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Abstract

Public hospital spending consumes a large share of government expenditure in many coun-

tries. The large cost variability observed between hospitals and also between patients in the

same hospital has fueled the belief that consumption of a significant portion of this funding

may result in no clinical benefit to patients, thus representing waste. Accurate identification

of the main hospital cost drivers and relating them quantitatively to the observed cost vari-

ability is a necessary step towards identifying and reducing waste. This study identifies

prime cost drivers in a typical, mid-sized Australian hospital and classifies them as sources

of cost variability that are either warranted or not warranted—and therefore contributing to

waste. An essential step is dimension reduction using Principal Component Analysis to pre-

process the data by separating out the low value ‘noise’ from otherwise valuable information.

Crucially, the study then adjusts for possible co-linearity of different cost drivers by the use

of the sparse group lasso technique. This ensures reliability of the findings and represents a

novel and powerful approach to analysing hospital costs. Our statistical model included 32

potential cost predictors with a sample size of over 50,000 hospital admissions. The propor-

tion of cost variability potentially not clinically warranted was estimated at 33.7%. Given the

financial footprint involved, once the findings are extrapolated nationwide, this estimation

has far-reaching significance for health funding policy.

Introduction

Nature of cost variability

Patient-level cost drivers may be classified as either predictable or non-predictable, based on

whether relevant information is available prior to the hospital admission. We propose that pre-

dictable cost drivers contain information independent of the care provided in hospital and

thus explain warranted variability of patient-level cost of care in hospital. In this scenario, the

hospital has no way of easily influencing these factors, with the associated cost variability being

‘pre-determined’ and therefore warranted from the hospital’s perspective. For example, a

patient’s prior health status (i.e., co-morbidities), socioeconomic status as well as demographic

factors may justifiably lead to varying consumption of health resources while in hospital. As a
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further example, the widely used DRG (Diagnosis-Related Group) system, which classifies hos-

pital admissions into similar groups, is a variable that links the clinical characteristics of a

patient with the expected resource requirements; it can also be viewed as a cost driver of war-

ranted cost variability. Each DRG (e.g., “circulatory disorders without acute myocardial infarc-

tion, with invasive cardiac procedure(s), without catastrophic or severe complications”)

describes the patient’s condition as well as its severity [1], features that are largely known prior

to hospital admission, despite the DRG classification being typically “coded” following com-

pletion of the actual episode of care.

Cost drivers that are not known or predictable prior to admission do not relate to the

underlying unique patient health predicaments. Such factors may however relate to aspects of

patient care provided during hospital admission and may thus contribute to unwarranted (i.e.,

potentially preventable) variability of cost of care. Large cost variability has been observed

between hospitals [2, 3] and it is the unwarranted portion of this variability which may result

in no clinical benefit to patients [4]. In fact, large amounts of cost variability with no correla-

tion to the quality of care have been observed previously [5].

The concept of unwarranted nature of hospital cost variability, or equivalently preventabil-

ity thereof is not yet consistently defined. Useful parallels can be drawn with preventability of

patient harm in health care, because harm is known to be strongly correlated with increased

cost [6, 7]. Like cost preventability, preventability of patient harm is also inconsistently defined

[8]. This suggests a conservative inclination to declaring a particular cost driver as predictable

a-priori and thus leading to warranted (or non-preventable) cost variability. Such an approach

avoids under-estimating the potential residual unwarranted cost variability, as adhered to in

this study.

Analysis of cost variability

Cost variability in health care—both warranted and not—has been typically modeled with

patient-related predictors [9–12] using regression-based risk adjustment methods. There are

however two recognised shortcomings of such an approach, which may be why there is no sin-

gle model yet which is considered as optimal [13, 14]. Firstly, these methods tend to omit some

cost drivers that are non-predictable from information available prior to commencement of

care. This narrow focus may stem from the imprecise nature of the link between these cost

drivers and unwarranted cost variability. Examples of such often ignored cost drivers are: the

choice of the admitting and/or discharging unit, the admitting and/or discharging doctor, as

well as the timing of the initial clinical encounter as a surrogate for inconsistent (or otherwise)

matching of clinical resources to demand, e.g., in after-hours periods. These additional predic-

tors, potentially related to unwarranted cost variability, ought to be included in any model

designed to analyse patient-level costs. Secondly, fundamental technical shortcomings of the

currently prevailing methods relate to “possible omitted variable biases associated with correla-

tions between unobservable individual specific effects and included covariates” [10]. This is

particularly pertinent for patient data which may have many strongly correlated variables that

drive costs (e.g., age and co-morbidity).

The first issue is remedied explicitly by the design of this study (see Table 1). A large num-

ber of non-predictable cost predictors (not known prior to hospital admission) were included

in the model. Clinical judgment was exercised when assigning these variables into either the a-

priori predictable or the a-priori non-predictable category, with a general caution to not

declare any cost predictor as predictable without sufficient confidence. For example, variables

such as day of the week, month, as well as the hour of the day were classified as non-predictable

as patients do not plan on presenting at any particular time.

Lasso analysis of hospital costs
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While the amount of information is greatly enriched by this inclusion of additional vari-

ables, the need to handle correlations between them is potentiated. This is because the possibil-

ity of co-linearities increases with the inclusion of additional predictors. This study uses the

technique of sparse group LASSO (Least Absolute Shrinkage and Selection Operator) to over-

come this challenge. A lasso model is one that fits a linear regression via a penalised maximum

likelihood [15]. It solves an l1 optimisation problem to select out unimportant coefficients but

to keep the necessary ones in the model. This results in an interpretable model that includes

only the pertinent, or principal cost drivers. Moreover, an l1 method seems appropriate, given

its solution exhibits robustness-like properties [16] born out of the fact that it effectively

restricts the number of coefficients in the solution, therefore diminishing the effect of outliers.

Such resultant relative insensitivity to outliers is beneficial in the case of the skewed hospital

cost data [17]. Naturally, there is a balance between including too few and too many predictors.

Leaving an insufficient number of predictors in the model may lead to inadequate explanation

of the observed cost variability, in turn resulting in a loss of accuracy. On the other hand, too

Table 1. All potential cost predictors analysed. (See S1 Text).

Potential Cost Predictor Considered Number of Categories (if applicable) Predictable (P) or Non-predictable (NP) Selected as Input for Lasso

age (in years) N/A P Yes

alcohol overuse 2 P Yes

Charlson Comorbidity Index 11 P Yes

discharge within last 3 days 2 P Yes

discharge within last 7 days 2 P Yes

discharge within last 14 days 2 P Yes

discharge within last 21 days 2 P Yes

DRG 617 P Yes

DVA status 3 P Yes

IRSAD N/A P Yes

IRSD N/A P Yes

obesity 2 P Yes

private health insurance status 2 P Yes

sex 2 P Yes

smoking 2 P Yes

admitting medical unit 20 NP Yes

admitting ward 20 NP Yes

blood-borne infection(s) 2 NP No

CHADx Flag 2 NP No

day of the week 7 NP Yes

discharging medical unit 25 NP Yes

discharge ward 15 NP Yes

doctor at admission 100 NP Yes

doctor at discharge 100 NP Yes

fall(s) during admission 2 NP No

hospital-acquired pressure injury 2 NP No

hospital length of stay (fractional) N/A NP No

ICU days (discretised) not set NP No

medication errors 2 NP No

month 12 NP Yes

time (discetised) 24 NP Yes

transfer out flag 2 NP No

https://doi.org/10.1371/journal.pone.0204300.t001
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many predictors will also increase error through inclusion of parameters with little additional

information. It is therefore convenient that the number of residual predictors left in the lasso

model is adjustable and can be set to minimise the resultant error.

The sparse group lasso optimisation is a variation of the more generic lasso technique that

accounts for the fact that some variables need to be grouped [18, 19]. This is particularly

important when dealing with sparse categorical variables, such as the admitting doctor. The

ability to group such variables is important to ensure practical relevance of outcomes, so that

each categorical variable can be either discounted or selected as an entire group. The sparse

group lasso includes an additional penalty factor in the optimisation in addition to the lasso

penalty that encourages such grouping [20, 21]. It is a flexible algorithm that does so with a

varying force, as determined by the balance between the two penalty factors (see Eq 1). Group-

ing more decisively results in selecting out more variables [18] and thus might be expected to

decrease the error, but only to a point beyond which the error may increase again due to insuf-

ficient number of factors left in the model. Again, the optimal balance is able to be computed

based on overall error minimisation considerations.

Regression Penalty in Sparse Group Lasso:

l ð1 � aÞ
Xm

j¼1

kb
ðjÞ
k2 þ a

Xn

i¼1

jbij

( )

ð1Þ

λ tuning parameter

α grouping parameter

m number of coefficient groups

n total number of coefficients

β(j) the j-th coefficient group

βi the i-th coefficient

Data pre-processing

Given the large number of data dimensions in our research question, we explored using Prin-

cipal Component Analysis (PCA) as an initial dimension reducing step. An excessive number

of dimensions would make the computing requirements impractical. The use of this technique

to pre-process large data is well recognised [22] and it has been specifically used in grouping of

binary variables [23]. Hospital-based data is frequently large and can exhibit multi-dimension-

ality. This leads to high potential error in relation to both the way in which it is measured and

recorded. Therefore the PCA is a good choice to pre-process hospital-generated data, as it

extracts the most pertinent aspects of the information, leaving out the residual noise. The out-

put of the PCA then represents suitable input into lasso-based analysis (See S2 Text).

The sparse group lasso approach provides values of regression coefficients of the predictors

left in the model. Comparison of their absolute values provides estimation of the predictors’

relative importance in terms of explaining patient-level cost variability. In the case of grouped

variables, the PCA conveniently converts any group of related variables (e.g., corresponding to

each DRG, or each day of the week) into a group with an orthogonal set of elements, i.e., the

principal components, which are then analysed by the sparse group lasso method. The orthog-

onality justifies summation of the absolute values of regression coefficients of all members of

each group to accurately estimate the group’s total effect on cost variability via computation of

an aggregate coefficient for each group.

Lasso analysis of hospital costs
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Methods

Hospital data

Research was undertaken in a public hospital, which is ultimately under the jurisdiction of the

Queensland Department (ie Ministry) of Health. The study has been approved by a Human

Research and Ethics Committee (HREC), which is the relevant Institutional Review Board.

The particular committee is the Royal Brisbane and Womens’ Hospital’s HREC. The Austra-

lian approval number is HREC/16/QRBW/61. The Human Research and Ethics Committees

in Australia grant approvals in accordance with the Australian National Statement on Ethical

Conduct in Human Research (2007), which in turn fulfills the obligations under the Declara-

tion of Helsinki. As the study is only a statistical analysis of large data, with negligible risk of

patients being identified, the above-mentioned ethics committee has granted a waiver of

patient consent. This waver has been subsequently endorsed and approved by the Queensland

Department of Health. The current dates of the ethical approval are from 09 March 2016–09

March 2019.

The data were all hospital admissions to a mid-sized hospital during the 2014/15 financial

year. This totaled 53,224 admissions. Some admissions pertain to the same person, with the

number of unique patients being 31,449. The hospital serves a geographically contained popu-

lation and lacks any notable sub-specialisation skews or unusual service gaps which may occur

in geographical areas with less defined servicing boundaries (e.g., in a large city with several

hospitals in close proximity). This should justify extrapolation and wider applicability of the

results.

The potential cost predictors analysed are listed in Table 1. The cost drivers were classified

as predictable a-priori and thus representing potentially warranted cost variability, as well as

non-predictable, as also depicted in Table 1. This process of classification followed previously

used logic [24] and it also incorporated senior medical opinion, in line with the classification

principles described above in the Introduction. Predictable drivers were considered as associ-

ated with warranted cost variability. Examples of such cost drivers included age and sex. It is

specifically worth highlighting that DRG was considered as representing a predictable cost

driver a-priori and was classified accordingly. On the other hand, cost drivers such as day of

the week or time of the patient’s admission were not reasonably predictable a-priori, and were

thus classified as non-predictable, with any related cost variability being potentially unwar-

ranted. We should not expect that a patient admitted on a Wednesday should cost any more

or less than a patient with similar characteristics admitted on a Sunday.

Initial exclusion of factors

Several potential cost drivers available from the hospital information system were then deliber-

ately excluded from further analysis as they were felt to merely represent likely consequences

of other variables; see the causal diagram in Fig 1.

The potential driver of days spent in the ICU (Intensive Care Unit) was left out, as it

depended strongly on other variables left in the model, in particular the type and severity of

the patient condition (already described by DRG), as well clinical decision making (already

encapsulated in both the variables of admitting unit and admitting doctor). In fact, the deci-

sion to admit to intensive care essentially reflects clinical interpretation of the nature of the

patient condition, in the context of limited intensive care resources [25]. The limitation on

resources, particularly the immediate availability of intensive care beds is, of course, likely to

be more prominent at certain times than at others. While the model specifically includes vari-

ables of day of the week, month as well as hour of the day, it is however acknowledged that at

Lasso analysis of hospital costs
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least some of this variability is likely random and would not be included therein. Because the

very aim at this stage is to identify the proportion of cost variability that is unwarranted and

potentially rectifiable, stochastic variability is not modeled in the purposely deterministic

model.

There are strong parallels between the decision to transfer a patient to a different facility

and to accept a patient to intensive care, as discussed above. Transfer out can occur either

because the clinical capacity of the hospital under analysis is thought to be exceeded, because

the patient condition necessitates admission under a medical team that is not available locally,

or perhaps because the patient condition is considered stable enough for transfer to a lower

acuity facility. All these are dependent on clinical decision making within the context of the

patient condition. Hence, the potential cost driver of “transfer out” was left out, mirroring

exclusion of the variable of intensive care admission.

The flag for selected clinical incidents was left out because clinical incidents were related to

other variables left in the model. Clearly, rates of clinical incidents would be necessarily associ-

ated with the patient condition (as described by the DRG). For instance, patients with condi-

tions that require multiple medications would be more likely to experience medication-related

adverse than those who may take fewer medications. Also, those with medications that are

known to decrease blood pressure or cause confusion would be more likely to experience in-

hospital falls. Furthermore, medical conditions that limit mobility may render a patient more

likely to develop pressure injuries.

There is also likely to be a random component that contributes to when clinical incidents

take place. As mentioned above, as the aim at this stage was to identify the proportion of deter-

ministic and thus potentially rectifiable cost variability that is unwarranted, these variables

were left out of the model.

Clinical incidents are known to be associated with problems in clinical assessment, commu-

nication and decision making, the nature and staff profile of the relevant clinical unit as well as

Fig 1. Causal diagram.

https://doi.org/10.1371/journal.pone.0204300.g001
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the physical attributes of the surroundings [26]. These are likely to be associated with random

events, especially given the emerging theories of accident causation in complex sociotechnical

systems [27]. However, any additional deterministic effect would likely be encapsulated by var-

iables of admitting ward, admitting unit, admitting doctor, discharge ward, discharge unit and

discharge doctor, which were all left in the model.

Parallels exist between the CHADx flag (which is a flag for hospital-acquired complications)

and clinical incidents. Information encapsulated in the CHADx variable is likely to lead to

varying DRG assignment and was left out of the model on the basis of the DRG staying in.

This is supported by the fact that the CHADx uses routinely abstracted hospital diagnosis and

condition-onset information about in-hospital complications [28].

The amount of health care received by patients, when standardised by patient related char-

acteristics is known to be largely driven by clinical decision making [29]. The amount of total

clinical care received during an episode of care is however a function of the amount of care

provided per unit time, as well as the total duration of the episode of care. Because of inclusion

of variables pertaining to doctor as well as the medical unit in the model, both the amount of

care per unit time and the length of stay in hospital were therefore excluded from the model.

The exclusion of the hospital length of stay (LOS) from the model mirrors other recent work

on cost driver analysis in hospitals [24]. Furthermore, the LOS may be also dependent on a

wide suite of determinants, some pertaining to patient flow dynamics, rather than to processes

related to clinical care.

In summary, the white boxes represent such potential cost drivers, not likely to represent

the primary drivers of patient-level costs. This exclusion specifically applied to the hospital

length of stay (LOS) and its non-inclusion in the model mirrors other recent work on cost

driver analysis in hospitals [24]. The grey boxes represent the variables left in the model, as

they were considered to represent, at least in substantial part, primary cost drivers. This pre-

liminary choice of variables does not negate the need to analyse and eliminate correlations

between the variables that remain in the model. Accordingly, Table 1 indicates the factors

included in the subsequent sparse group lasso analysis, following the causal analysis.

Subsequent analysis

The CCI (Charlson Comorbidity Index) has been shown to have a predictive association with

health care costs [30]. It was obtained from the Health Roundtable, an organisation which

computes the index for subscribing health providers.

The Index of Relative Socio-economic Advantage and Disadvantage (IRSAD) and the

Index of Relative Socio-economic Disadvantage (IRSD) were obtained from the Australian

Bureau of Statistics SEIFA 2011 [31] which were added by cross-referencing against the

patient’s postal code. Postal codes were missing in just 326 of the 53,224 patients. To prevent

loss of other potentially valuable information related to these patients, these were given the

average values of both indices, calculated from the remaining data, rather than being excluded.

Other than the postal code data, missing data was negligible. Only one patient had missing

data for private insurance (both private insurance as well as DVA or veteran insurance status),

smoking, obesity or alcohol flags. All these fields were given modal values, calculated based on

all remaining information, in line with the categorical nature of the data.

All categorical variables, except for the CCI, were first represented as sets of binary vari-

ables. The relationship of the CCI (ordinal integer values), IRSAD, IRSD and age were first

both assumed as linear with respect to the patient hospital costs. These assumptions were felt

to be justified in relation to the IRSAD and the IRSD, given the design of both these indices.

Appropriateness of these assumptions in relation to the CCI and age was however analysed

Lasso analysis of hospital costs
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further with the sparse group lasso re-run, but this time including a squared term for each of

these two variables. Computational efficiency necessitated that the re-run was carried out on a

random 10% of the data; however it was repeated three times.

PCA was used to pre-process the data and reduce its size without losing vital information.

See S3 Text for further description of use of this technique. Output from application of the

PCA to categorical groups of factors was used as input into the sparse group lasso. Please see

S4 Text on how the optimal lasso parameters of α and λ were derived.

Once λ (the lasso penalty) was determined, the corresponding coefficients of the selected

variables were used to compare their respective influences on patient-level hospital costs vari-

ability. Absolute values of all regression coefficients were first determined, in keeping with the

focus being on cost variability rather than the absolute cost values. Absolute values of all coeffi-

cients within groups were added together to provide aggregate coefficients for each multi-fac-

tor cost driver (e.g., DRG or discharge ward). Each aggregate coefficient is therefore a

resultant estimation of the relative contribution of each grouped variable to patient-level cost

variability.

Please see the S5 Text for the method used to compare respective effects of categorical and

continuous variables. Please see the S6 Text for an explanation of how confidence intervals

were constructed. S7 Text describes the computing times associated with the calculations.

Comparison with simple regression

The results of the sparse group lasso were paralleled by also analysing the data using simple lin-

ear regression, for comparison purposes. This used the command lm, available in the stats

package in R. Like sparse group lasso, this analysis was also performed on the data pre-pro-

cessed by the PCA, to facilitate ease of comparison. Grouping of binary parameter estimates

pertaining to the same cost driver and handling of the age, IRSAD, IRSD as well as the CCI

coefficients was carried out in a manner identical to the case of the sparse group lasso.

Results

Table 2 shows the relative significance of the variables included in the model in terms of driv-

ing hospital cost variability, by the magnitude of the penalised regression coefficient or the

aggregate coefficient (depending on the nature of the cost driver). The values were obtained by

first selecting the single optimal λ that minimised the cross-validation error. The optimal λ
used in this study was 0.646 (3DP). The predictable cost drivers accounted for 66.3% of the

total patient-level cost variability, leaving 33.7% potentially associated with cost drivers not

predictable a-priori.

To illustrate the significance of using the sparse group lasso technique to eliminate the arti-

facts of co-linearity, Table 3 provides a comparison with results that would be obtained if un-

penalised simple linear regression were used instead, as is common practice in hospital cost

predictor analysis [24]. We note that the average Variance Inflation Factor related to the coeffi-

cients in the linear regression model applied to our data (see Table 3) was 11.4, confirming the

existence of significant co-linearity. The variables of alcohol overuse and obesity were found to

be exactly co-linear with other variables and thus the corresponding coefficients were not able

to be estimated. This is a likely consequence of the fact that both these variables rely on infor-

mation obtained from codes that contribute to DRG assignment.

Note: the horizontal line between predictors separates the predictable (top) from the not pre-
dictable (bottom)

Note: the horizontal line between predictors separates the predictable (top) from the not pre-
dictable (bottom)

Lasso analysis of hospital costs
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To further illustrate the issue of co-linearity, Fig 2 shows the effect on coefficient values of

applying the sparse group lasso to the data, with increasing strength of the sparse group lasso

penalty factors (determined by increasing the λ). It is the penalty that effectively converts sim-

ple linear regression into penalised regression. The effect of including the penalty (see Eq 1) is

sparsity, i.e. ability to select only some groups of variables. The magnitude of the parameter λ
determines the strength with which the penalty is applied and therefore the strength of the ten-

dency to eliminate some groups of variables.

Also, the relative values of the same coefficients or aggregate coefficients as proportion of

the overall cost variability are provided in Fig 3, for added clarity. Figs 2 and 3 both serve illus-

trative purposes and show the coefficients that are numerically most prominent in the proxim-

ity of the optimal λ, rather than all the coefficients related to cost predictors. The further to the

right, the greater the amount of departure from the simple regression model and the stronger

the effect of the sparse group lasso. The proportionally lesser predominance of the DRG as a

cost driving factor observed with increasing values of the (co-linearity correcting) λ is the most

striking feature in both figures.

The values of the coefficients observed towards the right side of Fig 2A become incongruent

with reasonable expectations, as DRG disappears completely as a cost driver. It is reassuring

that these observations were found to be associated with increasing cross-validation error. Fur-

thermore, comparing the coefficient values on the left side of Fig 2A (i.e., closest to simple

Table 2. Results of the sparse group lasso optimisation—Values of penalised regression coefficients.

Cost Predictor Name Value of the Coefficient or Aggregate Coefficient 95% Confidence Interval Percentage of Total Variability

age (in years) 59,473 36037–79318 13.44

alcohol overuse 1961 1273–2478 0.44

Charlson Comorbidity Index 6088 4092–7802 1.38

discharge within last 3 days 242 27–422 0.05

discharge within last 7 days 226 37–365 0.05

discharge within last 14 days 324 119–586 0.07

discharge within last 21 days 335 128–573 0.08

DRG 128,148 87,858–175,225 28.96

DVA status 259 128–384 0.06

IRSAD 46,469 26,704–66,915 10.5

IRSD 45,034 27,108–64,053 10.18

obesity 1962 1260–2477 0.44

private health insurance status 577 144–1062 0.13

sex 533 252–810 0.12

smoking 1961 1309–2465 0.44

subtotal 66.34

admitting medical unit 13,792 7806–18951 3.12

admitting ward 19,939 15,498–26,228 4.51

day of the week 0 - 0

discharging medical unit 48,356 39,047–56,229 10.93

discharging ward 66,511 60,783–72,895 15.03

doctor at admission 0 - 0

doctor at discharge 0 - 0

month 0 - 0

time (discretised in whole hours) 313 -484–988 0.07

subtotal 33.66

https://doi.org/10.1371/journal.pone.0204300.t002
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linear regression) and the values in Table 3 (i.e., actual simple linear regression) reveals a nec-

essary steep increase in the values of other variables, predominantly the admitting doctor and

the discharging doctor data fields, in the very close proximity to the λ value of 0.

The benefit of using Principal Component Analysis to pre-process the data is demonstrated

in Fig 4. There is a clear minimum of the cross-validation error observed, coinciding with the

optimal λ. This is in sharp contrast to the case without the pre-processing, as depicted in Fig 5,

where the residual noise precludes a sensible optimal point with minimal cross-validation

error. Both graphs were obtained using the same random 10% sample of the data and both

were produced using the same sequence of λ values.

The value of α that minimised the cross-validation error was 0.15, i.e., close to maximal

grouping. The small value of α is consistent with previously published, non-hospital-based

research [18], although general caution should be observed in drawing too strong a conclusion

here, as consistency across studies may not be automatically expected when the character of

the data varies.

We re-ran the sparse lasso, this time relaxing the linearity assumptions with respect to the

CCI and the patient age data fields. This tested the suitability or otherwise of relaxing the lin-

earity assumptions of both variables. Adding a squared term to each provides for a wide range

of alternative, non-linear relationships with the outcome variable, i.e. patient-level hospital

Table 3. Results of simple linear regression—Values of regression coefficients.

Cost Predictor Name Value of the Coefficient or Aggregate

Coefficient

Percentage of Total

Variability

age (in years) 21.4 0.10

alcohol overuse not estimated 0

Charlson Comorbidity Index 44.9 0.21

discharge within last 3 days 99.2 0.47

discharge within last 7 days 1.1 0.01

discharge within last 14 days 53.7 0.25

discharge within last 21 days 10.0 0.05

DRG 11,518.7 54.18

DVA status 34.0 0.16

IRSAD 43.4 0.20

IRSD 65.6 0.31

obesity not estimated 0

private health insurance status 21.1 0.10

sex 9.7 0.05

smoking 130.0 0.61

subtotal 56.7

admitting medical unit 994.7 4.68

admitting ward 392.7 1.85

day of the week 31.9 0.15

discharging medical unit 1796.5 8.45

discharging ward 843.0 3.96

doctor at admission 1962.0 9.23

doctor at discharge 2983.0 14.03

month 41.3 0.19

time (discretised in whole

hours)

163.3 0.77

subtotal 43.3

https://doi.org/10.1371/journal.pone.0204300.t003
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cost. The results demonstrated no significant impact on outcomes for either the CCI or age.

Specifically, in each case, the sum of the coefficients of both the linear and square terms were

well within the 95% confidence range of the previously obtained coefficients based on linearity

assumptions. This indicates that the linearity assumptions were justified.

Discussion

The study has identified the main drivers of hospital patient-level cost variability. They are:

DRG, age, choice of the discharge ward, choice of the discharge medical unit, as well as the

two measures of socio-economic status, the IRSAD and the IRSD. The admitting ward,

Fig 2. Effect of increasing λ on the magnitude of main coefficients. A: Effect of Varying the Regression Penalty on

the Coefficient Size of Major Cost Drivers. B: Effect of Varying the Regression Penalty on the Aggregate Coefficient

Size of DRG Alone.

https://doi.org/10.1371/journal.pone.0204300.g002
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admitting medical unit and the CCI are secondary, albeit still significant cost drivers. Identifi-

cation of this set of “principal cost variables” is important from a practical perspective as it pro-

vides a potential structure for analysis of cost over-runs in a hospital. Any mismatch between

budgeted and actual costs could be first broken down by each principal variable and then any

Fig 3. Effect of varying the regression penalty on the relative coefficient size as proportion of all observed

variability.

https://doi.org/10.1371/journal.pone.0204300.g003

Fig 4. Effect of PCA pre-processing on the cross validation error with varying λ. Pre-processed Data Showing a

Clear Minimum.

https://doi.org/10.1371/journal.pone.0204300.g004
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problems narrowed down to a particular principal variable could be analysed further, relying

on the associations with other non-principal cost variables. This would provide a logical struc-

ture for cost analysis which follows the empirically-derived cost architecture. Crucially, such

analysis could also be replicated longitudinally, facilitating comparability across time periods

and monitoring effects of any cost containment initiatives.

As summarised in Table 2, potentially up to 33.7% of all variability is not determined by

patient factors known at the time of the patient’s initial contact with the hospital, and is thus

potentially unwarranted. This figure therefore represents potential waste; i.e., it is the upper

bound for the waste estimate. However, because of the comprehensive selection of potential

cost predictors, there should be good proximity between the upper bound of the unwarranted

variability and the actual amount of unwarranted variability. The list of potential cost predic-

tors listed in Table 1 corresponds to previously reported results [24] indicating that socio-

economic, demographic and health status variables constituted the main explanatory cost vari-

ables, all of which were included here.

The choice of the sparse group LASSO model is based on the fact that it is an example of

models known to encourage sparsity [32]. Furthermore, the sparse group version of the lasso

model is used specifically, based on the belief that although many of the predictors of patient-

level cost in hospital are logically grouped, only a few predictors in each group may play a sig-

nificant role. Sparsity of statistical models is known to help recover the underlying signal in a

set of data in exactly such circumstances [33].

The technique of pre-processing large data with the PCA has been demonstrated as a cru-

cial step in the analysis, enabling it to be conducted by extracting pertinent information from

the original dataset. This carries wider implications for analysing hospital-generated large data

that may be subject to both measurement and input error.

The observed differences between the relative magnitudes of the coefficients / aggregate

coefficients in the LASSO and linear cases are large. Therefore, the benefit of adequately

addressing the inaccuracies stemming from co-linearity of predictors is obvious. In fact, the

fundamental difference in results obtained from the co-linearity remedying sparse lasso-based

Fig 5. Effect of PCA pre-processing on the cross validation error with varying λ. Data Not Pre-processed and

Tending to a Minimum with Maximal Model Sparsity.

https://doi.org/10.1371/journal.pone.0204300.g005
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technique as opposed to previously used models that do not adequately address this prominent

phenomenon (e.g., simple linear regression) makes it imperative that further research in this

field analyses the overlap between potential patient-level cost drivers and uses techniques to

remedy the otherwise misleading effects of co-linearity. Our findings may also call into ques-

tion any previous decisions made on the basis of cost driver identification models. As a mini-

mum, researchers should at least test for the presence of co-linearity using the (intuitive)

variance inflation factor (VIF).

Variation between the practice of individual medical practitioners if often proposed as the

reason for unwarranted cost variation. It is therefore intriguing that, despite featuring promi-

nently in the simple regression case, consultant (i.e., attending) doctor—both at admission

and at discharge—are not significant lasso cost predictors. These variables are excluded readily

by the sparse group lasso method, most likely reflecting the importance of a team-based nature

of health care delivery, rather than individual practices. One could argue that in complex sys-

tems such as hospitals, characterised by high usage of technological aids, it is the sum of inter-

actions between all members of the treating team as well as with non-human agents that is

more significant in terms of patient care and thus patient-level cost outcomes than doctor vari-

ability. This is reinforced by greater prominence of the variables of discharge ward and dis-

charge medical unit in the lasso results, that perhaps better reflect these complex interactions.

Useful parallels may be drawn with the view of health care as a complex socio technical system,

such that its overall performance cannot be examined by viewing the performance of its com-

ponents in isolation. This mirrors the theory of distributed situation awareness which explains

ergonomic and quality control outcomes in complex systems characterised by multiple inter-

actions between agents, both human and non-human, in preference to situational awareness

of any one agent in isolation [27]. The practical consequence of our findings is that when try-

ing to combat unwarranted variation in clinical practice, and therefore cost, it may be more

productive to focus on the functionality of a clinical unit, rather than focusing exclusively on

individual practitioners. It may, for example, suggest pursuit of strategies such as inter-disci-

plinary care protocols or enhancing the micro-culture of a clinical unit in preference to bench-

marking individuals.

Use of the lasso method decreases the contribution of DRG as a driver of cost variability to

29.0% from 54.2% in the simple linear regression. The compensatory emergence of discharge

ward, discharge medical unit, age, the IRSAD and the IRSD as significant cost drivers follow-

ing the sparse group lasso analysis (Fig 3) may perhaps appear a surprising result at first, given

that the purpose of the DRG system is to identify group of patients with similar costs. How-

ever, lack of complete homogeneity of patient costs within a particular DRG [34] is the likely

reason for the results obtained under the LASSO regularisation. This illustrates the imperfect

nature of the DRG as a sole costing tool; and is a likely reflection of the lack of complete homo-

geneity of all episodes of care classified within a particular DRG. Moreover, this point also

illustrates why the focus of analysis in this paper has been on groups of related factors rather

than on individual factors: it is important to know how much cost variability is associated with

different diagnostic groups (as opposed to—for instance—patient age or day of the week of

presentation to hospital) rather than with a particular DRG. DRG assignment is based on the

approximately 68,000 ICD 10 codes, as classified by the World Health Organization. It evolves

all the time but the contribution of the entire group of DRGs is likely to be more stable over

time than that of a particular DRG.

From a conceptual viewpoint, the apparent large amount of non-predictable variability of

patient-level hospital costs may of course be related to several causes (Fig 6). Firstly, such vari-

ability may be a reflection of the fact that some important predictors were still not included.

We consider that to be an unlikely explanation here, given the extensive inclusion of potential
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factors and benchmarking our predictor selection with other work [24]. Secondly, the variabil-

ity may be due to unwarranted variation in clinical practice and evidence indeed suggests that

this is a likely explanation, at least in part [3]. Finally, some of the non-predictable variability

may be due to the stochastic nature of the evolution of patients’ conditions, after admission to

hospital. Experience from other sectors, such as the financial derivative pricing industry, sug-

gests that inclusion of explicit stochastic elements in predictive models may result in greater

accuracy in value estimates [35]. Use of such models that make better allowances for the sto-

chastic, or random behaviour of hospital costs would be in line with the occurrence of unpre-

dictable clinical events [6] as well as the previously reported inability to explain the extent of

the observed variation in care [36, 37]. Given the extent to which randomness is encountered

in epigenetic variation [38], it is entirely reasonable to extrapolate the concept to human dis-

ease and pursue development of an innovative stochastic model that envisages a proportion of

patient-level costs being not related to any identifiable cost driver.

The significant presence of non-predictable (and thus potentially unwarranted) sources of

cost variability should be of major concern to funders of hospital services. If extrapolated, even

if only a proportion of it were actually related to unwarranted variation in clinical practice, the

potential saving to the national expenditure would be extraordinarily large. Given these far-

reaching conclusions, the analysis would benefit from being replicated at other hospital sites.

Furthermore, if confirmed, a model for predicting future health care costs could be developed

based on these findings. Such a predictive model, perhaps including allowances for stochastic

variability to account for different patients responding differently to treatment, is likely to be

more accurate than the currently used methods that tend to rely solely on linear regression

techniques. There is therefore room for further research to build on the results obtained herein

in estimating the upper bound for waste. It would be highly beneficial to investigate the magni-

tude of the gap, if any, between the upper bound and the actual amount of waste. This could

include the use of simulation (as part of the suite of techniques known as Approximate Bayes-

ian Computation) to reproduce the actual distribution of hospital costs, more accurately

Fig 6. Relationship of warranted and unwarranted cost variation to cost predictors.

https://doi.org/10.1371/journal.pone.0204300.g006
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estimating the amount of randomness. As natural randomness is not predictable, this would

further reduce any estimate of the actual waste. This further work could also better contextua-

lise the practice of setting future efficiency targets based on benchmarks derived from observed

costs, as the random nature of the cost distribution may render such targets as unrealistic.

Conclusion

This article describes a practical method for estimating the drivers of hospital costs and

patient-level cost variability. It applies well known and validated statistical techniques of Prin-

cipal Component Analysis and Sparse Group Lasso to overcome the challenges of multi-

dimensionality and co-linearity, respectively. These challenges are commonly encountered

with hospital-generated large data and otherwise prevent accurate cost driver estimation. In

fact, predicting expenditure in hospitals has long been challenging, with prevalent models pro-

ducing sub-optimally estimated true costs [39]. While the current findings pertain to a single

hospital, they are generalisable due to the ‘standard’ profile of the hospital. The technique itself

is also readily adaptable to any other site where accurate cost driver analysis would prove

beneficial.

Once estimated, the drivers can be classified as either warranted or unwarranted sources of

cost variability. The proportion of variability attributed to unwarranted variability appears

rather large. This is postulated as an estimate of the potential waste that could, at least theoreti-

cally be minimised. If the findings were further substantiated, the policy implications would be

large, perhaps shifting the hospital funding policy focus from matching the cost drivers by

appropriate levels of funding to more decisively driving greater care standardisation and thus

containing the unwarranted variability. Findings also suggest that clinical care standardisation

may be best achieved by focusing on systems of care delivery rather than clinical practice of

individuals.
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