different MRI parameters, as shown in 
the scatter plots (Fig. 3), the LSSRs measured on FA 19° 
images were overestimated compared with those measured 
on FA 10° images, with a regression slope of 1.52 (95% 
confidence interval [CI], 1.43–1.61). However, the use of 
aLSSR resulted in nearly equivalent estimates for the two 
HBP-MRI sets, as indicated by a regression slope close to 1 
(slope, 1.02; 95% CI, 0.95–1.08) and an intercept close to 
0 (intercept, 0.12; 95% CI, -0.05–0.28).

Clinical Utility of DLA-Assisted Assessment of Functional 
Liver Capacity

In the 276 patients included in the clinical utility 
evaluation (191 males and 85 females; mean age, 40 years) 
(Table 1), a review of the DLA-generated segmentation 
results revealed a minor segmentation error in 130 (47.1%) 
patients, which was associated with a short correction time 
(mean, 59.9 seconds; range, 18–124 seconds) and a small 
change in the measured values (Bland-Altman 95% LOAs 
of 0.35% ± 2.17%, -0.01% ± 0.23%, -0.45% ± 3.33%, and 
0.05% ± 1.14% for liver volume, liver SI, spleen volume, 
and spleen SI, respectively).

The correlations between the MRI-derived indices and 

Table 2. Performance of Deep Learning Algorithm in Liver and Spleen Segmentation in the Test Dataset

Patient Number (%)
Liver Segmentation Spleen Segmentation

Mean DSS ± SD P Mean DSS ± SD P
Total 200 (100.0) 0.977 ± 0.009 NA 0.946 ± 0.025 NA
MRI data source 0.289 0.083

Internal 110 (55.0) 0.976 ± 0.007 0.943 ± 0.024
External 90 (45.0) 0.978 ± 0.103 0.949 ± 0.259

MRI field strength 0.874 0.508
1.5T 60 (30.0) 0.978 ± 0.006 0.946 ± 0.02
3T 140 (70.0) 0.976 ± 0.009 0.945 ± 0.027

Fibrosis stage 0.766 0.003*
F0 60 (30.0) 0.978 ± 0.007 0.942 ± 0.027
F1 21 (10.5) 0.976 ± 0.01 0.943 ± 0.026
F2 29 (14.5) 0.976 ± 0.007 0.938 ± 0.029
F3 40 (20.0) 0.976 ± 0.009 0.948 ± 0.021
F4 50 (25.0) 0.977 ± 0.011 0.954 ± 0.023

Liver function† 0.207 0.998
ICG-R15 ≤ 10% 35 (24.1) 0.976 ± 0.013 0.946 ± 0.024
10% < ICG-R15 < 20% 103 (71.0) 0.978 ± 0.007 0.946 ± 0.025
ICG-R15 ≥ 20% 7 (4.8) 0.971 ± 0.012 0.946 ± 0.026

*Post-hoc Bonferroni test revealed statistically significant difference in DSS for F4 compared with those for F0 (p = 0.005) and F2 (p = 
0.021), †Data were obtained from the 145 patients who had indocyanine green test within 1 month of liver MRI. DSS = Dice similarity 
score, ICG-R15 = indocyanine green retention rate at 15 minutes, SD = standard deviation

https://i-pacs.com/adjustedSIR
https://i-pacs.com/adjustedSIR
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the results of the ICG test are summarized in Table 4. 
The aLSSR showed a stronger correlation with the ICG 
test results than the LSSR (r = 0.49 vs. 0.42 for ICG-PDR; 
r = -0.50 vs. -0.43 for ICG-R15). The combined volume-
SI indices (i.e., LSSR x LVBSA and aLSSR x LVBSA) showed a 

stronger correlation with the ICG test results than LSSR or 
aLSSR alone, and the aLSSR x LVBSA showed the strongest 
correlation with ICG-PDR (r = 0.53) and ICG-R15 (r = -0.54) 
among all MRI-derived indices (Fig. 4).

As a functional liver volume index, the aLSSR x LVBSA 

Fig. 2. Example of good (A-B) and poor (C-E) segmentation results from the DLA.
A-E. The segmentation maps produced by the DLA and the ground truth segmentation maps exhibit good agreement with a small segmentation 
error in a patient with a 2.7-cm hepatocellular carcinoma (arrow, A) and in another with liver cirrhosis (B). The use of the DLA resulted in large 
segmentation errors in a hepatocellular carcinoma (arrows) showing heterogeneous isointense-to-hypointense signals on a hepatobiliary phase 
image (C), in a liver dome area (arrows) due to artifact-induced image degradation (D), and in a spleen (arrows) due to uneven fat suppression 
in the upper abdomen (E). DLA = deep learning algorithm
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achieved area under the ROC curve of 0.932 (95% CI, 
0.895–0.959) in predicting an ICG-R15 ≥ 20%. Using 
the cut-off value of 1957.0 cm3/m2, this index showed 
a sensitivity of 100.0% (8/8) and a specificity of 76.1% 
(204/268) (Fig. 5). Examples of DLA-assisted functional 
liver volume assessment are shown in Supplementary 
Figure 4.

DISCUSSION

We have developed a DLA for fully automated 
measurement of the volume and SI of the liver and spleen 
on gadoxetic acid-enhanced HBP-MRI. We then tested this 
algorithm using an independent test dataset obtained 
using various imaging techniques. We observed that our 

Table 3. Agreement between the DLA and Ground Truth Measurements of the Volume and SI in the Test Dataset

Parameter
All MRI Data (n = 200) Internal MRI Data (n = 110) External MRI Data (n = 90)

95% LOA (%)* P† 95% LOA (%)* P† 95% LOA (%)* P†

Liver volume 0.08 ± 3.70 0.542 0.20 ± 3.15 0.200 -0.06 ± 4.28 0.793
Spleen volume 0.20 ± 7.89 0.480 0.37 ± 8.01 0.351 0.00 ± 7.76 0.997
Liver SI -0.02 ± 1.28 0.645 -0.07 ± 0.94 0.115 0.04 ±1.61 0.638
Spleen SI -0.01 ± 1.70 0.822 -0.09 ± 1.45 0.195 0.08 ± 1.94 0.433

*Data represent Bland-Altman 95% LOA values expressed as a percentage mean difference ± 1.96 x standard deviation of the difference, 
†p values for statistically significant differences in the mean difference from zero. DLA = deep learning algorithm, LOA = limit of 
agreement, SI = signal intensity

Fig. 3. Scatterplots of the liver-to-spleen SI ratio (A) and adjusted liver-to-spleen SI ratio (B) measured using the two different 
hepatobiliary magnetic resonance image sets.
A. The liver-to-spleen SI ratio measured on the hepatobiliary phase images using a 19° flip angle (echo time, 1.39 ms; repetition time, 3.83 ms) 
were overestimated compared with those measured on the images using a 10° flip angle (echo time, 1.33 ms; repetition time, 3.39 ms), with a 
regression slope of 1.52 (95% CI, 1.43–1.61). B. The adjusted liver-to-spleen SI ratios obtained using the two hepatobiliary phase image sets 
were equivalent, with a regression slope of 1.02 (95% CI, 0.95–1.08) and an intercept of 0.12 (95% CI, -0.05–0.28). CI = confidence interval, 
SI = signal intensity
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Table 4. Correlation between MRI-Derived Indices and ICG Excretion Results

MRI Indices
ICG-PDR ICG-R15

Correlation Coefficient P Correlation Coefficient P
aLSSR x LVBSA 0.53 (0.44, 0.61) < 0.001 -0.54 (-0.61, -0.45) < 0.001
LSSR x LVBSA 0.46 (0.36, 0.55) < 0.001 -0.47 (-0.56, -0.37) < 0.001
aLSSR 0.49 (0.40, 0.58) < 0.001 -0.50 (-0.58, -0.40) < 0.001
LSSR 0.42 (0.31, 0.51) < 0.001 -0.43 (-0.52, -0.32) < 0.001
LVBSA 0.16 (0.04, 0.27) 0.008 -0.17 (-0.28, -0.05) 0.005

Data in parentheses are 95% confidence intervals. aLSSR = adjusted LSSR, BSA = body surface area, ICG = indocyanine green, ICG-PDR = 
ICG plasma disappearance rate, ICG-R15 = ICG retention rate at 15 minutes, LSSR = liver-to-spleen signal intensity ratio, LVBSA = liver 
volume normalized by BSA
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DLA performed well in liver segmentation (mean DSS, 
0.977), which is superior to previously reported CT- or MRI-
based DLAs (mean DSS, 0.920–0.973) [17-21] and thus 
enables accurate liver volume measurement with a small 
measurement error (3.70%). The performance of DLA in 

spleen segmentation was slightly poorer (mean DSS, 0.946) 
than that found for liver segmentation, which may be 
attributed to the fact that the spleen has a significantly 
lower organ-to-background contrast than the liver on HBP-
MRI. However, the segmentation performance of our DLA 
produced a very accurate automated measurement of the 
liver and spleen SI, as indicated by their nearly perfect 
agreement with the ground truth values (measurement error 
of 1.28% and 1.70% for the liver and spleen, respectively).

For the assessment of liver function on gadoxetic acid-
enhanced HBP-MRI, spleen SI has been commonly used 
as an internal reference for normalizing liver SI [7-9,28]. 
However, LSSR is influenced by MRI parameters, which can 
hinder the use of this index in clinical practice when HBP-
MRI is performed using various scanning parameters. In this 
regard, we devised a method to adjust the effects of the 
MRI parameters on LSSR and developed a web calculator 
for the instant calculation of the aLSSR (https://i-pacs.
com/adjustedSIR). In the study, including patients who 
underwent HBP-MRI using two different parameter settings, 
the aLSSR obtained from the two sets of HBP-MRI data 
yielded equivalent estimates, in contrast to the considerable 
bias observed for the LSSR. Furthermore, in subjects who 
underwent an ICG excretion test and gadoxetic acid-
enhanced MRI, the aLSSR showed stronger correlations with 
the ICG excretion index than the LSSR, further supporting 
the usefulness of the aLSSR index.

We also conducted a preliminary study to evaluate the 

Fig. 4. Scatterplots showing the correlation between the functional liver volume index (aLSSR x LVBSA) and ICG excretion test 
results
A, B. As the functional liver volume index, the aLSSR multiplied by the LVBSA was used and was compared with ICG-PDR (A) and ICG-R15 (B). 
aLSSR = adjusted liver-to-spleen signal intensity ratio, ICG = indocyanine green, ICG-PDR = ICG plasma disappearance rate, ICG-R15 = ICG 
retention rate at 15 minutes, LVBSA = liver volume normalized by BSA
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clinical utility of MRI-based, DLA-assisted assessment 
of functional liver capacity. Although DLA produced 
segmentation errors in approximately half of the patients 
(47.1%; 130/276), these errors were minor and could be 
quickly corrected by the radiologist and were associated 
with errors of less than 3% of the measured volume. We also 
found that among the MRI-derived indices, the functional 
liver capacity index, aLSSR x LVBSA, showed the strongest 
correlation with ICG-PDR and ICG-R15. Although the 
correlation coefficients between the aLSSR x LVBSA and the 
ICG indices were only moderate (r = 0.53 and -0.54 for ICG-
PDR and ICG-R15, respectively), these were stronger than 
the correlation between MRI index and ICG-R15 reported in 
a previous study [29] that assessed the volumetric hepatic 
extraction fraction based on signal modeling of multiphasic 
dynamic and HBP-MRI. Furthermore, aLSSR x LVBSA also 
allowed an accurate prediction of an ICG-R15 ≥ 20% (AUC 
of 0.932), a measure that is considered a contraindication 
for major hepatectomy [25]. Taken together, our findings 
highlight the usefulness of DLA-assisted assessment of 
functional liver capacity using gadoxetic acid-enhanced 
HBP-MRI in assessing liver function.

Different approaches have been used to assess liver 
function using gadoxetic acid-enhanced HBP-MRI. 
Compared with the SI-based approach used in our present 
study [7-9], the methods based on liver T1 mapping [30,31] 
may have a theoretical advantage as T1 measurements 
more directly reflect the amount of contrast material in the 
liver than SI. However, liver T1 mapping has limitations 
in terms of clinical application as it requires dedicated 
pulse sequences that may not be available with some 
MRI scanners; due to their longer scan time, T1-mapping 
sequences are not suitable for high-resolution whole liver 
imaging, which is crucial for accurate assessment of liver 
volume. In contrast, our present approach based on routine 
HBP-MRI would be advantageous for clinical application, 
as it allows for simultaneous assessment of liver function 
and volume. Furthermore, the use of DLA can facilitate the 
clinical use of MRI-based assessments of functional liver 
capacity. MRI data analysis with this DLA can be performed 
as a background process before radiologist image review. 
Therefore, if our DLA is successfully implemented in daily 
clinical practice, radiologists may be able to review MR 
images along with DLA-generated organ segmentation 
results, and thus measure organ volume and SI with little 
additional time or effort required. Indeed, there may 
be multiple potential applications of our DLA in clinical 

practice, including the prediction of remnant liver volume 
and function prior to liver resection and the functional liver 
reservoir in patients with liver disease. The real-life utility 
and clinical implications of our DLA should be evaluated in 
future studies.

Our study has several limitations. First, since our DLA 
provides segmentation of the whole liver, additional user 
intervention is required to assess the volume and function 
of the liver in accordance with different regions. Second, 
although our development and test datasets include MRI 
data obtained using various techniques, MRI techniques 
are continually progressing. The applicability of our DLA 
when using MRI data obtained with newer techniques must 
be evaluated. Third, the feasibility of aLSSR was evaluated 
using MR scanners from a single vendor in our study. Its 
validity across different platforms and vendors should 
be evaluated in future studies. Fourth, technical tests 
and clinical utility evaluation of DLA were performed in 
subjects with relatively preserved liver function (i.e., living 
liver donors and patients who underwent liver resection). 
Therefore, our results may not be directly generalizable 
to patients with severe liver dysfunction. Larger-scale 
validation of our DLA is warranted in patients with diverse 
liver functions. Lastly, future studies should evaluate the 
actual clinical impact of our DLA on patient care as a 
comprehensive and versatile method of assessing functional 
liver capacity.

In conclusion, we have developed and tested a DLA for 
fully automated segmentation of the liver and spleen using 
gadoxetic acid-enhanced HBP-MRI. Our DLA enables the 
accurate measurement of the volume and SI of the liver 
and spleen and may be useful for assessing functional liver 
capacity using gadoxetic acid-enhanced HBP-MRI.
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