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PHGDH attaches importance to serine biosynthesis in cancer cells and maintaining mitochondrial redox homeostasis. However,
the role of PHGDH inhibitor CBR-5884 in cell ROS level and its downstream pathways has not been explored in epithelial ovarian
cancer. Thus, we investigated the function and possible mechanism of PHGDH inhibitor CBR-5884 on epithelial ovarian cancer
in vitro and in vivo. A2780, OVCAR3, and ES-2 were treated with CBR-5884 at different concentrations or different time points.
Results showed that CBR-5884 inhibited epithelial ovarian cancer cell proliferation, migration, and invasion and increases cell
ROS level. Meanwhile, CBR-5884 exerts antitumor effect through activating ROS/Wnt/β-catenin pathway. Besides, CBR-5884
exerts antitumor effect in vivo. What’s more, we explored the effect of CBR-5884 with or without PARP inhibitor Olaparib,
which showed that the two together had a larger effect. In conclusion, PHGDH inhibitor CBR-5884 inhibits epithelial ovarian
cancer proliferation, migration, and invasion through activating ROS/Wnt/β-catenin pathway and plays a synergistic role with
PARP inhibitor olaparib, which provided a theoretical basis for PHGDH inhibitor CBR-5884 in clinical treatment.

1. Introduction

As reported, there were 313,959 cases of newly diagnosed
ovarian cancer and 207,252 new deaths for OC in 2020 [1].
EOC is the most common type of ovarian cancer, difficult
to find and diagnose in the early stage of disease, deficient
in choices of treatment, and easy to relapse [2–5]. Therefore,
future exploring the mechanism underlying EOC initiation
and progression for further exploring biomarkers to diag-
nose, treat, and predict the prognosis of EOC is of signifi-
cance to women in the world.

Serine is a raw material to participate in the synthesis of
lipids, proteins and nucleotides and an important source of
one carbon unit in cells, which is closely related to the met-
abolic remodeling of tumor cells [6–8]. As the key enzyme in
serine biosynthesis pathway, PHGDH attaches importance
to maintaining mitochondrial redox homeostasis, maintain-
ing mitochondrial redox homeostasis [9–12]. Mitochondrial
serine produces NADPH and GSH reduction equivalents

under SHMT2 catalysis, inhibiting the production of ROS
[10, 13, 14]. ROS can also promote antitumor signal trans-
duction and initiate oxidative stress-induced tumor cell
death, and one of the antitumor mechanisms of cisplatin is
to induce apoptosis by increasing the production of ROS
in tumor cells [15–17]. In our recent study, we reported that
PHGDH is upregulated at translational level and implicated
in platin-resistant in epithelial ovarian cancer cells [18].
However, the role of PHGDH in cell ROS level and its
downstream pathways has not been explored in epithelial
ovarian cancer. CBR-5884 is one kind of PHGDH inhibitor
that have been reported and played a tumor suppressing role
in breast cancer [19–23].

Reactive oxygen species which are produced by cell met-
abolic activities attach importance to cell signal transduction
and homeostasis and regulate cell proliferation, apoptosis,
and differentiation [24–26]. Recent studies suggested that
oxidative stress induced by ROS can regulate Wnt/β-catenin
signaling pathway in colorectal, breast, lung, pancreatic, and
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liver cancer [24, 27–31]. Therefore, studying the effect of
CBR-5884 and NAC in the regulation of Wnt/β-catenin
pathway is significant.

PARP inhibitors can enhance the efficacy of radiother-
apy and chemotherapy with alkylating agents and platinum
drugs by inhibiting DNA damage and repair of tumor cells
and promoting apoptosis of tumor cells [32]. Olaparib, a
kind of PAPR inhibitor, is mainly used to alleviate the main-
tenance treatment of platinum sensitive adult patients with
recurrent epithelial ovarian cancer, fallopian tube cancer,
or primary peritoneal cancer after platinum containing che-
motherapy has achieved complete remission [33–35]. There-
fore, it is of significance to explore the effect of CBR-5884
with or without olaparib.

Here, we cultured epithelial ovarian cancer cell lines and
constructed tumor xenografts model in nude mouse to eval-
uate the effect of CBR-5884 on epithelial ovarian cancer
in vitro and in vivo. Meanwhile, we studied the role of
CBR-5884 in cell ROS level and its downstream pathway
as well as the effect of CBR-5884 with or without PARP
inhibitor olaparib, which may give us a novel prospect in
mechanism and clinical treatment of epithelial ovarian
cancer.

2. Materials and Methods

2.1. Materials and Cell Culture. The PHGDH inhibitor CBR-
5884, the ROS inhibitor N-acetylcysteine, and the PARP
inhibitor olaparib were purchased from MedChemExpress.
DMSO was used as control group in cell lines. Through lit-
erature reviewing, we used 5mM NAC treated for 4 h to
study its effect [36, 37]. The cell lines (A2780, OVCAR3,
and ES-2) were purchased from Procell Life Science & Tech-
nology Co., Ltd. (Wuhan, China). A2780 and OVCAR3 were
cultured with RPMI 1640 medium (Procell, Wuhan, China)
containing 10% FBS (Procell, Wuhan, China), while ES-2
was cultured used McCoy’s 5A (Procell, Wuhan, China)
containing 10% FBS (Procell, Wuhan, China) in incubator.
The incubator purchased from PUHE Biotechnology Co.,
Ltd. (Wuxi, China) was set at 37 °C, 5% CO2, and 1% O2
with enough humidity.

2.2. Cell Viability Assay. A total of 5,000 cells/well were
added to 96-well plates and incubated in incubator for
24 h. After different treatment measures, 1μL of CCK-8 test
solution (Procell, Wuhan, China) was added to each well
and incubated together for 2 h. The microplate reader was
used to measure OD450.

2.3. Colony Formation Assay. 1000 cells were plated into
each well of 6-well plates. After cultured with different treat-
ment measures for 15 days, 4% paraformaldehyde was used
for fixing and 1% crystal violet for staining. Colonies mean-
ing cell count >50 were counted.

2.4. Apoptosis Condition Assay with Flow Cytometry. The
cells were collected after different treatment measures and
suspended in PBS. Next, the cells were centrifuged at 4 °C
and 1200 rpm for 5min, and the supernatant was discarded.
Use 100μL binding buffer to resuspend the cells, add 5μL

Annexin V-FITC and 5μL PI solution (Procell, Wuhan,
China), incubate them in room temperature for 15 mins,
and add the other 400μL binding buffer to the mix. Keep
away from light and use flow cytometry to detect.

2.5. Cell Cycle Distribution with Flow Cytometry. The cells
were collected after different treatment measures and sus-
pended in PBS. Next, the cells were centrifuged at 4 °C and
1200 rpm for 5min, and the supernatant was discarded.
Use 75% ethanol to resuspend the cells and fix them at
4 °C overnight. The next day, use PBS to wash the cell pre-
cipitation 3 times, resuspend the cells with 500μL PI/RNase
mix (PI 100μL, RNase 400μL, Solarbio, Beijing, China) and
incubate them together at 37 °C for 30 mins. Keep the tube in
ice, away from light, and use flow cytometry to detect.

2.6. Transwell Assay. 8-μm-pore transwell chambers coated
with or without Matrigel (BD, San Diego, USA) (Corning,
N York, USA) were used for cell invasion and migration
detection. Put 700μl 20%-FBS containing medium into each
bottom chamber, and cells in FBS-free medium (1:0 × 104
cells/200μl without Matrigel and 3.0× 104 cells/200μl with
Matrigel) were seeded into the upper chamber. After cul-
tured in the incubator for 24 h, suspended cells in the upper
chamber were cleaned out, fix the cells attached to the bot-
tom membrane with 4% paraformaldehyde, and stain with
crystal violet. The inverted microscope was used to photo-
graph Images at 200× magnification, and the cells were
counted using the image J software.

2.7. Cell Oxidative Phosphorylation Level Detection. Cell
LDH release level, NADPH level, and GSH level were
detected using LDH Cytotoxicity Assay Kit, NADP+/
NADPH Assay Kit with WST-8, and GSH and GSSG Assay
Kit (Beyotime, Shanghai, China) according to the instruc-
tions. Besides, cell ROS level was detected using Reactive
Oxygen Species Assay Kit (Beyotime) by flow cytometry.

2.8. Western Blot. RIPA lysate (Beyotime, Shanghai, China)
was used to extract the total protein of cells and tumor xeno-
grafts according to the instructions. Then, the extracted total
protein was separated by 10% SDS/PAGE and transferred to

Table 1: The detail of primary antibodies.

Company Lot no. Dilution ratio

PHGDH Proteintech 14719-1-AP 1 : 1000

β-Catenin Wanleibio WL0962a 1 : 1000

c-myc Proteintech 10828-1-AP 1 : 1000

Cyclin D1 Wanleibio WL01435a 1 : 1000

PCNA Proteintech 10205-2-AP 1 : 1000

Bcl2 Proteintech 12789-1-AP 1 : 1000

BAX Proteintech 50599-2-Ig 1 : 1000

E-cadherin Proteintech 20874-1-AP 1 : 5000

N-cadherin Proteintech 22018-1-AP 1 : 2000

Vimentin Proteintech 10366-1-AP 1 : 2000

Snail Wanleibio WL01863 1 : 1000

GAPDH Proteintech 10494-1-AP 1 : 5000
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Figure 1: Continued.
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PVDF membrane (Millipore, Temecula, CA, USA). After
blocking in 5% evaporated milk for 2 hours, the membranes
were incubated with the main antibody at 4 °C overnight.
The next day, the membrane was incubated with secondary
antibodies at the ratio of 1 : 5000 for 90 minutes. Protein
was visualized with enhanced chemiluminescence (Thermo
Scientific, Carlsbad, CA, USA). The detail of primary anti-
bodies is in Table 1.

2.9. Animal Study. 10 female BALB/Ca-nu nude mice (Bei-
jing Huafukang Biosciences, Beijing, China) in 2 months
were maintained in specific pathogen-free (SPF) conditions.
The most common epithelial ovarian cancers are serous,
mucinous, endometrioid, and clear cell carcinoma. The most
common is serous ovarian cancer. Besides, OVCAR3 is one
of the commonly and typically used human cell lines for
xenograft models [38, 39]. Therefore, 2 ∗ 107 OVCAR3 cells
were suspended in 150μL PBS and injected subcutaneously
into the axilla of mice. Five days after tumor formation,
the mice were treated with physiological saline and CBR-
5884 (drug concentration 20mg/kg) by intraperitoneal
injection every two days for 10 days. The long and short
diameter of tumor were measured every two days, and the
tumor volumes are calculated by V = 1/2 ∗ long diameter ∗
square of short diameter. All mice were euthanized 15 days
later. The tumor weight was measured. Institutional Animal
Research Committee of China Medical University approved
the animal study.

2.10. Immunohistochemistry. 5-μm-thick paraffin sections
were used for immunohistochemistry. Following deparaffin-
ized, antigen repair and sealed off, the sections were incu-
bated with antibody against PHGDH (1 : 200, 14719-1-AP,

Proteintech) or Ki67 (1 : 200, 9027T, CST) at 4 °C overnight.
The slides were incubated with biotinylated goat anti-rabbit
antibodies for 1.5 h, stained with diaminobenzidine (abs957,
Absin Biotechnology Co., Ltd, Beijing, China) and then
counterstained with hematoxylin (abs957, Absin Biotechnol-
ogy Co., Ltd, Beijing, China). The sections were scored
according to the percentage of positive staining cells
(0 = negative; 1 = 5 – 25%; 2 = 26 – 50%; 3 = 51 – 74%; and
4 = 75 – 100%) and the intensity of staining (0 = no staining
; 1 = slight staining; 2 =moderate staining; and 3 = strong
staining). Scores for the percentage and intensity of staining
were added.

2.11. Statistical Analysis. Statistical analysis was conducted
by unpaired Student’s t-test in GraphPad Prism 9 (La Jolla,
CA, USA). Differences were considered to be statistically sig-
nificant with p < 0:05 (∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001,
and ∗∗∗ ∗p < 0:0001).

3. Results

3.1. CBR-5884 Inhibits EOC Proliferation, Migration and
Invasion. We conducted our experiments using adenocarci-
noma A2780, OVCAR3, and adding clear cell carcinoma
ES-2, which involved a relatively comprehensive pathologi-
cal type of epithelial ovarian cancer cell lines. Besides, we
downloaded transcriptomic data of 47 ovary cell lines and
listed the PHGDH expression level in Supplementary
Table 1 and found that the PHGDH expression level of
A2780, OVCAR3, and ES-2 was relatively high. Therefore, we
chose A2780, OVCAR3, and ES-2 cell lines for future
experiments. Then, cell viability of cells treated with different
concentration (0, 10, 20, 30, 45, and 60μM) of CBR-5884
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Figure 1: CBR-5884 inhibits EOC proliferation, migration and invasion. (a) Cell viability, (b) colony formation, (c) cell apoptosis, (d) cell
cycle, (e) cell migration, and (f) Cell invasion condition of A2780, OVCAR3, and ES-2 cells after treatment of different concentration of
CBR-5884.
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Figure 2: CBR-5884 increases cell ROS level in epithelial ovarian cancer cell lines. (a) LDH release, (b) NADPH, (c) GSH, and (d) ROS level
of A2780, OVCAR3, and ES-2 cells after treatment of different concentration of CBR-5884.
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Figure 3: Continued.
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at different time points (12h, 24h, and 48h) was tested
(Figure 1(a)). Accordingly, to keep the inhibition rate, CBR-
5884 concentration at 0, 15, 30, and 45μM was used for other
experiments in the form of an isochronous sequence. Besides,
OVCAR3, A2780, and ES-2 were treated with CBR-5884 for
24h, 48h, and 48h, respectively. The cell proliferation
decreased (Figure 1(b)), apoptosis increased (Figure 1(c)),
DNA replication attenuated (Figure 1(d)), cell invasion, and
migration weakened (Figure 1(e) and 1(f)) after treatment of
0, 15, 30, and 45μM CBR-5884. In addition, CBR-5884
inhibits EOC proliferation, migration, and invasion in a dose-
and time-dependent manner.

3.2. CBR-5884 Increases Cell ROS Level in Epithelial Ovarian
Cancer Cell Lines. After treatment of 0, 15, 30, and 45μM
CBR-5884, the cell LDH release increased (Figure 2(a)),
NADPH level reduced (Figure 2(b)), GSH level descended
(Figure 2(c)), and ROS level heightened (Figure 2(d)).

3.3. CBR-5884 Exerts Tumor Suppression Effect through
Increasing Cell ROS Level. To explore whether CBR-5884
inhibits EOC proliferation, migration, and invasion through
increasing cell ROS level, we set four group (control group,
5mM NAC for 4 h, 30μM CBR for 24h in OVCAR3, 48h
in A2780 and 48h in ES-2, and 30μM CBR for 24h in
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Figure 3: CBR-5884 inhibits EOC proliferation, migration and invasion through increasing cell ROS level. (a) Cell viability, (b) colony
formation, (c) Cell apoptosis, (d) cell cycle, (e) cell migration, and (f) cell invasion condition of A2780, OVCAR3, and ES-2 cells after
treatment of CBR-5884 with or without NAC.
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Figure 4: NAC rescues the effect of CBR-5884 in epithelial ovarian cancer cell lines. (a) LDH release, (b) NADPH, (c) GSH, and (d) ROS
level of A2780, OVCAR3, and ES-2 cells after treatment of CBR-5884 with or without NAC.
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OVCAR3, 48 h in A2780, and 48 h in ES-2 with 5mM NAC
for 4 h). NAC is an ROS inhibitor.

As shown in Figure 3, NAC promoted EOC malignant
biological behavior, CBR-5884 inhibited EOC malignant
biological behavior consistent with that in Figure 1, and
CBR-5884 together with NAC abolished the tumor suppres-
sion effect of CBR-5884.

Additionally, NAC decreased the cell LDH release level
(Figure 4(a)), heightened NADPH level (Figure 4(b)),
increased GSH level (Figure 4(c)), and reduced ROS level
(Figure 4(d)). CBR-5884 promoted the ROS level consistent
with that in Figure 2. What’s more, CBR-5884 together with
NAC abolished the ROS promoting effect of CBR-5884
(Figures 4(a)–4(d)).

3.4. CBR-5884 Exerts anti-Tumor Effect through Activating
ROS/Wnt/β-Catenin Pathway. To future understand the
mechanism in drug inhibition of the epithelial ovarian can-
cer, we detected the downstream molecules changes. As
shown in Figure 5, after using 0, 15, 30, and 45μM CBR-
5884, PHGDH and pathway-related indicators β-catenin,
c-myc, cyclin D1, PCNA, Bcl2, N-cadherin, vimentin, and
Snail expression level declined increasingly, and BAX and
E-cadherin ascended increasingly. Besides, NAC promoted
expression of PHGDH and pathway related indicators β-
catenin, c-myc, cyclin D1, PCNA, Bcl2, N-cadherin, vimen-
tin, and Snail and inhibited expression of BAX and E-
cadherin. Meanwhile, CBR-5884 together with NAC abol-
ished the inhibiting effect of CBR-5884 on PHGDH and
pathway-related indicators β-catenin, c-myc, cyclin D1,
PCNA, Bcl2, N-cadherin, vimentin, Snail, and the promot-
ing effect of CBR-5884 on BAX and E-cadherin (Figure 5).

3.5. CBR-5884 Exerts Antitumor Effect In Vivo. To explore
the tumor suppression effect of CBR-5884 in vivo, we used

mice xenograft model. Tumor grew more slowly and tumor
weight was lighter in group of intraperitoneal injection of
CBR-5884 (Figure 6(a)). We also examined the protein level
of tumor tissues in two groups, which showed that PHGDH
and pathway-related indicators β-catenin, c-myc, cyclin D1,
PCNA, Bcl2, N-cadherin, vimentin, and Snail expression
level were lower and BAX and E-cadherin higher in CBR-
5884 group (Figure 6(d)). The immunohistochemical stain-
ing of tumor tissues between two groups showed that
PHGDH and Ki67 expressions were inhibited in CBR-5884
group (Figure 6(e)).

3.6. CBR-5884 Plays a Synergistic Role with Olaparib. First,
cell viability of cells treated with different concentration
(0, 10, 20, 30, 45, and 60 μM) of olaparib at different time
points (12 h, 24 h, and 48 h) was tested (Figure 7). As
shown in Figure 7, cell viability of OVCAR3, A2780, and
ES-2 treated with olaparib for 24 h were approximately
60%-70% inhibited under 60 μM. As shown in Figure 1,
cell viability of OVCAR3, A2780, and ES-2 treated with
CBR-5884 for 24 h was approximately 60%-70%, 30%-
40%, and 60%-70% inhibited under 60 μM, respectively.
According to the inhibition rate of OVCAR3, we set CBR
and olaparib in a 1 : 2 concentration ratio (control group,
10 μM olaparib and 20 μM CBR, 20 μM olaparib and
40 μM CBR, and 30 μM olaparib and 60 μM CBR for 24 h
in A2780, OVCAR3, and ES-2) to explore the effect of
CBR-5884 with or without PARP inhibitor olaparib. And
we found that CBR-5884 played a synergistic role in cell
viability (Figure 8(a)), proliferation (Figure 8(b)), apopto-
sis (Figure 8(c)), invasion (Figure 8(e)), and migration
(Figure 8(f)) with PARP inhibitor olaparib. However, after
using olaparib, cell S phase proportion was increased, and
co-effect of CBR-5884 and olaparib abolished the effect of
using alone (Figure 8(d)).

ES-2

CBR-5884

0 𝜇M 15 𝜇M 30 𝜇M 45 𝜇M

BAX

E-cadherin

N-cadherin

Snail

GAPDH

𝛽-catenin

c-myc

Cyclin D1

PCNA

Bcl2

Vimentin

PHGDH

A2780

CBR-5884

0 𝜇M 15 𝜇M 30 𝜇M 45 𝜇M

OVCAR3

CBR-5884

0 𝜇M 15 𝜇M 30 𝜇M 45 𝜇M
ControlControl30 𝜇M

CBR5884

5 mM NAC +
30 𝜇M

CBR-5884

5mM
NAC

30 𝜇M
CBR5884

5 mM NAC +
30 𝜇M

CBR-5884

5mM
NAC

30 𝜇M
CBR5884

5 mM NAC +
30 𝜇M

CBR-5884

5mM
NACControl

Figure 5: CBR-5884 exerts antitumor effect through activating ROS/Wnt/β-catenin pathway. PHGDH, β-catenin, c-myc, Cyclin D1,
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4. Discussion

Since EOC causes so many deaths in the world every year,
and many patients are suffering from this kind of excruciat-
ing disease, it deserves more in-depth exploration and
research. Metabolic reprogramming is a mechanism by
which cells promote cell proliferation and growth by chang-
ing metabolic mode in order to meet energy needs and can
be an important marker cell of malignant tumor [40, 41].
Serine synthesis increases in cancer cells and is the third
largest metabolic-related substance of cancer cells after glu-
cose and glutamate [6, 8]. PHGDH is the first key enzyme
of serine anabolism, which is increased in some tumors
and is closely related to poor prognosis [42–44]. Impor-
tantly, silencing PHGDH gene can significantly affect the
growth of PHGDH-dependent cancer, making the enzyme
a new target for cancer treatment [10, 11, 14]. In our recent
study, we found that PHGDH was upregulated in epithelial
ovarian cancer and was regulated by lncRNA RMRP and
DDX3X in translational level [18]. However, how PHGDH
affects its downstream pathways remains a question and
has not been explored in EOC.

Considering clinical practicability, we used PHGDH
inhibitor CBR-5884 to conduct this study. First, we explored
the role of CBR-5884 in EOC malignant biological behavior.
The results showed that CBR-5884 exerts an antitumor
effect. Next, we explored the effect of CBR-5884 on epithelial
ovarian cancer cell ROS level. It is reported that cell LDH
level, NADPH level, and GSH level could reflect the cell oxi-
dative stress condition and affect cell ROS level [45, 46], so
we studied the level of LDH, NADPH, GSH, and ROS. The
result showed that CBR-5884 can increase the ROS level,
which is consistent with the results that have been reported

[22, 47–50]. Thus, we speculated that CBR-5884 exerts an
antitumor effect through inducing ROS imbalance in cells.
We added N-acetylcysteine (NAC) to observe whether add-
ing NAC could abolish the tumor suppression effect of CBR-
5884. NAC is an ROS inhibitor. If CBR-5884 exerts tumor
suppression effect through increasing cell ROS level, then
adding NAC could abolish the tumor suppression effect of
CBR-5884. As expected, we confirmed that CBR-5884-
mediated ROS imbalance was necessary in the tumor sup-
pression effect and that ROS level and CBR-5884 were
indeed related and CBR-5884 was highly likely to play a role
by affecting intracellular ROS levels. However, there is an
interesting phenomenon; when treated with NAC+ CBR,
the GSH level in ES-2 cell line is lower than control when
it is expected that the GSH level will be higher, which may
be because the GSH level in ES-2 cell line is different and
specific, which brought us a new perspective to our future
research.

Next, we examined the expression level of β-catenin and
the pathway-related genes, such as c-myc and Cyclin D1. We
also tested the proliferation and apoptosis-related genes,
such as BAX, Bcl2, and PCNA. Meanwhile, we tested the
EMT-related genes, such as E-cadherin, N-cadherin, vimen-
tin, and Snail. The results showed that CBR-5884 exerts an
antitumor effect through activating ROS/Wnt/β-catenin
pathway, which is consistent with the reported results in
other malignant tumors [24, 27–31]. At last, we verified
the effect of CBR-5884 in vivo through nude mice xenograft.
The results were consistent with that in vitro. Besides, tumor
tissues in CBR-5884 group had lower expression of Ki67, the
prognostic indicator commonly used in clinical.

PARP inhibitors represented by olaparib can be used not
only for first-line maintenance treatment and second-line

Control CBR Olaparib CBR + Olaparib

A
27

80

Drug

O
V

CA
R3

In
va

sio
n

ES
-2

⁎⁎⁎

⁎⁎

⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

0.0

0.5

1.0

1.5

A2780 OVCAR3

Ce
ll 

m
ig

ra
tio

n 
ra

te
(R

el
at

ed
 to

 co
nt

ro
l g

ro
up

)

ES-2

Control
CBR

Olaparib
CBR + Olaparib

(f)

Figure 8: CBR-5884 and olaparib synergistically inhibits the progression of EOC. (a) Cell viability, (b) colony formation, (c) cell apoptosis,
(d) cell cycle, (e) cell migration, and (f) cell invasion condition of A2780, OVCAR3, and ES-2 cells after treatment of CBR-5884 with or
without olaparib.
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maintenance treatment, but also for post-line rescue treat-
ment, “all online,” with significant curative effect. The stud-
ies confirmed that maintenance therapy represented by
PARP inhibitors has changed the traditional treatment of
epithelial ovarian cancer. Therefore, we explored the effect
of CBR-5884 with or without PARP inhibitor olaparib,
which showed that the two together had larger effect in can-
cer inhibition, which gave us a novel idea to clinical therapy.
However, after using olaparib, cell S phase proportion was
increased, and co-effect of CBR-5884 and olaparib abolished
the effect of using alone. Thus, the underlying mechanism of
CBR-5884 and olaparib together needs to be further studied.
While the safety and effectiveness of combined use also need
being tested by clinical trials.

Through our research, we can get a knowledge of the
tumor suppressing role of PHGDH inhibitor CBR-5884 in
epithelial ovarian cancer via regulating the ROS level and
the downstream Wnt/β-catenin signaling pathway. What’s
more, we concluded that CBR-5884 played a synergistic role
with PARP inhibitor olaparib. In the future, we will promote
the exploration about molecular targeted therapy based on
PHGDH to prevent or reverse epithelial ovarian cancer
and ovarian cancer cisplatin resistance in clinical.

5. Conclusion

In conclusion, our study demonstrated that PHGDH inhib-
itor CBR-5884 inhibits epithelial ovarian cancer prolifera-
tion, migration, and invasion through activating ROS/Wnt/
β-catenin pathway and plays a synergistic role with PARP
inhibitor olaparib. These provided a theoretical basis for
PHGDH inhibitor CBR-5884 in clinical treatment.
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