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SUMMARY

Low-Intensity Focused Ultrasound Stimulation (LIFUS) holds promise for the
remotemodulation of neural activity, but an incompletemechanistic characteriza-
tion hinders its clinical maturation. Here we developed a computational
framework to model intramembrane cavitation (a candidate mechanism) in
multi-compartment, morphologically structured neuron models, and used it to
investigate ultrasound neuromodulation of peripheral nerves. We predict that
by engaging membrane mechanoelectrical coupling, LIFUS exploits fiber-specific
differences in membrane conductance and capacitance to selectively recruit
myelinated and/or unmyelinated axons in distinct parametric subspaces, allowing
to modulate their activity concurrently and independently over physiologically
relevant spiking frequency ranges. These theoretical results consistently explain
recent empirical findings and suggest that LIFUS can simultaneously, yet selec-
tively, engage different neural pathways, opening up opportunities for periph-
eral neuromodulation currently not addressable by electrical stimulation. More
generally, our framework is readily applicable to other neural targets to establish
application-specific LIFUS protocols.

INTRODUCTION

Ultrasound-based approaches have been increasingly adopted over the past decades for a variety of

noninvasive therapeutic interventions (Escoffre and Bouakaz, 2016). These therapies rely on the mechanical

nature of acoustic waves that propagate efficiently through biological tissue and can be accurately steered

to concentrate mechanical energy within small volumes (�mm3) around deep anatomical targets. In recent

years, several in vitro and in vivo studies have shown that such acoustic waves can also be used to reversibly

modulate the activity of various neural targets with remarkable spatial accuracy (Blackmore et al., 2019).

These findings have propelled the development of Low-Intensity Focused Ultrasound Stimulation (LIFUS)

as a novel technology to achieve noninvasive, selective, and reversible neuromodulation of virtually any

neural structure.

Yet, despite a decade of intense investigation, several open issues have impeded the development of LI-

FUS as a clinically relevant technology. The variety of known physical effects of acoustic waves in biological

tissue implies a wide range of possibilities for how neurons may translate mechanical energy into electrical

responses, including membrane conformational changes because of thermodynamic coupling (Heimburg

and Jackson, 2005), flexoelectricity, (Petrov, 2002) and mechanosensitive channels activation (Tyler, 2011).

At the same time, distinguishing these candidate mechanisms in experimental settings and establishing

their predominance over the multidimensional LIFUS parameter space remains a challenge. Consequently,

it is difficult to provide a mechanistic perspective that would clarify and guide the heterogeneous and

sometimes conflicting collection of neuromodulatory effects (excitatory and inhibitory, short and long

term, localized and large-scale, reversible and permanent) obtained across animal models, neural targets,

and experimental designs.

In light of these challenges, computational approaches have become helpful tools to increase the under-

standing of ultrasound-neuron interactions, as they allow a specific candidate mechanism to be examined.

A significant effort made by (Plaksin et al., 2014), who introduced the Neuronal Intramembrane Cavitation

Excitation (NICE) model, described a candidate mechanism in which LIFUS induces the cavitation of
iScience 24, 103085, September 24, 2021 ª 2021 The Authors.
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specific phospholipidic structures (so-called bilayer sonophores), thereby dynamically altering membrane

capacitance and triggering action potentials. This model predicts cell-type-specific LIFUS responses of

cortical and thalamic neurons (Plaksin et al., 2016) that correlate indirectly with a range of empirical results

obtained in the central nervous system (CNS) (Kim et al., 2012; King et al., 2013; Tufail et al., 2011; Yoo et al.,

2011).

The NICE model, however, entails a significant numerical stiffness that has so far limited its applications to

point-neuron studies (Plaksin et al., 2014, 2016; Tarnaudet al., 2019) that could not addressphysiologically rele-

vant questions, such as the influence of intracellular axial coupling and morphological inhomogeneity on

neuronal responses, the spatiotemporal dynamics of those responses, and the impact of spatial features of

the acoustic field on excitability (as is the case for electrical stimulation). Hence, a multi-compartment model

of intramembrane cavitation incorporating morphological details would be highly beneficial to increase our

understanding of LIFUS neuromodulation by intramembrane cavitation in a more realistic setting.

In a recent study, we developed a multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC)

model that alleviates the numerical stiffness of the NICEmodel by integrating the coarse-grained evolution

of effective electrical variables as a function of a precomputed, cycle-averaged impact of the oscillatory

mechanical system (Lemaire et al., 2019), thereby drastically reducing computational costs while maintain-

ing numerical accuracy. Building on this effective paradigm, we presentmorphoSONIC, a novel framework

to simulate intramembrane cavitation into morphologically structured neuron models. This framework le-

verages the optimized modeling and numerical integration pipelines of the NEURON simulation environ-

ment (Hines and Carnevale, 1997), and provides an alternative implementation of its internal cable repre-

sentation as a hybrid (charge and voltage casted) electrical circuit that is numerically compatible with the

SONIC model.

Specifically, we exploit this framework to investigate the mechanisms of ultrasonic neuromodulation in

myelinated and unmyelinated peripheral fibers, using previously validated single-cable axonmodels (Reilly

et al., 1985; Sundt et al., 2015). First, we provide an in-depth analysis of predicted LIFUS neuronal responses

and recruitment mechanisms in both fiber types. Second, we characterize their LIFUS excitability by eval-

uating strength-duration (SD) ‘‘signatures’’ across a wide range of model and stimulation parameters and

compare those signatures to those traditionally obtained with electrical stimulation. Third, we identify key

morphological features underlying the distinct LIFUS sensitivities of myelinated and unmyelinated axons.

Fourth, we analyze cell-type-specific neuronal responses upon repeated acoustic exposure and identify

pulsing regimes yielding a robust modulation of fiber spiking activity. Finally, we propose a new type of

pulsing protocol to achieve the concurrent, yet independent, modulation of myelinated and unmyelinated

axons within heterogeneous nerve bundles.
RESULTS

We investigated the mechanisms of US neuromodulation by intramembrane cavitation in peripheral nerve

fibers, as these structures represent privileged, accessible neuromodulation targets. Moreover, multiple

studies have demonstrated the paramount influence of their morphology on the resulting excitability by

electric fields (McNeal, 1976; Rattay, 1986). As such, they are natural candidates for the study of LIFUS ef-

fects in morphologically structured models. To this aim, we used single-cable axonal representations of

myelinated and unmyelinated fibers (Reilly et al., 1985; Sundt et al., 2015) (SENN and Sundt model, respec-

tively, Figure 1) allowing for a numerically valid incorporation of the SONIC paradigm (see Figure 2) while

maintaining a certain level of morphological realism.

Given the multiplicity of parameters in the SONIC model and the remaining uncertainty regarding key vari-

ables (mainly sonophore dimensions and density) and their distribution across morphological structures,

we opted here to constrain this input space in order to restrict our analysis to an acceptable dimensionality.

Thus, in all simulations, we considered that sonophores are absent from myelinated model sections, and

assumed a uniform sonophore density across the remaining compartments (set by default to fs = 80% - a

geometrically plausible value yielding robust excitability in cortical point-neuron models; see (Lemaire

et al., 2019, Figure 10). We also chose a typical sonophore radius (a = 32 nm) already used in previous

studies (Lemaire et al., 2019; Plaksin et al., 2014, 2016), unless stated otherwise. Internal SONIC model pa-

rameters were also defined as in (Lemaire et al., 2019). Importantly, these parameters were adopted as is,

without returning or post-hoc adjustments.
2 iScience 24, 103085, September 24, 2021
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Figure 1. Morphology, biophysics and incorporation of the SONIC paradigm in myelinated and unmyelinated axon models

(A) Schematic of the myelinated axon model morphology.

(B) Electrical circuit representation of the membrane dynamics at the nodes of Ranvier.

(C and D) Equivalent morphological and biophysical descriptions of the uniform unmyelinated axon.

(E) Schematic diagram showing the incorporation of the SONIC paradigm into the axon models.
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Similarly, the expansion of acoustic simulations to spatially-extended structures also expands the dimen-

sionality of the stimulus parameter space: beyond the carrier frequency (fUS) and pulsing protocol, ampli-

tudes (A) and phases (f) of the pressure phasor affecting each model compartment must be chosen, sug-

gesting the need to compute acoustic pressure distributions in the model region. Here again, a wide

number of distributions could be considered. Thus, to constrain the stimulus input space, we considered

the simple (yet realistic and relevant) case of a single-element planar transducer pointing normally toward a

peripheral fiber bundle lying inside a water-like acoustic medium (soft tissue or liquid) at the transducer

focal distance, and used a detailed physics model of acoustic propagation to compute the resulting nature

of acoustic distributions along fibers (Figure S1A). Simulations revealed that under this particular orthog-

onal arrangement, spatial profiles of peak acoustic pressure along the fiber are well approximated by

Gaussian distributions (the width of which depends on source parameters such as transducer radius and

carrier frequency), whereas phase gradients remain small in the focal region (Figures S1A–S1C). Hence,

in the following sections, we assumed Gaussian-shaped pressure exposure along fibers. Finally, in order

to further constrain the input space, we considered in most of our analyses a single ultrasound carrier fre-

quency (fUS = 500 kHz), lying comfortably within the theoretical ‘‘likelihood’’ range for intramembrane cavi-

tation (Krasovitski et al., 2011).

The SONIC paradigm is numerically accurate in multi-compartment axon models

Two recent studies have shown that in multi-compartment structures, the presence of large axial conduc-

tances could introduce significant intra-cycle charge redistribution mechanisms during intramembrane

cavitation, thereby inducing a significant numerical deviation of the SONIC paradigm from its temporally

detailed NICE counterpart (Tarnaud et al., 2020, 2021). Thus, to establish the conditions of this deviation

and whether it applies to the models of this study, we performed a series of numerical simulations in

two-compartment benchmark models, allowing the simulation of temporally detailed intramembrane cavi-

tation dynamics in each compartment with reasonable computational effort. Using these models, we
iScience 24, 103085, September 24, 2021 3
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Figure 2. Evaluation of the SONIC paradigm accuracy in two-compartment benchmark models

(A) Temporal evolution of charge density from temporally detailed (solid shaded lines) and cycle-averaged (dashed lines) NICE solutions as well as SONIC

(solid lines) solutions for a reference ultrasound stimulus (fUS = 500 kHz, A1 = 100 kPa, A2 = 50 kPa), shown for various combinations of membrane and axial

time constants in a two-compartment passive model (Cm0 = 1 mF/cm2, ELeak =�70mV). For each combination, the horizontal scale bar indicates 100 ns. Black

dashed lines indicate the acoustic stimulus period (TUS).

(B) Color map showing the absolute steady-state deviation of charge density εN between SONIC and cycle-averaged NICE solutions in the passive model as

a function of themodel’s electrical time constants, for the same ultrasound stimulus. Themaximal deviation across model compartments is reported for each

combination. The acoustic period (dashed lines) is indicated, as well as the threshold curve for a critical deviation level of 1 nC/cm2 (solid line).

(C) Color map showing the average absolute deviation εt between SONIC and cycle-averaged NICE charge density curves normalized to a unit interval, as a

function of the model’s time constants, for the same ultrasound stimulus. The maximal deviation across compartments is reported, and a threshold curve

(solid line) indicates a critical deviation level of 10%.

(D) Steady-state SONIC threshold curves ðεN = 1 nC =cm2Þ and divergent areas ðεN >1 nC =cm2Þ across the time constant space for the independent

variations of stimulus amplitude (top left), frequency (top right), amplitude gradient (bottom left) and phase gradient (bottom right). The reference condition

is indicated in black. Dashed lines indicate the stimulus period for each carrier frequency. Solid points indicate the location of fiber-specific passive

properties in this 2-dimensional space.

(E) Transient SONIC threshold curves (εt = 10%) and deviation areas (εt>10%) across the time constant space, for identical variations of stimulus parameters

as in (D).
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Figure 2. Continued

(F) Charge density profiles and associated color map showing the 2-dimensional gamma distance between profiles from SONIC and cycle-averaged NICE

solutions in a two-compartment benchmark model of the myelinated axon for various combinations of acoustic pressure phasor amplitudes (f US = 500 kHz,

1 ms stimulus). Color codes on the map report the maximal gamma distance across compartments for each combination, with threshold curves (black lines)

indicating a critical deviation level (εg = 1). Shaded areas on the plots indicate time intervals of gamma deviation (εg>1).

(G) Equivalent charge density profiles and gamma distance color map in a two-compartment benchmark model of the unmyelinated axon (10 ms stimulus).
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simulated ultrasound-evoked responses under both the detailed NICE and the coarse-grained SONIC par-

adigms, and evaluated SONIC accuracy by comparing charge density profiles from SONIC solutions to

those of cycle-averaged NICE solutions (considered as ‘‘numerical ground truth’’).

First, we investigated the influence of passive model properties on the accuracy of the SONIC paradigm in

predicting sub-threshold depolarization, a critical aspect of neuronal responses. To this end, we used a

two-compartment model depleted of nonlinear membrane currents (see STAR Methods), which responds

to acoustic perturbation with a rapid charge build-up converging exponentially toward a steady-state

plateau. This stereotypical dynamics allowed to evaluate SONIC accuracy in simulating both transient

and long-lasting neural dynamics, by measuring (i) the average relative transient difference between

unit-interval-normalized charge density profiles (εt , in %) and (ii) the absolute steady-state difference in

charge density (εN, in nC/cm2), respectively (see STAR Methods). We thus evaluated these two difference

metrics while independently varying the model membrane and axial time constants (tm and tax , respec-

tively). These two parameters are directly derived from the biophysical model properties and provide quan-

titative estimates of the time taken by leakage and axial currents to respond to variations in transmembrane

and longitudinal intracellular voltage gradients, respectively.

For a reference condition of spatially-varying acoustic field (carrier frequency fUS= 500 kHz, pressure phasor

of uniform phase and amplitudes A1 = 100 kPa and A2 = 50 kPa in compartments 1 and 2 respectively),

SONIC deviations from the NICE reference showed a clear dependency on both axial and membrane

time constants (Figures 2A–2C). Weak electrical conductances (i.e., long time constants) yield a slowly re-

sponding electrical system that filters out the intra-cycle capacitance and voltage oscillations and evolves

smoothly as a function of the cycle-averaged value of these variables. Under these conditions, the SONIC

paradigm performs very well and accurately captures both the transient and steady-state phases of the

neural response, resulting in a large subspace of SONIC reliability (εN<1 nC=cm2 and εt<10%). Conversely,

strong electrical conductances (i.e., short time constants) increase the sensitivity of the electrical system to

the oscillatory mechanical drive to a point that currents instantaneously ‘‘convert’’ part of the capacitive

displacement energy into fast charge redistribution during an acoustic period, thereby impacting the

net charge variation over that period. We can differentiate two distinct mechanisms of intra-cycle charge

redistribution. On the one hand, leakage currents opposing intra-cycle deviations from reversal potentials

create a transmembrane charge redistribution that reduces the net charge increase at each cycle, hinder-

ing the slow scale charge build-up in each compartment and affecting both transient and steady-state re-

gimes of the resulting membrane dynamics. On the other hand, intracellular currents opposing intra-cycle

voltage gradients create an axial charge redistribution across the two compartments that reduces the net

charge gradient achieved over a cycle, ultimately limiting the magnitude of effective charge density gradi-

ents over time. Interestingly, this axial redistribution mechanism affects membrane dynamics more pro-

foundly during the transient regime of charge build up, and has a rather limited impact on the steady-state

regime for the chosen stimulus parameters. As neither of these redistribution mechanisms are captured by

the SONIC paradigm, fast membrane and axial time constants both produced subspaces of SONIC devi-

ation (εN>1 nC=cm2 and εt>10%). Interestingly, significant SONIC deviations emerged as the membrane

and/or axial time constant approached the order of magnitude of the acoustic period.

To generalize our observations, we replicated this deviation analysis while varying independently intrinsic

features of the imposed acoustic stimulus, and analyzed the impact of these variations on the resulting

SONIC deviation bifurcations (Figures 2D and 2E). First, we modulated pressure phasor amplitudes in

both compartments by a constant factor: a uniform two-fold reduction (A1 = 50 kPa, A2 = 25 kPa, field-con-

dition) shifted the steady-state bifurcation toward slower time constants and kept transient deviations

below 10% across the entire domain, whereas a uniform two-fold increase (A1 = 200 kPa, A2 = 100 kPa,

field + condition) almost entirely eliminated the impact of the model axial properties on SONIC accuracy.

These somewhat counter-intuitive results can be explained by the nonlinear dependence of the sonophore

cavitation amplitude on the imposed acoustic pressure phasor amplitude, which results in stronger
iScience 24, 103085, September 24, 2021 5
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variations in the 25–50 kPa range than in the 100–200 kPa range, thereby amplifying intra-cycle axial charge

redistribution and causing SONIC inaccuracy at lower field amplitudes. Next, we modulated the carrier fre-

quency of the stimulus: higher frequencies (fUS = 4 MHz, HF condition) and lower frequencies (fUS = 20 kHz,

LF condition) shifted the transient and steady-state bifurcations toward faster or slower time constants,

respectively, across both the membrane and axial dimensions. Subsequently, we varied the pressure pha-

sor amplitude gradient across themodel compartments: an increased pressure gradient (A1 = 200 kPa, A2 =

25 kPa, gradient + condition) amplified intra-cycle axial charge redistribution, thereby shifting the steady-

state bifurcation toward slower axial time constants. Conversely, a null pressure gradient (A1 = A2 = 75 kPa,

gradient � condition) completely decoupled the SONIC accuracy from axial time constants. Finally, while

keeping a null pressure phasor amplitude gradient, we analyzed the impact of various acoustic phase shifts

between the compartments. Unsurprisingly, increasing phase shifts resulted in a progressive expansion of

both the transient and steady-state SONIC inaccuracy subspaces toward longermodel time constants, with

a maximal deviation observed for a phase shift D4 = 3p=4. Notably, across all amplitudes, frequencies and

gradients of the acoustic pressure phasor, SONIC deviations from the NICE reference are restricted to spe-

cific sub-regions where at least one of the two time constants is shorter than the stimulus periodicity,

yielding a robust domain of SONIC accuracy that can be mathematically expressed as ftm; taxg>1=fUS
(only major phase differences can result in deviations slightly above 1/fUS in the axial dimension). In other

words, these findings suggested that the critical condition for the SONIC approximation to reliably repro-

duce the full NICE model is that the membrane and axial time constants (as obtained from the model bio-

physical properties) should be longer than the acoustic period. Importantly, the passive properties of both

axon models used in this study satisfied this criterion, except at very low drive frequencies (fUS < 50 kHz),

which are significantly lower than those employed in typical neuromodulation studies (Downs et al.,

2018; King et al., 2013; Kubanek et al., 2020; Lee et al., 2020; Menz et al., 2019; Tyler et al., 2008; Wright

et al., 2017).

Second, we investigated the applicability of the SONIC paradigm for the particular axon models used in

this study, using two-compartment models with axon-specific morphological properties and full mem-

brane ionic populations. The presence of highly nonlinear spiking dynamics in these models precludes

the use of direct comparison metrics (such as the root-mean-square error), which are overly sensitive to

small temporal offsets between two curves. Therefore, to accommodate for this intricate dynamics, SONIC

deviation εg was quantified using the g-index (Low et al., 1998), i.e., the point-wise minimal multidimen-

sional time and charge density Euclidean distance between the cycle-averagedNICE and SONIC solutions,

using appropriate temporal and charge density tolerances based on model-specific spiking features (see

STAR Methods). We thus evaluated SONIC deviation across a symmetric two-dimensional space (for the

two compartments) of pressure phasor amplitudes ranging from half to double each model’s excitation

threshold (determined with the SONIC method), with a uniform carrier frequency (fUS = 500 kHz).

As expected, subthreshold pressure phasor amplitude distributions triggered passive build-ups in charge

density in both models that were accurately captured by the SONIC paradigm (Figures 2F and 2G). Narrow

bands of SONIC inaccuracy (εg>1) appear in the myelinated case when either compartment is just at the

excitation threshold, because of the sensitivity of spike initiation to small differences in initial build-up be-

tween the two paradigms; however, those differences vanish already at a small distance from the threshold.

In the unmyelinated case, the slower intrinsic membrane dynamics enabled a robust SONIC accuracy

across the entire explored pressure phasor amplitude range (εg<1).

Taken together, these findings revealed that in the context of single-cable peripheral axon models, the

SONIC paradigm offers acceptable numerical accuracy with respect to the temporally-detailed NICE para-

digm across the entire LIFUS parameter space. As such, it can be reliably applied to investigate intramem-

brane cavitation in those models.
LIFUS modulates membrane capacitance to excite peripheral nerve fibers

After verifying the applicability of the SONIC paradigm in multi-compartment axon models (Figure 2), we

simulated the ‘‘typical’’ predicted responses of myelinated and unmyelinated axons to ultrasound stimula-

tion. To this end, we selected standard axon models using representative diameters for each axon popu-

lation (10 mm and 0.8 mm for myelinated and unmyelinated fibers, respectively), as well as a standard acous-

tic exposure (5 mm-wide distribution of acoustic pressure phasor amplitudes with a spatial peak of 120 kPa)

qualitatively equivalent to that generated by a 10 mm diameter planar transducer at 500 kHz (see
6 iScience 24, 103085, September 24, 2021
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Figure 3. Typical responses of myelinated and unmyelinated axon models to a single LIFUS pulse

(A) Time profiles of effective membrane capacitance, effective membrane potential, and effective membrane charge density across compartments during a

typical response of a myelinated axon to a 1 ms sonication (500 kHz frequency, 5 mm-wide Gaussian pressure distribution aligned on the fiber with a spatial

peak of 120 kPa).

(B) Equivalent time profiles during the typical response of an unmyelinated axon to a 10 ms sonication (identical pressure distribution as in (A)).

(C) Quantification of the membrane and axial current’s contribution to the first 5 mV of normalized charge build-up in the fiber central compartment.

(D) Equivalent quantification for the response of the unmyelinated axon’s central compartment.
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Figure S1B). We also used fiber-dependent pulse durations (1 ms and 10 ms for the myelinated and unmy-

elinated fibers, respectively), which are within their respective rheobase regime (see next section). To bet-

ter identify mechanisms of axonal recruitment by LIFUS pulses, we quantified the time required to reach a

build-up of normalized charge density ðQm;normðtÞ =QmðtÞ =Cm0Þ of 5 mV in the central compartment for

each response and computed the contribution of each individual current to this initial build-up.

For both models, the sonication pulse onset generated instantaneous drops in effective membrane capac-

itance in the axon compartments, whose magnitude increased with the amplitude of the local acoustic

pressure, thereby amplifying the absolute value of transmembrane voltage and inducing hyperpolarization

(Figures 3A and 3B). Because of the Gaussian distribution of acoustic pressure along the axon, central com-

partments experienced a stronger hyperpolarization than peripheral ones, which introduced a longitudinal

gradient in transmembrane voltage along the fiber.

At the central compartment where hyperpolarization is the largest, leakage currents arose to bring trans-

membrane voltage toward the leakage reversal potential, thereby inducing a build-up in local charge den-

sity. The considerably higher density of leakage channels in the Ranvier node compared to the unmyelin-

atedmembrane ðgSENN
leak z300 gSundt

leak Þ inducedmuch larger leakage currents (Figures 3C and 3D). Moreover,

significant axial currents also arose in the myelinated axon, driven by large voltage gradients between the

central and neighboring Ranvier nodes. Together, these two depolarizing currents yielded a much faster

membrane charge build-up in the myelinated axon, yielding shorter response latencies. These differences

are reflected in the times required to achieve a normalized charge build-up of 5 mV in the central compart-

ment (9 ms and 1.7 ms for myelinated and unmyelinated fibers, respectively).
iScience 24, 103085, September 24, 2021 7
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For a long enough sonication, membrane charge density increased until a spiking threshold was reached,

prompting the opening of Sodium ion channels and thereby triggering an AP in the central compartment

that started traveling bidirectionally toward the axon extremities. As expected, both axons exhibited

marked differences in conduction velocities: fast saltatory conduction in the large diameter myelinated

axon allowed the AP to reach the extremities of the axon in less than 1 ms, whereas that process took

more than 10 ms in the slowly conducting unmyelinated axon. As the sonication outlasted the AP duration

in the myelinated axon, affected nodes transitioned into a ‘‘plateau potential’’ regime (stabilization of

membrane charge density around a depolarized value).

Finally, the sonication offset removed the mechanical membrane perturbation, and effective membrane

capacitances instantaneously reverted to their resting values, triggering a rapid reduction in transmem-

brane voltage magnitudes. The myelinated axon then simply repolarized back to its equipotential resting

state, whereas the AP propagated toward peripheral extremities in the unmyelinated axon.

The effect of electromechanical coupling was visible across neuronal responses. During the sub-threshold

charge build-up, the decrease in electric pressure (a constraining force on the bilayer sonophore, propor-

tional toQ2
m) amplified membrane deflections, which further reduced the effective membrane capacitance

(an effect more pronounced on the myelinated axon). In addition, the propagating spike induced a wave of

time-varying electric pressure that also modulated the effective membrane capacitance.
LIFUS can selectively recruit myelinated and unmyelinated fibers

The analysis of ‘‘typical’’ LIFUS-evoked responses revealed that ultrasonic axon recruitment requires the

membrane charge density to be brought locally above a spiking threshold to engage voltage-gated chan-

nels. Yet, the underlying mechanisms eliciting this charge build-up differ significantly from those of elec-

trical stimulation (McNeal, 1976; Rattay, 1986). Therefore, we aimed to determine if the two stimulation mo-

dalities could produce distinct excitability patterns. To this end, we computed excitation thresholds for

various pulse durations ranging from 10 ms to 1 s (using binary search procedures) to construct strength-

duration (SD) curves.

First, we evaluated the excitability of representative myelinated and unmyelinated axons (10 mmand 0.8 mm

diameters, respectively) with a typical stimulus width (5 mm). With electrical stimulation, threshold peak

extracellular voltages required to elicit a traveling AP decreased with increasing pulse duration, and

then reached an asymptotic (so-called ‘‘rheobase’’) regime for long enough pulses (Figure 4A). In line

with previous modeling studies (Lubba et al., 2019; Tarnaud et al., 2018), excitation thresholds for the

myelinated axon were lower than those of the unmyelinated axon over the entire range of pulse durations.

This result can be explained by two main factors. For short pulses where the speed of the depolarization

predominantly determines when/if the spiking threshold is reached, myelinated axons can be recruited

because of short membrane time constants, whereas unmyelinated axons fail to respond fast enough.

Conversely, for long pulses approaching the rheobase regime, transient features become less critical

and longitudinal gradients of the applied extracellular voltage become the main determinant of axonal

excitability (Warman et al., 1992). Here again, myelinated axons are easier to recruit because of their insu-

lated internodes that effectively discretize the voltage field at sparsely distributed Ranvier nodes, thereby

producing stronger longitudinal gradients at the central node than those encountered across the contin-

uous membrane of unmyelinated axons. With ultrasonic stimulation, threshold peak acoustic pressure am-

plitudes required for excitation also decreased with increasing pulse durations and reached a rheobase

regime for long enough pulses (Figure 4D). Similarly as with electrical stimulation, short membrane and

axial time constants conferred a low response latency to myelinated axons (see Figure 3), thereby allowing

excitation by short ultrasonic pulses to which unmyelinated axons failed to respond. Surprisingly, however,

for longer pulse durations (PDR 10 ms), the SONIC paradigm predicted lower excitation thresholds in un-

myelinated axons than in myelinated axons.

Second, we characterized the impact of stimulus beam width and fiber diameter on excitability by system-

atically exploring relevant parameter ranges and using the ‘‘chronaxie point’’ (i.e., the pulse duration at

which the threshold is twice the rheobase, see Figures 4A and 4D) as a reference point to measure the rigid

translation of SD curves in the (pulse duration – stimulus amplitude) space. With electrical stimulation, nar-

rowing stimulus beam widths enhanced excitability of myelinated and unmyelinated axons by producing

stronger longitudinal gradients in extracellular voltage (Figure 4B). These stronger gradients primarily
8 iScience 24, 103085, September 24, 2021
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Figure 4. Comparison of strength-duration curves of myelinated and unmyelinated axons upon electrical and ultrasonic stimulation

(A) SD curves of representative myelinated (10 mm diameter, in orange) and unmyelinated (0.8 mmdiameter, in blue) axons, depicting the threshold absolute

peak extracellular voltage required to elicit fiber excitation as a function of pulse duration, for a characteristic 5 mm wide Gaussian extracellular voltage

distribution. Rheobase and chronaxie values of each curve are indicated, as well as distinct areas of fiber recruitment.

(B) SD curves of representative myelinated and unmyelinated axons for Gaussian extracellular voltage distributions of varying widths (1–10 mm). Arrows

indicate the translation of the chronaxie point in the SD space for increasing stimulus width.

(C) SD curves both fiber types upon stimulation with a characteristic voltage distribution, for varying fiber diameters within the physiological range of each

population (myelinated: 5 to 20 mm, unmyelinated: 0.2 to 1.5 mm). Arrows indicate the translation of the chronaxie point in the SD space for increasing fiber

diameter.

(D) SD curves of representative myelinated and unmyelinated axons, depicting the threshold peak acoustic pressure amplitude required to elicit fiber

excitation as a function of pulse duration, for a characteristic 5 mm wide Gaussian acoustic pressure distribution and ultrasound frequency (fUS = 500 kHz),

using typical values of sonophore radius (a = 32 nm) and sonophore coverage fraction (fs = 80%) in the model’s compartments. SD curves using equivalent

‘‘node’’ models located under the stimulus peak are also indicated (light blue and orange curves), as well as rheobase and chronaxie values of each curve,

and distinct areas of fiber recruitment.

(E) SD curves of representative myelinated and unmyelinated axons with typical ultrasound frequency and sonophore parameters for Gaussian pressure

distributions of varying widths (1–10 mm).

(F) SD curves both fiber types with typical ultrasound frequency, pressure distribution and sonophore parameters, for varying fiber diameters within the

physiological range of each population.

(G) SD curves of equivalent ‘‘node’’ models of both fiber types with typical sonophore parameters and pressure distributions for varying ultrasound

frequencies (20 kHz–4 MHz).

(H) SD curves of ‘‘node’’ models with typical pressure distribution, ultrasound frequency and sonophore coverage fraction for varying sonophore radii

(16–64 nm).

(I) SD curves of ‘‘node’’ models with typical pressure distribution, ultrasound frequency and sonophore radius, for varying sonophore coverage fractions

(50–100%).
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translated SD curves toward lower thresholds, but they also slightly diminished chronaxie durations. Very

narrow beams produced an inversion of rheobase values, and unmyelinated axons became easier to recruit

with long enough pulses. In a mirroring manner, increasing fiber diameters also enhanced excitability in

both axon types (Figure 4C) as a result of (i) a larger intracellular conductance amplifying depolarization

in response to a given extracellular voltage gradient, and (ii) in myelinated axons, an increased internodal
iScience 24, 103085, September 24, 2021 9
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spacing (L = 100Dfiber) that further amplifies longitudinal gradients between consecutive Ranvier nodes.

Again, both of these effects induced considerable shifts of SD curves toward lower thresholds and slightly

reduced chronaxie durations in both axon types. Conversely, with ultrasonic stimulation, SD curves were

remarkably consistent across a range of stimulus beam widths, as well as across the physiological range

of fiber diameters of both populations, with only very slight variations in the chronaxie point and no clear

trend emerging (Figures 4E and 4F).

The relatively low sensitivity of ultrasonic excitation thresholds to stimulus beam width and fiber diameter

suggest that excitability patterns are primarily dictated by the magnitude of the peak acoustic pressure

along the axon, rather than by the beam shape or the axial properties of the axon. To verify that hypothesis,

we carried out the same excitability analysis in point-neuron models representing isolated neuronal com-

partments of the two axon models, namely a SENN Ranvier node and a Sundt unmyelinated segment,

referred to as ‘‘node’’ models. We found almost identical SD curves between the node and full axonmodels

(Figure 4D), thereby confirming that excitation is primarily mediated by the localized action of acoustic

pressure on the cellular membrane. At first glance, these results seem to challenge the observation that

axial currents contribute significantly to the initial charge build-up at the central node of myelinated axons

upon sonication (Figure 3), and may therefore indicate the presence of a sharp transition in the mechanical

response of the membrane to intensifying acoustic fields, bringing axons from passive to active responses

within narrow amplitude ranges. Nevertheless, these results suggest that LIFUS-triggered excitation is pri-

marily a local phenomenon – at least in these models – that can be accurately predicted without consid-

ering extended morphological details.

Given the high accuracy of node models in predicting cell-type-specific excitation thresholds, we lever-

aged their computational efficiency to explore the impact of acoustic frequency, sonophore size and so-

nophore coverage on neuronal excitability. In line with previous modeling results in CNS neurons (Lem-

aire et al., 2019; Plaksin et al., 2014) we found that ultrasound frequency does not significantly affect

excitation thresholds apart from a slight increase above 1 MHz due to higher viscous stresses limiting

sonophore cavitation (Figure 4G). Moreover, increasing sonophore radii induced mainly a ‘‘horizontal’’

shift of excitability toward shorter durations (Figure 4H), while increasing sonophore coverage fractions

reduced both threshold baselines and chronaxie durations (Figure 4I). Importantly, neither of these

important parameter variations shifted the relative recruitment orders between myelinated and unmy-

elinated fibers.
Fiber-specific rheobase excitability stems from differences in membrane capacitance

Strength-duration analyses revealed that unmyelinated axons exhibited lower excitation thresholds for

long ultrasonic pulses, a trend robust to variations in model and stimulus parameters. Thus, we aimed to

investigate the underlying mechanisms supporting this enhanced excitability using cell-type-specific

node models, which proved to be appropriate benchmark tools to study ultrasonic neuronal recruitment

(Figure 4).

For sub-threshold acoustic amplitudes and rheobase pulse durations, both the myelinated and the unmy-

elinated nodes responded to sonication with a build-up in charge density toward a more depolarized

steady-state (Figure 5A). Increasing the acoustic amplitude enhanced the magnitude of this build-up until

the node’s spiking threshold was reached and an AP was fired. Interestingly, the exponential convergence

of sub-threshold charge build-ups indicated that they weremostly mediated by passive currents, and could

therefore be approximated by a simple RCmembrane circuit with a single leakage conductance. Under this

approximation, the steady-state charge build-up is proportional to the variation of effective membrane

capacitance ðC�
m = ½1=TUS

R t +TUS
t dt=CmðZðtÞÞ�

�1Þ from its resting value:�
dQm

dt

�
sub�threshold

z� gLeak

�
V �
m � ELeak

�
ðDQmÞNz

�
C�

m � Cm0

�
Eleak

(Equation 1)

For both cell types, the passive circuit approximation can accurately predict the magnitude of steady-state

charge build-up across a cell-type-specific range of sub-threshold acoustic amplitudes. This high predic-

tion accuracy confirms that sub-threshold dynamics are almost entirely governed by the drop in effective

capacitance.
10 iScience 24, 103085, September 24, 2021



A

B C

Figure 5. Underlying mechanisms of distinct rheobase excitabilities in myelinated and unmyelinated axons

(A) Effective capacitance variations regulate sub-threshold charge build-ups. From left to right: LIFUS-triggered, exponentially converging charge build-ups

in myelinated and unmyelinated ‘‘node’’ models for various sub-threshold pressure phasor amplitudes. Normalized steady-state charge build-ups for each

‘‘node’’ model as a function of sub-threshold pressure phasor amplitude, computed from full membrane simulations (plain lines) and estimated from the sole

relative variation in effective membrane capacitance (dashed lines, passive circuit approximation). Detailed intra-cycle oscillation profiles of membrane

capacitance and membrane deflection for each fiber type at their respective threshold levels.

(B) Charge-dependent electrical and molecular pressure regulate threshold sonophore kinematics. From left to right: detailed profiles of internal pressure

forces regulating sonophore cavitation during an acoustic period, driven by cell-type-specific threshold acoustic pressures. Detailed profiles of electrical and

molecular pressures in both fiber types along the physiological range of membrane deflection.

(C) Schematic diagram showing the causal chain of influence by which resting membrane capacitance affects charge-dependent internal pressures,

sonophore kinematics, effective capacitance variations, and ultimately rheobase excitability.
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Both the myelinated and unmyelinated nodes required similar normalized charge build-ups to reach the

spiking threshold (5.0 and 5.9 mV, respectively), which corresponded to comparable relative variations in

effective membrane capacitance (�6.3 and �5.2%). Moreover, looking at intra-cycle dynamics, the resem-

blance of these effective cycle-averaged values arose from analogous oscillation profiles of membrane

capacitance over an acoustic period (normalized oscillation ranges of 0.32 and 0.30, respectively). Recalling

that capacitance is defined here as a deflection-dependent variable (see STAR Methods), this cross-model

analogy could be mapped further back to cavitation profiles. Surprisingly, however, these similar mem-

brane deflections were achieved at significantly different acoustic pressure phasor amplitudes (91 kPa

and 28 kPa, respectively). This discrepancy indicates variations in the internal kinetic system regulating so-

nophore cavitation dynamics in each node model.
iScience 24, 103085, September 24, 2021 11



ll
OPEN ACCESS

iScience
Article
Closer inspection of the detailed oscillation profile and resulting signal energy of each internal pressure

component at these cell-type-specific amplitudes revealed several interesting features (Figure 5B).

First, the relatively small cavitation magnitudes and velocities for these threshold levels�
jZj<0:5 nm;

����dZdt
����<1 cm =s

�
did not generate significant viscoelastic stresses on the membrane and sur-

rounding medium. Moreover, this cavitation dynamics allowed for an instantaneous equilibration of

gaseous and hydrostatic pressures on both sides of the sonophore cavity through transmembrane gas

transport, thereby yielding identical energy levels for these pressure components across the two models.

In contrast, both electrical and molecular pressures showed much larger energy levels for the myelinated

sonophore model than for its unmyelinated counterpart. More specifically, the molecular pressure profile

was shifted toward more positive values and showed higher oscillation amplitudes, whereas the electric

pressure profile was constant across a cycle but shifted toward more negative values. Together, these

two pressure components are responsible for the cell-type-specificity of sonophore cavitation kinetics.

These changes in dynamic pressure oscillations can be mapped back to distinct profiles over a reference

range of membrane deflections, allowing for the elucidation of the mechanisms of cell-type-specific rheo-

base excitability:

� The electric pressure accounts for the attraction forces between the electric ion charges on themem-

brane leaflets, and is defined as PQðZ; QmÞ = � S0
SðZÞ

Q2
m

2ε0,εr
. Therefore, both electric pressure profiles

show a weak dependence on membrane deflection, and a constant magnitude ratio across the

deflection range
�

PQ;myel

PQ;unmyel
= 5:8

�
, corresponding exactly to the square of the ratio of threshold charge

densities across the two models
�

Qthr;myel

Qthr;unmyel
= 2:4

�
. The latter ratio primarily arises from variations in a

fundamental biophysical property: the resting specific membrane capacitance of the myelinated

axon is twice as high as that of the unmyelinated axon (CSENN
m0 = 2 mF/cm2, CSundt

m0 = 1 mF/cm2). This

increased capacitance allows the myelinated membrane to accumulate twice as much charges for

identical transmembrane voltages, thereby increasing the electric pressure on the membrane and

hindering sonophore expansion around threshold levels.

� The intermolecular pressure is defined by a Lennard-Jones expression integrated across the sono-

phore surface: PMðZÞ= 1
SðZÞ

R2p
0

Ra
0

Ar,ðgx --gyÞ drdq with g = D�
2zðrÞ+DðQm0Þ. All parameters of this expres-

sion are fixed except for D�, the gap between the two membrane leaflets in the absence of charges.

This parameter is calculated from a model-specific equilibrium state that depends on resting charge

density, and therefore shows cell-type-specificity: the more negative resting charge density of the

myelinated axon – mainly resulting from its larger capacitance – results in a smaller computed

gap compared to the unmyelinated axon (1.1 nm vs 1.3 nm, respectively). Slight changes in this

key parameter have profound implications on the resulting molecular pressure profiles: the smaller

gap in the myelinated model reduces the amplitude of the negative (i.e., attractive) peak, and more

importantly, shifts the transition toward positive (i.e., repulsive) pressure to a more positive deflec-

tion value, thereby producing much larger values of repulsive intermolecular pressure and hindering

sonophore compression during an acoustic cycle around threshold levels.

The resting membrane capacitance is thus a crucial parameter that indirectly regulates the rheobase excit-

ability of peripheral axons. This regulation is explained by a causal chain of influence (Figure 5C), can be

summarized as follows: the resting capacitance influences both the resting value and the variation range

of membrane charge density, thereby influencing charge-dependent internal pressures. That is, with larger

capacitance, electric pressure becomes more constraining during expansion phases and intermolecular

pressure becomes more repulsive during compression phases. Together, these two pressure amplifica-

tions restrict the cavitation dynamics, and thus require higher acoustic pressures to attain similar mem-

brane deflection and resulting relative capacitance oscillation ranges. In terms of cycle-averaged dynamics,

higher pressures are needed to reach a given relative drop in effective capacitance, which almost entirely

regulates the sub-threshold charge build-up. Given that both axon models require similar relative charge

build-ups to reach their spiking threshold, rheobase excitability is then predominantly determined by the

electrical modulation of cavitation dynamics, and hence by the resting membrane capacitance. In light of

this mechanism, the enhanced excitability of unmyelinated axons for long pulse durations is explained by

their smaller resting capacitance.
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Pulsed LIFUS robustly modulates fiber spiking activity over time

Beyond single spike elicitation by an isolated pulse, the potential of LIFUS for neuromodulation relies on its

ability to induce robust patterns of spiking activity over time. To investigate that aspect within our theoret-

ical framework, we simulated full axon models (using the standard model parameters defined in previous

sections) upon the application of 10 consecutive sonication pulses (setting the stimulus beamwidth to one-

fifth of the fiber length), detected propagated APs onmembrane charge density traces of axon extremities,

and computed the resulting firing rate as the reciprocal of the average inter-spike interval over the simu-

lation window.

We first evaluated the impact of pulsing parameters on spiking activity for a fixed acoustic pressure distri-

bution with a peak amplitude of 300 kPa (a value falling safely above single pulse excitation thresholds of

both axon models). Given the important differences in the LIFUS response time constants observed be-

tween myelinated and unmyelinated axons, we explored a relevant range of pulse durations around the

axon’s single pulse chronaxie for each model.

Myelinated axons responded with very low latency but only fired a single spike for each acoustic pulse, fol-

lowed by a stabilization to a plateau potential regime. As a result, they could be driven very robustly to

follow the pulse repetition frequency (PRF) up to approximately 1 kHz over a wide range of pulse durations

(Figure 6A, inset (i)). At higher stimulus rates, repeated pulses started to interfere with the cell’s refractory

period, thereby preventing spike generation and/or propagation on average every two pulses, causing the

axon to synchronize with the half-PRF (inset (ii)). At even higher stimulus rates, only very short pulses

enabled a sustained firing activity, as the axon progressively reached its physiological limit at around 1

kHz (inset (iii)).

In contrast, unmyelinated axons responded with higher latency, but could fire multiple spikes for pro-

longed sonication. Consequently, their behavior at low PRFs strongly depended on the pulse duration:

short pulses (PD < 5 ms) did not induce any response, intermediate pulses (5 < PD < 10 ms) induced

PRF-locking (inset (iv)), and long enough pulses (PD R 10 ms) induced spiking activity at double or even

higher multiples of the stimulus rate (inset (v)). At intermediate stimulus rates (20 Hz < PRF <100 Hz), tem-

poral summation of sub-threshold responses enabled recruitment by short pulses at half the PRF or below.

Above 100 Hz, the range of available pulse durations was progressively restricted to shorter values that only

allowed the fiber to fire at half the stimulus rate or below (inset (vi)), until a physiological limit was reached

around a firing rate of 200 Hz.

Having established that pulsing parameters trigger cell-type-specific patterns of spiking activity, we aimed

to investigate whether these neuromodulatory effects also depend on stimulus intensity. Hence, we simu-

lated each axon type across a two-dimensional space of duty cycles (DC, from 0 to 100%) and peak pressure

amplitudes (from 10 to 600 kPa), and for each combination, computed the resulting firing rates normalized

by the PRF.

At low PRFs allowing a robust pulse-spike synchronization (identified from Figure 6A for each axon type),

neuromodulatory effects were surprisingly consistent across a wide range of supra-threshold stimulus am-

plitudes (Figure 6B). The myelinated axon fired exactly one spike per pulse for DC˛½0:02; 0:95� (i.e., for
pulses long enough to allow a first response yet distant enough to avoid destructive interaction with the

refractory period), independently of stimulus amplitude. In contrast, the unmyelinated axon initiated a first

response at slightly larger DCs and then exhibited three distinct spiking regimes with 1, 2 and 3 spikes per

pulses as DC increased up to 1. A slight dependence on stimulus amplitude was noted here, as larger pres-

sures shifted transitions between the different spiking regimes to lower duty cycles.

At high PRFs allowing only sub-stimulus rate spiking activity (see again Figure 6A), neuromodulatory effects

were more intricate, and showed more dependency on stimulus amplitude. In this high frequency regime

(PRF = 2.6 kHz), the myelinated axon’s firing rate approached a maximum of 0.5 times the PRF over a wide

duty cycle interval ðDC˛½0:04; 0:70�Þ. At larger duty cycles, spiking was only elicited for sparse DC-ampli-

tude combinations allowing an optimal trade-off between fast depolarization to LIFUS stimuli and limited

destructive interaction with the refractory period. Surrounding regions did not allow such a trade-off and

could only trigger a single spike, after which the axon could not reset to fire again. In contrast, the unmy-

elinated axon’s spiking activity was maximized for an optimal subspace of intermediate duty cycles where
iScience 24, 103085, September 24, 2021 13
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Figure 6. Modulation of spiking activity by pulsed sonication in myelinated and unmyelinated axons

(A) Average firing rate elicited in each axon type by a Gaussian acoustic pressure distribution covering one-fifth of the fiber length, using default sonophore

parameters (a = 32 nm, fs = 80%) and ultrasound frequency (fUS = 500 kHz), for various pulse durations and pulse repetition frequencies. Dashed lines indicate

half, one time and double of the stimulus rate. Detailed spatiotemporal profiles of membrane charge density are indicated for characteristic spiking regimes

of each fiber type, along with detailed profiles of the stimulus spatial distribution (vertical) and temporal application (horizontal).

(B) Average firing rate (normalized by pulse repetition frequency) elicited in each fiber type as a function of duty cycle and peak acoustic pressure amplitude

for cell-type-specific pulse repetition frequencies yielding ‘‘robust’’ and ‘‘sensitive’’ spiking behaviors. Numbers on the color maps indicate characteristic

regimes of normalized firing rate.
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the firing rate approached the stimulus rate (PRF = 200 Hz). Interestingly, larger pressures offered a wider

span of this optimal DC interval. Higher duty cycles (up to 100%) also generated spiking activity but also

significantly interfered with the axon’s ongoing membrane dynamics and were thus less effective.

Multiplexed LIFUS stimuli concurrently modulate distinct fiber populations

Building upon the predictions of fiber-specific excitability and robust pulse-spike synchronization estab-

lished in the previous sections, we investigated whether LIFUS stimuli could be engineered to indepen-

dently modulate the activity of myelinated and unmyelinated fiber populations in a concurrent fashion.

To this aim, we combined a short duration, high amplitude pulsing scheme (to modulate myelinated fibers)

and a long duration, low amplitude scheme (to modulate unmyelinated fibers), each encoded with inde-

pendent repetition rates, inside a single combined LIFUS stimulus (Figure 7A). This ‘‘multiplexed’’ (or

‘‘MUX’’) LIFUS stimulus could then be applied to a heterogeneous population of fibers to simultaneously

engage myelinated and unmyelinated fiber sub-populations toward distinct activity regimes.

We first investigated this possibility in a conceptual heterogeneous nerve model composed of only 1 fiber

of each population (10 mm long, and otherwise identical to those from previous sections), exposed to a

2 mm-wide Gaussian acoustic pressure field. We defined two fundamental pulsing schemes using pulse
14 iScience 24, 103085, September 24, 2021
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Figure 7. Multiplexed (MUX) LIFUS enables a robust, fiber-type-specific modulation in heterogeneous nerve populations

(A) Schematic describing the LIFUS stimulus multiplexing principle. Pulse duration and pulse amplitude parameters used in the two constituent pulsing

schemes are indicated.

(B) Firing rates induced in representative myelinated and unmyelinated axons upon application of MUX-LIFUS stimuli, for various combinations of

constituent pulse repetition frequencies (PRF1 = 10–100 Hz, PRF2 = 10–1000 Hz). Acoustic fields are modeled as a 2 mm-wide Gaussian pressure distribution

along the fibers.

(C) Fiber-type-specific modulation of spiking activity inside a heterogeneous nerve bundle. Left: distribution of myelinated (orange, n = 56) and

unmyelinated (blue, n = 221) axons inside the bundle cross-section. Middle: total count and histogram distributions of fiber diameters of each population of

the model. Right: bar plots showing the firing rates induced in each fiber population of the bundle upon application of a specific MUX-LIFUS stimulus (PRF1 =

50 Hz, PRF2 = 200 Hz). Data are represented as meanG SD. The asterisk denotes a statistically significant difference between the two distributions, assessed

using the Kruskal–Wallis test. Acoustic fields are modeled by a 2 mm-wide Gaussian pressure distribution along the bundle length, assuming uniform

pressure distribution across the bundle cross-section.
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Table 1. Parameters and variables of the hybrid multi-compartment, multi-layer electrical circuit

Parameter/variable Symbol Unit

Intracellular voltage Vi mV

Extracellular voltage Vx mV

Transmembrane voltage Vm mV

Transmembrane charge density Qm nC/cm2

Extracellular driving voltage Fe mV

Membrane capacitance Cm mF/cm2

Intracellular stimulation current Is mA/cm2

Net transmembrane ionic current Iion mA/cm2

Intracellular axial conductance Ga S

Capacitance of surrounding extracellular membrane (e.g., myelin) Cx mF/cm2

Transverse conductance of surrounding extracellular membrane (e.g., myelin) gx S/cm2

Extracellular axial conductance (e.g., periaxonal space) Gp S

Membrane area of the compartment Am cm2
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durations tailored to target myelinated and unmyelinated fibers (100 ms and 10 ms, respectively) and pulse

amplitudes 10% above the excitation threshold of the corresponding fiber population for the defined pulse

durations (144 and 40 kPa, respectively). We then combined these pulsing schemes while varying their in-

dividual repetition frequency to cover a two-dimensional space, delivering at least 10 pulses of each

scheme for each combination. Finally, we computed the induced spiking activity (detected by verifying

spike arrival at axonal extremities) of both fibers for each applied stimulus. Simulation results showed

that the MUX-LIFUS stimulus can indeed drive the spiking activity of myelinated and unmyelinated fibers

(over their respective physiological range) in an independent fashion, each fiber type being uniquely sen-

sitive to one of its constituent pulsing schemes (Figure 7B).

In light of these enticing results on single fiber models, we investigated whether our predictions could

translate to the level of heterogeneous nerve fiber populations, a more relevant setting for peripheral neu-

romodulation applications. To this aim, we built a model of a 100 mm thick, 10 mm long cylindrical section of

mixed sensory nerve bundle composed of myelinated (Ab and Ad) and unmyelinated (C) fiber populations

realistically mimicking morphological characteristics of the human sural nerve (Jacobs and Love, 1985). We

then simulated the bundle response upon exposure to a simple acoustic pressure field (2 mm-wide

Gaussian distribution along the bundle length, uniform across the bundle cross-section), temporally modu-

lated by a specific multiplexed pulsing protocol (PRF1 = 50 Hz, PRF2 = 200 Hz) (Figure 7C). Finally, we

extended our spiking analysis pipeline to each constituent fiber, detecting traveling action potentials at

axonal extremities and computing the resulting LIFUS-induced spiking activity. Simulation results revealed

that the MUX-LIFUS stimulus application produced two clearly separated firing rate distributions for each

fiber population, each synchronized with a single constituent pulsing scheme (FRMY = 200.02 G 0.01 Hz,

FRUN = 49.75 G 0.26 Hz), resulting in a statistically significant difference (Kruskal-Wallis test, p < 0.001) be-

tween distributions. These results suggest that MUX-LIFUS protocols are capable of simultaneously, yet

independently modulating the activity of myelinated and unmyelinated fiber populations within a hetero-

geneous nerve bundle. Moreover, the negligible intra-population variability in firing rate distributions

emphasized the synchronicity of elicited spiking activity within each fiber group, in spite of variations in fi-

ber diameter and relative positioning.
DISCUSSION

In this study, we used a novel computational framework to formulate several important predictions on the

effects and mechanisms of ultrasound neuromodulation by intramembrane cavitation in peripheral fibers.

First, we predict that single LIFUS pulses are capable of inducing de novo action potentials in both myelin-

ated and unmyelinated peripheral axons, through a common recruitment mechanism: the stimulus onset

induces a local drop in effective membrane capacitance at the acoustic focus and triggers passive depola-

rizing currents that raise charge density toward the spiking threshold.
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Second, although the two fiber types show a robust excitability across a wide range of fiber diameters, carrier

frequencies and acoustic pressure fields, they exhibit distinct sensitivities to temporal features of ultrasound

stimuli. Myelinated axons exhibit a low (sub-millisecond) response latency and can therefore be excited by

very short LIFUS pulses for which unmyelinated axons are unresponsive. However, for longer stimuli, unmy-

elinated axons can be excited at lower acoustic intensities than myelinated axons. Interestingly, these

distinct sensitivities are not caused by the presence/absence of myelin, but are rather attributable to specific

differences in membrane biophysical properties. On the one hand, the enhanced excitability of myelinated

axons for short pulse durations stems from the clustering of ion channels at the nodes of Ranvier (Kanda

et al., 2019; Ritchie and Rogart, 1977; Zakon, 2012), resulting in a strong nodal membrane conductance

and therefore a short membrane time constant. On the other hand, the enhanced excitability of unmyelin-

ated fibers in the rheobase regime is attributable to a smaller specific membrane capacitance (CSENN
m0 = 2 mF/

cm2, CSundt
m0 = 1 mF/cm2). To the best of our knowledge, the biological origin of this capacitance difference

remains undocumented. However, we found the magnitude ratio of this specific parameter to be conserved

across a wide collection of biophysical models of myelinated and unmyelinated axons (Frankenhaeuser and

Huxley, 1964; McIntyre et al., 2002; Tarnaud et al., 2018), which supports the reliability of our conclusions.

Importantly, these differences in biophysical properties produce robust trends of fiber-specific recruitment

that are hardly affected by relative changes in other loosely-constrained model parameters, such as the so-

nophore dimensions and density (Figures 4H and 4I). Hence, while sonophore expression levels may vary

across fiber types, it should not preclude the existence of fiber-specific recruitment subspaces.

Third, the application of repeated LIFUS pulses induces a sustained spiking activity in both fiber types, the

rate of which can be modulated by adjusting pulsing parameters. Particularly, myelinated axons robustly

follow the stimulus rate over a wide range of PRFs, pulse durations, and supra-threshold stimulus ampli-

tudes, while unmyelinated axons show more complex dependencies on pulse durations/duty cycle and

acoustic intensities. Moreover, both fiber types can be entrained into firing rates that are comparable to

those resulting from electrical stimulation (Krauthamer and Crosheck, 2002), with myelinated axons

showing a much higher upper limit (FR > 1 kHz) than their unmyelinated counterparts (FR < 180 Hz). The

latter finding must be interpreted with caution, as the SENNmyelinated axon model ignores subtle spiking

adaptation phenomena and hence probably overestimates the physiological limit of the myelinated axon’s

firing rate. Importantly, robust neuromodulatory effects can be obtained with both fiber types at relatively

low duty cycles (DC < 50%) that prevent significant tissue heating.

Finally, fiber-type specific LIFUS sensitivities in the two-dimensional pulse duration – pulse amplitude

space can be exploited to designmultiplexed LIFUS protocols that enable the concurrent, yet independent

modulation of myelinated and unmyelinated fiber populations within a spatially-constrained anatomical

environment such as thin sensory nerve bundles.

Together, these predictions define a comprehensive theoretical basis that can guide the design of ultra-

sound neuromodulation protocols.
Applicability of the SONIC paradigm in multi-compartment models

The SONIC paradigm relies on the assumption that membrane charge density and ion channel kinetics

evolve at a much slower speed than microsecond-scale capacitance oscillations, thereby allowing for the

accurate integration of neural responses using precomputed cycle-averaged quantities of fast-oscillating

variables. Although that assumption is valid for point-neuron models (Lemaire et al., 2019), two recent

studies using a nanoscale two-compartment model has shown that under tight axial coupling conditions,

strong intracellular currents mediate a significant intra-cycle charge redistribution that influences local

membrane dynamics in a way that is not captured by the SONIC paradigm, resulting in overestimated

sub-threshold charge build-ups and underestimated excitation thresholds (Tarnaud et al., 2020, 2021). It

was also demonstrated that this numerical inaccuracy could be resolved by taking into account a limited

number of Fourier components from precomputed oscillatory variables (as opposed to the SONIC

approach that only considers their first component). Those findings raise legitimate concerns about the

applicability of the SONIC paradigm in multi-compartment models and prompted us to examine the con-

ditions of its applicability, and whether it can be accurately used with the axon models of this study.

First, using a generic passive benchmark, we showed that SONIC accuracy is impacted by both intrinsic

model properties and stimulus features, but also that this paradigm shows robust convergence if the
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underlying (membrane and axial) time constants of the considered neuron model are longer than the stim-

ulus periodicity. Second, using axon-specific benchmarks, we demonstrated that the SONIC paradigm can

accurately compute passive and active neural responses of both axon models of this study, across a vast

majority of the LIFUS parameter space.

In the case of the unmyelinated axon, the axial time constant is a direct product of the spatial discretization

of a continuous membrane (tax = Cm0ra
L2

D , with L the compartment length). Hence, for small enough com-

partments, this time constant may become smaller than the stimulus periodicity and therefore sensitize the

electrical system to intra-cycle variations. However, increasing the model resolution would also eliminate

the spatial gradient in acoustic pressure across consecutive compartments, effectively eradicating the axial

currents at the origin of SONIC numerical inaccuracy. In fact, the selected compartment length in this study

(see STAR Methods section) is in the order of 10�2 mm, i.e., already two orders of magnitude smaller than

millimeter-scale pressure field variations.

Whether SONIC convergence can extend to other morphological models remains an open question, in

particular as neurons of the CNS have a much slower membrane dynamics than peripheral axons (mem-

brane time constants in the order of tens of milliseconds (Pospischil et al., 2008)) but possess tightly con-

nected and heterogeneous morphological sections that may induce significant axial charge redistribution.

In this case, a more computationally taxing approach considering extended Fourier decomposition might

be required to achieve an acceptable level of accuracy.

Generalizability of the morphoSONIC framework

Owing to its intrinsic mechanoelectrical coupling, the NICE model is inherently tedious to simulate. In fact,

capacitance oscillations induced by the mechanical membrane resonance introduce a high frequency

capacitive displacement current

�
IC =Vm

dCm

dt

�
that greatly increases the associated numerical stiffness.

We first observed that this stiffness could be reduced by recasting the differential system in terms of charge

density (Lemaire et al., 2019). This strategy has since been employed in two other studies implementing the

NICE model (Tarnaud et al., 2020, 2021), and is also at the core of the SONIC paradigm. Unfortunately,

neither time-varying capacitance nor charge casting are natively supported by standard neuronal simula-

tion environments such as NEURON. Consequently, computational studies on intramembrane cavitation

have been implemented in custom software (MATLAB or Python) and restricted to single and two-compart-

ment models, partly because sub-optimal integration routines yield exorbitant simulation times and/or nu-

merical instabilities for larger models.

Here, we derived a hybrid (charge and voltage casted) variant of the cable equation that is numerically

reconcilable with both the NICE and SONIC paradigms and implemented it as an independent module

that can be seamlessly integrated within the NEURON simulation environment. As such, the proposed

approach provides a general solution to the problem of time-varying capacitance that is applicable to a

wide variety of model types (single and double cable) and morphological structures (compartment num-

ber, branching patterns) seen across the central and peripheral nervous systems. Notably, this approach

could also be used with enriched membrane mechanisms including lookup tables for additional Fourier

components, as in (Tarnaud et al., 2020). Moreover, the choice of a NEURON-based implementation offers

several advantages. First, it leverages NEURON’s optimized numerical integration pipelines while offering

an appreciable abstraction level to the underlying differential systems. Second, it is applicable to a wide

collection of biophysical models – as well as other resources – made available by the NEURON community

(McDougal et al., 2017) with limited adaptation effort. Finally, although it has been used here with Gaussian

field distributions approximating analytical solutions to simple physical problems, the morphoSONIC

framework can easily be combined with finite-element-method (FEM) approaches. This refined multi-scale

approach would enable the coupled simulation of complex acoustic propagation, pressure field distribu-

tion, and resulting neuronal responses inside anatomically accurate inhomogeneous tissue (such as the

brain or the nerve environment).

Comparison with empirical findings

As stated before, one of the major findings of this modeling study is that short LIFUS pulses are capable of

inducing de novo action potentials in both myelinated and unmyelinated peripheral axons. This modeling

prediction is in agreement with experimental observations from recent studies showing that in vivo
18 iScience 24, 103085, September 24, 2021
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sonication of the mouse intact sciatic nerve directly activates myelinated fibers to induce motor responses

(Downs et al., 2018; Kim et al., 2020; Lee et al., 2020), and that ex vivo sonication of unmyelinated crab leg

nerve bundles generates compound action potentials (Wright et al., 2017). Interestingly, these studies re-

ported significantly higher excitation thresholds (3.2 MPa and 24MPa peak pressure amplitudes around the

fiber location for myelinated axons, and 1.8 MPa and unmyelinated axons) than the ones predicted here.

Such differences could potentially arise from the intrinsic embedding of fibers within the neural tissue,

increasing viscoelastic stresses on the membrane, and therefore hindering its mechanical resonance to

acoustic perturbations (Krasovitski et al., 2011), a phenomenon that was not considered here. In fact, active

neural responses in the extracted crab leg nerve bundles coincided with the presence of inertial cavitation

in the surrounding medium, which may indicate higher thresholds for intramembrane cavitation in this spe-

cific environment. Besides, other studies focusing on cranial nerves have reported successful behavioral re-

sponses (e.g., eyeball movements) at peak acoustic pressures below 1 MPa (Kim et al., 2012), thereby

emphasizing the variability of reported excitation thresholds across neural targets. Moreover, even within

similar anatomical environments (Downs et al., 2018; Lee et al., 2020), threshold peak pressure amplitudes

required to excite neural structures are highly dependent on the choice of acoustic carrier frequencies and

beam width, which further highlights the sensitivity of reported excitation metrics to exposure conditions

(such as focus width) and the need for accurate targeting. In spite of this uncertainty, it is worth noting that

across these studies, the range of reported excitation thresholds for unmyelinated fibers was lower than

those for myelinated fibers. Considering that all studies employed minimal stimulus durations that fall

within the fibers predicted rheobase regimes (1 ms and 8 ms for the myelinated and unmyelinated cases,

respectively), the higher sensitivity of unmyelinated structures corroborates our modeling predictions. It is

also worth noting that shorter response latencies were observed in myelinated fibers (Dt < 1 ms) than in

unmyelinated fibers (Dt z 3.2 ms), which is also in agreement with our findings. Finally, all 3 studies re-

ported significant variability in sonication success rate, which departs from the deterministic nature of sin-

gle fiber responses predicted by our current model. Nevertheless, the similarities in qualitative behavior

between our theoretical results and these empirical observations provide a first indication that intramem-

brane cavitation could be a physiologically relevant ultrasound neuromodulation mechanism also in the

peripheral nervous system, where significant uncertainty remains regarding the underlying biophysics of

stimulation. In fact, both cavitation and acoustic radiation force have been advanced to explain LIFUS-

evoked action potential generation in peripheral fibers, and support for these hypotheses relies on concur-

rent empirical observations (presence of extracellular cavitation during successful trials in one case, and

correlation between induced nerve displacement and response likelihood in the other case) rather than

causal evidence. In this context, the theoretical framework presented in this study provides a rich body

of quantitative predictions that could be tested experimentally. In particular, we suggest that a thorough

comparison of excitation thresholds across fiber types and diameters, within the same nerve environment

and across a wide range of pulse durations and acoustic beam widths, could be conducted in order

to further assess the relevance of intramembrane cavitation as a potential mechanism of LIFUS

neuromodulation.

Ultimately, access to direct recordings of membrane dynamics within the acoustic focal area upon sonicat-

ion could provide further insight into the underlying biophysics of LIFUS neuromodulation. A significant

effort in that direction was recently conducted by Lin et al. (2019), who used a two-electrode current clamp

to record the membrane voltage of crayfish axons within the LIFUS focus. Interestingly, voltage traces of

LIFUS-evoked responses recorded in this study also revealed several trends with a striking degree of sim-

ilarity with our modeling predictions. In particular, authors reported that sonication consistently produced

a fast hyperpolarization, followed or superseded by subthreshold depolarizations or action potentials;

these observations are very reminiscent of the voltage responses predicted in this work (Figure 3) and could

therefore very well be explained by a LIFUS-evoked capacitance drop, thereby providing further incentive

for the potential relevance of our theoretical framework.

Yet, despite the aforementioned similarities with empirical findings, the mechanism proposed in this study

does not suffice to explain the entire body of observed LIFUS neuromodulatory effects on peripheral struc-

tures. In particular, our simulations only predicted LIFUS-evoked excitation and did not reveal or hint at the

possibility of LIFUS-induced silencing/blocking of nerve activity, as reported in many studies (Colucci et al.,

2009; Juan et al., 2014; Kim et al., 2020; Lele, 1963; Mihran et al., 1990; Takagi et al., 1960; Young andHenne-

man, 1961a, 1961b); further modeling investigations on the interaction of LIFUS with physiological and

electrically-induced activity will be necessary to provide a more accurate perspective on the matter.
iScience 24, 103085, September 24, 2021 19



ll
OPEN ACCESS

iScience
Article
Interestingly, although reported effects were different in nature, several of these studies have also

observed distinct degrees of LIFUS sensitivities betweenmyelinated and unmyelinated fibers (with C-fibers

being the most sensitive). Finally, the modulation of neural excitability over long time scales (e.g., seconds

or minutes), observed over a wide range of preparations (Downs et al., 2018; Takagi et al., 1960; Young and

Henneman, 1961b), is currently not captured by our modeling framework.

Therapeutic implications

Beyond mechanistic investigation, our findings further emphasize the potential of LIFUS as a noninvasive neu-

romodulation technology and its applicability to peripheral structures. In fact, we predict that LIFUS enables a

robust modulation of the spiking activity of both myelinated and unmyelinated fibers, thereby warranting its

use to encode sensory information or elicit motor responses. In particular, the ability to selectively target un-

myelinated C-fibers, which carry pain and temperature afferent signals, ushers in the possibility to encode new

types of sensory information in artificial limbs without interfering with other haptic, i.e., tactile (Petrini et al.,

2019; Raspopovic et al., 2014; Valle et al., 2018) and proprioceptive (D’Anna et al., 2019), modalities. To the

best of our knowledge, this feature has never been achieved with standard electrical stimulation techniques.

The encoding of temperature information would be particularly interesting to enrich the sensory feedback in

neuroprosthetic devices and improve user experience (Mendez et al., 2021). Conversely, the absence of clear

dependency of LIFUS excitation thresholds on fiber diameter represents a disadvantage, as it excludes the

possibility to discriminate across different populations of myelinated fibers and, hence, to target a specific pe-

ripheral pathway. However, it is worth noting that the models used in this study employed relatively simple

axonal representations, in which dimensional variations only influence extensive model properties. Here,

the incorporation of more detailed axon models in which intensive properties also exhibit a diameter-depen-

dency (McIntyre et al., 2002) could reveal finer trends of LIFUS-excitability.

The concept of selective targeting of unmyelinated or myelinated peripheral pathways by modulating

acoustic amplitude and temporal stimulation parameters has already been investigated in a previous study

(Legon et al., 2012), in which acoustic stimulation was delivered on nerve endings is likely to engage neural

pathways through mechanoreceptors. Complementarily, this study provides a first biophysically informed

insight that an energy-dependent activation can be achieved directly on axonal structures, leveraging

membrane electromechanical coupling to engage their action potential machinery. Perhaps more impor-

tantly, we also predict that intrinsic differences in fiber LIFUS sensitivity can be leveraged to design multi-

plexed LIFUS stimuli that incorporate distinct energy components to simultaneously yet independently

modulate distinct peripheral pathways. From a therapeutic perspective, LIFUS may therefore enable the

encoding of a multimodal sensory feedback within spatially confined targets through a unique stimulation

modality. This is of particular relevance for small nerve fascicles with heterogeneous fiber populations (such

as the sural nerve bundle modeled in Figure 7C), whose dimensions (100 mm diameter) are significantly

shorter than the acoustic wavelength (ca. 3 mm in this study), and in which selective stimulation cannot

be achieved by means of spatial selectivity. Moreover, contrarily to hardware intensive solutions relying

on acoustic field steering (e.g. ultrasonic transducer arrays), MUX-LIFUS offers a straightforward and effec-

tive solution to achieve selective peripheral neuromodulation using conventional stimulation equipment

(i.e., a single element transducer controlled by a multi-channel signal generator).

Conclusions

In this study, we present a novel computational framework to investigate the mechanisms of ultrasound

neuromodulation by intramembrane cavitation in morphologically structured neuron models, using the

NEURON simulation environment. Using this framework, we predict that acoustic pressure fields can

modulate the spiking activity of myelinated and unmyelinated peripheral fibers in a cell-type-specific

manner. These predictions agree with recent empirical observations, and open new avenues for the use

of LIFUS as a neuromodulation technology in the peripheral nervous system. Yet, closer quantitative com-

parison with experimental data will be necessary to further validate or reject the underlying mechanism. In

future work, we plan to couple our modular framework with acoustic propagation models to formulate

more detailed predictions of neural responses upon sonication by realistic acoustic sources and to inform

the development of application-specific ultrasonic devices.

Limitations of the study

This study presents a computational framework to investigate a particular candidate hypothesis of ultra-

sound-neuron interaction – intramembrane cavitation – in morphologically structured axon models. As
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such, we did not investigate here any alternative cellular mechanisms by which ultrasound may induce neu-

ral activity, such as ion channel mechanosensitivity (Prieto et al., 2018; Sorum et al., 2021; Yoo et al., 2020),

flexoelectricity (Chen et al., 2019; Petrov, 2002) or soliton spike propagation (Heimburg and Jackson, 2005).

On a similar note, we focused here on the direct influence of acoustic pressure oscillation on the neural

membrane and disregarded other potentially relevant ultrasound bioeffects, e.g., related to the acoustic

radiation force whose importance has been demonstrated ex vivo (Menz et al., 2019) in different exposure

regimes than those investigated here. The candidate cellular mechanism considered in this work has not

been directly evidenced in experimental settings. However, the NICE model has been uniquely successful

in providing quantitative predictions that agree with the vast majority of available experimental data of

LIFUS-evoked brain activity within the low-frequency (i.e., sub-MHz) exposure regime (Plaksin et al.,

2016), and the present study suggests that it may also explain LIFUS effects observed in peripheral struc-

tures. Nevertheless, owing to a lack of experimental characterization, the NICE model entails inherent as-

sumptions that are likely an oversimplification of reality (e.g., the assumption of circular sonophore symme-

try), as well as uncertainty regarding the physiological range of its parameters (e.g., sonophore diameter

and coverage fraction). This uncertainty results in a loosely constrainedmodel parameter space, and there-

fore a range of possible effect magnitudes for a given stimulus, which limits the prediction accuracy of met-

rics such as excitation thresholds. Our study generates new predictions that can be tested experimentally

to validate (or falsify) themechanism and constrain critical model parameters. Beyond its focus on a specific

subcellular mechanoelectrical transduction mechanism, this work uses a Hodgkin–Huxley formalism used

to model membrane electrical dynamics, which also entails simplifying assumptions about the gating dy-

namics ion channels (e.g., considering uncoupled states and neglecting stochastic transitions) that could

affect predictions.

The axon models used in this study also involve morphological simplifications that may limit the realism of our

predictions. For instance, the SENN model omits specific features of myelinated axons (namely transmem-

brane internodal dynamics and extracellular longitudinal coupling), that are incorporated in other, more com-

plex fibermodels (McIntyre et al., 2002). As such, the SENN axonmodel does not capture subtle spiking adap-

tation phenomena and hence probably overestimates the physiological limit of the myelinated axon’s firing

rate. Nonetheless, this model incorporates enough morphological complexity to provide quantitatively accu-

rate predictions of myelinated fiber excitability by electric fields; it is in fact a standardized model for electro-

magnetic exposure safety assessment (Reilly and Diamant, 2011). Moreover, given the absence of available

experimental data, this study also assumes uniform sonophore distributions across activemembrane compart-

ments that are identical in both fiber models, which is likely to be an oversimplification of reality. Although that

assumption influences the ratio of excitation thresholds across fiber types, it is unlikely that the existence of

fiber-specific recruitment subspaces depends on that, as discussed above.

Finally, the distributions of acoustic and electrical exposure along a fiber have been approximated here by

Gaussian shapes which, although qualitatively valid in nature, do not capture the full complexity of field

exposure within the physically heterogeneous mammalian macro- and micro-anatomy. However, because

of their inherent simplicity, Gaussian approximations allowed us to investigate general trends about the

impact of field distributions on axon excitability – a central objective of this work.
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METHOD DETAILS

The neuronal intramembrane cavitation excitation (NICE) model

The NICE electromechanical model developed by (Plaksin et al., 2014) provides a mathematical formula-

tion of the intramembrane cavitation hypothesis. Mechanically, the periodic cavitation of a single bilayer

sonophore is described by two differential variables: the deflection of a leaflet apex from its resting posi-

tion in the transmembrane plane (Z) and the internal gas content in the sonophore cavity (ng). The resting

leaflet position results from a pressure balance between several static pressure forces, namely the elastic

tension developing in the leaflets (PS), attractive and repulsive intermolecular forces between leaflets (PM),

internal gas pressure in the sonophore cavity (PG), the electric pressure resulting from the membrane po-

larity (PQ), and a constant hydrostatic term (P0). Upon perturbation by a time-varying acoustic pressure PA(t),

the dynamic pressure imbalance drives a normal acceleration that deforms the leaflets in antiphase, gen-

erates viscous forces in the membrane (PVS) and surrounding medium (PVL), and triggers gas transport

across the cavity. These oscillatory dynamics are captured by the following differential system (all pressure

terms and parameters are defined in Lemaire et al. (2019)):

d2Z

dt2
=

�3

2RðZÞ
�
dZ

dt

�2

+
1

rl,jRðZÞj
	
PA

�
t

�
+ PSðZÞ+PVS

�
dZ

dt

�
� P0 +PVL

�
dZ

dt

�
+PMðZÞ+PG

�
Z ; ng

�
+PQ

�
dng

dt
=
2S
�
Z
�
,Dgl

x

�
Cg � PGðZÞ

kH

�
(Equation 2)

Electrically, the development of an electrical response across the membrane is captured by a modified

Hodgkin-Huxley differential system, describing the evolution of the membrane charge density (Qm) as

the negative sum of voltage-dependent ionic currents with specific conductances gi and reversal potentials
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Ei. In this system, time-varying ionic conductances are the product of one or multiple gating variables (x,

with x ˛ {m, h, n, p, .}), whose evolution is regulated either by voltage-dependent activation and inacti-

vation rate constants (ax and bx, respectively) or by a steady-state probability xN and a time constant tx (also

both voltage-dependent), yielding the following system (note that charge-casting was introduced in Lem-

aire et al. (2019)):

dQm

dt
= �

"X
i

gi,

�
Qm

Cm
� Ei

�#

dx

dt
=

8>>>>>>>><
>>>>>>>>:

ax

�
Qm

Cm

�
,ð1� xÞ � bx

�
Qm

Cm

�
, x

xN

�
Qm

Cm

�
� x

tx

�
Qm

Cm

�
(Equation 3)

The coupling between these two systems is modeled by a bidirectional piezoelectric effect. Mechanoelec-

trical transduction results from the periodic deflections of the sonophore leaflets, inducing high frequency

oscillations in the local membrane capacitance (given by CmðtÞ = Cm0D
a2

	
ZðtÞ + a2�ZðtÞ2�ZðtÞ,D

2ZðtÞ ln

�
2ZðtÞ+D

D

�

, as

in Plaksin et al. (2014)). Considering a larger, macroscale portion of membrane area, local fluctuations of

membrane capacitance around individual sonophores influence the spatial average of membrane capac-

itance, calculated as a weighted mean of the resting and dynamic capacitances:

Cm = CmðtÞfs +Cm0ð1� fsÞ (Equation 4)

where fs is the sonophore membrane coverage fraction). This global fluctuation then causes large ampli-

tude oscillations of the transmembrane potential in the compartment of interest (Vm =Qm=Cm in

Equation (3)). Reversibly, electromechanical transduction results from progressive changes in the mem-

brane electrical polarity that dynamically modify the electric pressure exerted on the sonophore leaflets

and the resulting pressure balance (PQ in Equation (2)), thereby influencing the sonophore cavitation

dynamics.
The multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model

The SONIC model (Lemaire et al., 2019) uses temporal multi-scaling to separate the two relevant time

scales of the NICE model, namely microsecond-scale mechanical oscillations and millisecond-scale devel-

opment of neuronal responses. It is based on the observation that ion channel gates – whose time con-

stants are typically in the millisecond range – do not follow large amplitude, high frequency variations of

transmembrane potential observed in the NICE model, but rather adapt to the temporal average of

voltage oscillations over an acoustic cycle. As a result, the evolution of membrane charge density and

ion channels gating variables can be expressed as a function of an effective membrane potential ðV�
mÞ

and effective activation and inactivation rate constants (a�
x and b�x , respectively, for each gating variable

x), representing the average value of their original, voltage-dependent counterparts (Vm, ax and bx, respec-

tively) over an acoustic cycle:

dQm

dt
= �

X
ion

gion,
�
V �
m � Eion

�
dx

dt
=a�

x ,ð1� xÞ � b�
x ,x

(Equation 5)

The SONIC model uses a sequential approach to compute electrical responses of a given neuron type to

various LIFUS stimuli. First, a parallelized precomputation step is performed (once per neuron type) in

which the mechanical system (Equation (2)) is simulated for various combinations of sonophore radii (a), ul-

trasound frequencies (fUS), acoustic pressure phasor amplitudes (AUS), and membrane charge densities,

covering the LIFUS parametric space, sonophore geometrical range and membrane physiological

range. Each simulation is run until a limit cycle is detected, at which point, the profile of oscillating mem-

brane capacitance Cm(t) over the last acoustic cycle is extracted, rescaled according to a specific sono-

phore membrane coverage fraction using Equation (4), and converted to a corresponding voltage profile
26 iScience 24, 103085, September 24, 2021
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Vm = Qm=Cm. The effective membrane potential V�
m and rate constants a�

x and b�x (for each gating variable x)

are then computed as:

V �
m =

Z TUS

0

VmðtÞdt
TUS

a�
x =

Z TUS

0

axðVmðtÞÞdt
TUS

b�
x =

Z TUS

0

bxðVmðtÞÞdt
TUS

(Equation 6)

and stored in multidimensional lookup tables. Second, the electrical response of the neuron to a given LI-

FUS stimulus is rapidly computed at runtime by interpolating effective variables at (a, fs, fUS, AUS) and (a, fs,

fUS, 0) to yield 1D projected vectors in theQm space, which are then used to interpolate effective variables

and solve Equation (5) during LIFUS-ON and LIFUS-OFF periods, respectively.
A hybrid multi-compartment, multi-layer circuit

In its most basic form, the multi-compartment expansion of point-neuron NICE/SONIC models requires

the addition of axial current terms contributing to the evolution of charge density in each compartment

(see (Lemaire et al., 2019), Equation 5). However, that formulation only considers intracellular axial

coupling, and is therefore not adapted to double-cablemodels that account for both intra and extracellular

longitudinal coupling. More importantly, the use of explicit current terms representing axial coupling is

prone to yielding numerical instabilities in the presence of tightly connected sections or abrupt changes

in voltage gradients. Hence, in this study, we derived a hybrid multi-compartment multi-layer electrical cir-

cuit that is applicable to both single and double cable structures with temporally and spatially varying

membrane capacitances, and compatible with reference numerical integration schemes and simulation

environments.

The circuit model is composed of multiple longitudinal compartments, each represented by a pair of intra-

cellular and extracellular voltage nodes (Vi and Vx, respectively) on either side of the plasmamembrane with

time-varying capacitance Cm(t). The voltage difference across the plasmamembrane V�
m = Vi - Vx influences

the opening and closing of distinct ion channels, ultimately giving rise to a net membrane ionic current Iion.

On the extracellular side, a transverse resistor-capacitor (RC) circuit of conductance gx and capacitance Cx

represents the myelin membrane and connects the extracellular node to the extracellular driving voltage

Fe, which is usually grounded but can also have a value imposed by an external electric field. Longitudi-

nally, neighboring nodes are connected intracellularly and extracellularly by axial conductors (Ga and

Gp, respectively). All variables and parameters of the circuit are described in Table 1, and a schematics

of the circuit model is given in Figure S2A.

For any compartment k connected to a set of neighboring compartments, the application of Kirchhoff’s

law at the corresponding intracellular and extracellular nodes yields the following current balance

equations:

Ck
m

dVk
m

dt
+Vk

m

dCk
m

dt
+ Ikion = Iks +

1

Ak
m

X
j

Gkj
a

�
Vj
i � Vk

i

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intracellular axial current

Ck
x

dVk
x

dt
+ gk

x

�
Vk
x � 4k

e

�
= Ck

m

dVk
m

dt
+ Ikion +

1

Ak
m

X
j

Gkj
p

�
Vj
x � Vk

x

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
periaxonal axial current

(Equation 7)
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Using Vi = Vm + Vx , and re-arranging the terms, we find:

Ck
m

dVk
m

dt
+Vk

m

dCk
m

dt
+

1

Ak
m

X
j

Gkj
a

�
Vk
m � Vj

m

�
+

1

Ak
m

X
j

Gkj
a

�
Vk
x � Vj

x

�
= Iks � Ikion

Ck
x

dVk
x

dt
�
 
Ck

m

dVk
m

dt
+Vk

m

dCk
m

dt

!
+gk

x V
k
x +

1

Ak
m

X
j

Gkj
p

�
Vk
x � Vj

x

�
= Ikion +gk

x4
k
e

(Equation 8)

By substituting transmembrane voltage for transmembrane charge density

�
QmðtÞ = CmðtÞ ,VmðtÞ; dQm

dt =

Cm
dVm

dt +Vm
dCm

dt

�
, and defining Ike = gk

x4
k
e as the extracellular driving current, we obtain:

dQk
m

dt
+

1

Ak
m

X
j

Gkj
a

 
Qk

m

Ck
m

�Qj
m

Cj
m

!
+

1

Ak
m

X
j

Gkj
a

�
Vk
x � Vj

x

�
= Iks � Ikion

Ck
x

dVk
x

dt
� dQk

m

dt
+gk

x V
k
x +

1

Ak
m

X
j

Gkj
p

�
Vk
x � Vj

x

�
= Ikion + Ike

(Equation 9)

By applying the above equations to a model of n compartments connected in series, we obtain a hybrid

charge-voltage partial differential equation system of size 2n that can be described as:

C
dy

dt
+ GðtÞ,yðtÞ= IðtÞ (Equation 10)

where:

� y is a hybrid vector of transmembrane charge density and extracellular voltage, and dy/dt its tempo-

ral derivative;

� C is a constant matrix composed of both capacitance terms (multiplying voltage elements of dy/dt)

and ‘‘identity’’ terms (multiplying charge elements of dy/dt);

� G(t) is a time-varying matrix composed of both conductance terms (multiplying voltage elements

of y) and ‘‘frequency’’ terms (conductance by capacitance ratios in MHz, multiplying charge elements

of y); and

� I(t) is a time-varying vector of stimulation and membrane currents

This matrix formulation allows for the use of implicit methods to solve the differential equation problem,

thus providing an enhanced stability over explicit schemes.

Moreover, by mapping the first n elements of the y vector to transmembrane charge density nodes and the

following n elements to extracellular voltage nodes, we can describe the C, G and I terms of the system as

combinations of block matrices and vectors, i.e.:

C =

	 ½In� 0
½�In� ½Cx �



; GðtÞ =

2
6664
	

Ga

Am,CmðtÞ

 	

Ga

Am




0 ½gx �+
	
Gp

Am



3
7775; IðtÞ =

	
IsðtÞ
��!� IionðtÞ

���!
IionðtÞ
���!

+ IeðtÞ
��! 


; (Equation 11)

where:

� ½In� is an n-by-n identity matrix;

� ½Cx � is an n-by-n diagonal matrix of transverse extracellular membrane (e.g. myelin) capacitance;

�
h
Ga

Am

i
and

h
Gp

Am

i
are n-by-n tridiagonal matrices of intracellular and extracellular axial conductance,

respectively, where each row is normalized by the corresponding node’s membrane area;

�
h

Ga

Am,CmðtÞ
i
is an n-by-n tridiagonal matrix of intracellular axial conductance where each row is normal-

ized by corresponding node’s membrane area and each column is dynamically normalized by the

time-varying membrane capacitance of the corresponding node;
28 iScience 24, 103085, September 24, 2021



ll
OPEN ACCESS

iScience
Article
� ½gx � is an n-by-n diagonal matrix of transverse extracellular membrane (e.g. myelin) conductance; and

� IsðtÞ
��!

, IionðtÞ
���!

and IeðtÞ
��!

are n-sized, time-varying vectors of intracellular stimulation currents, transmem-

brane ionic currents and extracellular driving currents, respectively.

We implemented this hybrid system in NEURON (Hines and Carnevale, 1997), a reference computational

environment for neuronal simulations that uses a very similar matrix formulation to enable numerical inte-

gration by implicit schemes. However, since that environment is not designed for models of varying capac-

itance or for hybrid charge-voltage casting, we employed three main adaptation strategies. First, a unit

capacitance was set to all membrane mechanisms, thereby implicitly setting the ½In� upper block matrix

and effectively transforming NEURON’s internal variable v as an alias to transmembrane charge density.

Second, pressure phasor amplitude and charge density dependent lookup tables of effective SONIC terms

(transmembrane potential and ion channels rate constants obtained from original SONIC lookup tables

(Lemaire et al., 2019)) were dynamically inserted into these mechanisms to compute the evolution of

voltage, ion channels states and ionic currents via bilinear interpolation (thereby implicitly setting the

Iion
�!

upper block vector). Third, alternative C0 G0 and I0 terms were defined to complete the hybrid circuit

setup upon definition of the model’s compartments and their connections:

C0 =

	
0 0
0 ½Cx �



; G0ðtÞ =

2
6664
	

Ga

Am,CmðtÞ

 	

Ga

Am



	

Ga

Am,CmðtÞ

 	

Ga

Am



+ ½gx �+

	
Gp

Am



3
7775; I0ðtÞ =

	
0
IeðtÞ
��!

+ IsðtÞ
��! 


: (Equation 12)

These terms were added to NEURON’s currents balance equations via the use of a ‘‘Linear Mechanism’’ (an

interface object provided by the NEURON software allowing to interact directly with its internal equations).

It should be noted that the terms ½�In� and IionðtÞ
���!

in the lower block are replaced by equivalent axial con-

duction and intracellular stimulation current terms (by adding the equality of the upper block) to remove

the need to access the net membrane current, a hidden NEURON variable. Numerical integration is

then carried out by NEURON’s embedded general sparse matrix solver (a differential-algebraic solver

with a preconditioned Krylov method from the SUNDIALS package (Hindmarsh et al., 2005)) using a vari-

able time step with a pure absolute error tolerance criterion (ε = 10�3), while dynamically updating Cm-

dependent terms in the G0 matrix throughout the simulation. A detailed description of the matrix formula-

tion and its integration into the NEURON environment is given in Figure S2C. Compared to previous ap-

proaches using explicit axial current terms (Lemaire et al., 2019), this implicit integration scheme offers

increased numerical stability.
Morphological axon models

In order to simulate intramembrane cavitation in peripheral nerve fibers, we used the hybrid circuit

described above to incorporate the SONIC paradigm inside multi-compartmental models of myelinated

and unmyelinated axons (Reilly et al., 1985; Sundt et al., 2015). For both fiber types, we selected established

axon models that employ a single-cable representation and thereby offer a good compromise between

model complexity, numerical accuracy (see Figure 2), and morphological realism.

Our myelinated axon model was based on the spatially-extended nonlinear node (SENN) model devel-

oped by Reilly et al. (1985), which underlies a range of low-frequency exposure safety standards (prevention

of undesired neurostimulation) and has been extensively used in previous studies on the excitability of

myelinated nerve fibers by electrical fields for various applications, including neurostimulation of somato-

sensory and autonomic nerves (Gupta et al., 2020; Neufeld et al., 2016; Samoudi et al., 2017), modulation of

nerve excitability by multi-frequency and high-frequency currents (Makino et al., 2020; Zhao et al., 2015),

and minimization of nerve excitation during electroporation procedures (Mercadal et al., 2017). This model

represents myelinated axons as a set of nodes with active membrane dynamics based on the Franken-

haeuser-Huxley equations for a Xenopus Ranvier node (Frankenhaeuser and Huxley, 1964) including fast

sodium (INa), delayed-rectifier potassium (IKd), non-specific delayed (IP) and non-specific leakage (ILeak) cur-

rents, connected by intracellular resistors representing the myelinated internodes (Figures 1A and 1B).

Our unmyelinated axon model was based on the work of Sundt et al. (2015), which constitutes a reference

computational model employed in several recent investigations on the neuromodulation of unmyelinated

sensory neurons during electrical stimulation of various neural structures including dorsal root ganglions
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(Graham et al., 2019), autonomic nerves (Gupta et al., 2020) and spinal circuits (Squair et al., 2021), as well as

in physiological studies on information integration in nociceptive terminals (Barkai et al., 2020). This model

represents the continuous unmyelinated neurite as a set of nodes containing fast Sodium (INa), delayed-

rectifier Potassium (IKd), and leakage (ILeak) membrane currents, also connected by intracellular resistors

(Figures 1C and 1D). Notably, these axon models both use single-cable representations and therefore

do not require the second, extracellular layer of coupling defined in Equations 7, 8, 9, 10, 11, and 12, which

was added for the sake of generality.

The selected axon models were validated numerically by verifying specific physiological features (spike

amplitude, conduction velocity, threshold excitation current for various pulse widths) against the reference

literature (Reilly et al., 1985; Sundt et al., 2015), using NEURON’s native voltage-based connection scheme

with constant membrane capacitance. For the unmyelinatedmodel, a convergence study was carried out to

determine the optimal spatial discretization. Unmyelinated compartments were progressively and uni-

formly shortened from 1 mm to 5 mm, and an optimal segment length was defined as the maximal length

for which all physiological features were within 5% of their converging values (obtained for the shortest

segment length). As the optimum segment length exhibited a clear dependency on fiber diameter, we per-

formed a piecewise linear fit within the 0.5–1.5 mm range to obtain a fiber diameter-dependent formulation:

Lopt = minð16:4 $Dfiber + 9:1 mm; 22 mmÞ. Finally, we validated our hybrid circuit implementation by

comparing direct voltage traces, as well as physiological features, to those obtained with the ‘‘native’’

implementation.

Membrane equations of both models were adapted to 36�C by applying a Q10 correction with a factor of 3

(as in Sundt et al. (2015)), and lookup tables of SONIC effective variables were generated for the membrane

circuits of both models to enable their simulation upon acoustic perturbations (Figure 1E).
Analytical models of exposure distributions

In order to evaluate the effect of exogenous electrical and ultrasonic stimulation on isolated fibers, we

modeled the propagation of both electrical and acoustic fields from a realistic remote excitation source

to the target through a homogeneous intraneural medium. To this end, we considered a 3-dimensional

ðx; y; zÞ coordinate system in which the fiber was aligned on the x axis and centered at the origin.

For ultrasonic stimulation, we considered a single-element planar acoustic transducer with a center in the

xz plane and a normal vector along the z-axis, and a homogeneous, water-like propagation medium (den-

sity r = 1000 kg/m3, speed of sound c = 1500 m/s). We modeled acoustic distribution in the xz propagation

plane using the Distributed Point Source Method (DPSM) (Yanagita et al., 2009), which provides accurate

approximations of the Rayleigh-Sommerfeld integral (RSI) in homogeneous medium. That is, assuming a

uniform particle velocity normal to the transducer surface of amplitude v0, the complex acoustic pressure

phasor at each field point ðx; zÞ for an acoustic frequency f can be computed as:

Pacðx; zÞ = � jfrv0

ZZ
S

ejkf d

d
dS; (Equation 13)

where j is the unit imaginary number, kf = 2pf=c is the wave number, and d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xdSÞ2 + ðz � zdSÞ2 + y2dS

q
is

the distance between the field point and a surface element dS. We numerically approximated this integral

as the sum of individual contributions of a finite set of M uniformly distributed point sources – each asso-

ciated with a surface area DS – arranged in a concentric fashion on the transducer surface:

Pacðx; zÞ = � jfrv0DS
XM
i = 1

ejkf di

di
: (Equation 14)

The amplitude A and phase f of the complex acoustic pressure field can then be recovered as:

A= kPack
4= tan�1ðPacÞ (Equation 15)

Here again, we performed a sensitivity analysis to determine the optimal density of point sources required

to achieve a good prediction accuracy. Starting with a low source density (10 samples/mm2), the predicted

pressure distribution along the central z axis was evaluated against the corresponding closed form RSI so-

lution (PðzÞ = rcv0½ejkf z � ejkf
ffiffiffiffiffiffiffiffiffiffi
z2 + r2

p
�, with r the transducer radius), and source density was increased until the

variation of the root-mean-square error (RMSE) fell below a threshold value (10 kPa). We then selected the
30 iScience 24, 103085, September 24, 2021



ll
OPEN ACCESS

iScience
Article
minimal value satisfying that criterion over a wide frequency range (500 kHz–5 MHz), yielding an optimal

density of 217 samples/mm2.

Finally, we evaluated pressure distributions along the transverse x axis at the acoustic focal distance (calcu-

lated as zf =
fr2

c � c
4f ) for each combination of transducer radius and ultrasound frequency.

For electrical stimulation, we considered a point source electrode located in the xz plane and an aniso-

tropic conductivity tensor characteristic of the mammalian endoneurium (longitudinal resistivity rx =

175 U,cm, transverse resistivity ryz = 1211 U,cm) (Ranck and Bement, 1965). Extracellular potentials at

each field point ðx; zÞ were computed with the formula:

4eðx; zÞ =
I

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0�xÞ2

r2yz
+

z2
0

rx,ryz

r ; (Equation 16)

where I is the injected current and ðx0; z0Þ are the electrode coordinates, and equivalent sets of intracellular

currents were used to simulate the influence of the extracellular electric field, as in McIntyre et al. (2002).

Note that Equations (14) and (16) provide closed-form expressions to predict the qualitative nature of ul-

trasonic and electric field distributions along a fiber, thereby allowing general trends about the impact of

those distributions on axon excitability to be established. However, they only consider propagation within

a homogeneous medium, which is a limitation.
Mixed sensory nerve bundle model

The heterogeneous nerve bundle was approximated as a 10 mm long cylindrical section (100 mm in diam-

eter) populated with both myelinated and unmyelinated fibers. For each subtype, fiber diameters were

sampled from realistic distributions based on morphological data from the sural branch of human sciatic

nerves (Jacobs and Love, 1985). A total of 221 unmyelinated and 56 myelinated fibers were generated,

so as to reflect the typical 1:4 ratio of myelinated and unmyelinated fibers in this nerve branch (Jacobs

and Love, 1985) whilst providing sufficient population statistics of each subtype. Generated fibers were

randomly distributed within the bundle cross-section using a simple packing algorithm (preventing fiber

overlap), assigned random longitudinal shifts within the Gw interval (with w the fiber-specific node-to-

node distance) to avoid alignment of central nodes of Ranvier, and then spatially extended to cover the

entire bundle length. For the bundle exposure by acoustic fields, we assumed a uniform acoustic pressure

distribution across the bundle cross section, since the bundle diameter (100 mm) was significantly smaller

than the ultrasound wavelength (ca. 3 mm at fUS = 500 kHz).
TWO-COMPARTMENT SONIC BENCHMARK MODELS

The passive benchmark model was composed of two passive compartments with identical geometries and

passive membrane properties (Cm0 = 1 mF/cm2, Vm0 = ELeak = �70 mV). Membrane and axial conductances

were mapped to equivalent time constants:

tm =
Cm0

gLeak

tax =Cm0Am=Ga

(Equation 17)

For each configuration, simulation duration was fixed to five times the longest time constant (but at least 10

acoustic periods) in order to ensure convergence of all solutions toward a steady-state.

Steady-state SONIC deviation was then computed as the maximum across compartments 1 and 2 of the

absolute difference in charge density between the SONIC solution QSONIC
m and the cycle-averaged NICE

solution CQNICE
m D:

εN = max
����QSONIC

m

�
N
� �CQNICE

m D
�
N

��
k
; k ˛ f1; 2g� (Equation 18)

Transient SONIC deviation was evaluated after normalizing SONIC and cycle-averaged NICE solutions to

the unit interval, in order to evaluate differences in transient dynamics irrespective of charge build-up mag-

nitudes. Following this normalization step, the end of the transient phase tthr was identified in each

compartment as the time at which the cycle-averaged NICE profile first converged within 0.1% of the
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unit steady-state. The absolute difference between SONIC and cycle-averaged NICE profiles, and the dif-

ference between the cycle-averaged NICE profile and the unit steady-state, were then integrated over the

[0, tthr] interval, and transient SONIC deviation was defined as the maximum across compartments of the

ratio of these two integrals:

εt = max

 R tthr
0

��Z�QSONIC
m

�� Z
�
CQNICE

m D
���

k
dtR tthr

0

�
1� Z

�
CQNICE

m D
��

k
dt

; k ˛ f1; 2g
!
; with ZðxÞ= x �minðxÞ

maxðxÞ �minðxÞ
(Equation 19)

The denominator in Equation (19) ensures that the resulting deviation metrics can be interpreted indepen-

dently of the convergence time constant. This normalized metrics is meaningful when the majority of the

charge variation range is comprised in the transient phase, but falls short when the charge build-up is negli-

gible. Therefore, conditions yielding a cycle-averaged NICE charge variation range below 1 nC/cm2 were

excluded from the transient deviation analysis.

The axon-specific benchmarks were composed of two identical compartments with axon-specific morpho-

logical properties and full membrane dynamics of each fiber type. Physiologically relevant simulation du-

rations known to elicit spiking activity in each model (1 ms and 10 ms for the myelinated and unmyelinated

cases, respectively) were used.

For each condition, SONIC deviation was evaluated in each compartment following the gamma distance

evaluation method of Low et al. (1998). It compares two functions or distributions by finding for each point

in the test distribution the ‘‘closest’’ corresponding point in the reference distribution, considering both

deviations in value (dose-difference) and arguments (distance-to-agreement; in our case, the time differ-

ence). ‘‘Closest’’ is defined based on a multi-dimensional Euclidean distance norm of tolerance-normalized

difference contributions. I.e., the Gamma-distance between a point at time t2 of the test (SONIC) charge

density time-series and a point at time t2 of the reference (cycle-averaged NICE) in compartment k is calcu-

lated as:

Gðt1; t2Þk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t20
Dt2

+

�
QSONIC

m ðt2Þ � CQNICE
m Dðt1Þ

�2
DQ2

m

vuut (Equation 20)

whereDQm (in nC/cm2) andDt (in s) are the dose-difference and distance-to-agreement tolerances, respec-

tively.The closest corresponding QSONIC
m point to CQNICE

m Dðt1Þ and its deviation-distance are then obtained

by minimizing Gðt1; t2Þ:

gðt1Þk = minðGðt1; t2Þk ;c t2Þ (Equation 21)

The SONIC gamma deviation εg was then defined as the maximal deviation-distance across the entire time

range and all compartments:

εg = max
�
maxðgðtÞk ;c tÞ; k ˛ fA; BgÞ (Equation 22)

Charge density and timing tolerances were expressed as a function of model-specific spiking features (ex-

tracted from a single-compartment SONIC simulation at 1.1 times the excitation threshold): the charge dif-

ference criterion DQm and the distance-to-agreement criterion Dt were set to 30% of the spike prominence

and spike half-width, respectively.

For both the passive and the axon-specific benchmarks, NICE and SONIC simulations were run using fre-

quency-dependent time steps (dtNICE = 0.001/fUS, dtSONIC = 1/fUS).
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical differences between the firing rate distributions of myelinated and unmyelinated fiber popula-

tions in Figure 7C were evaluated using the Kruskal-Wallis test. A resulting p value below 0.05 determined

statistical significance.
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