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Abstract: A generalization of the original Gibbs phase rule is proposed in order to study the presence
of single phases, multiphase coexistence, and multicritical phenomena in lattice spin magnetic models.
The rule is based on counting the thermodynamic number of degrees of freedom, which strongly
depends on the external fields needed to break the ground state degeneracy of the model. The phase
diagrams of some spin Hamiltonians are analyzed according to this general phase rule, including
general spin Ising and Blume–Capel models, as well as q-state Potts models. It is shown that by
properly taking into account the intensive fields of the model in study, the generalized Gibbs phase
rule furnishes a good description of the possible topology of the corresponding phase diagram.
Although this scheme is unfortunately not able to locate the phase boundaries, it is quite useful to at
least provide a good description regarding the possible presence of critical and multicritical surfaces,
as well as isolated multicritical points.

Keywords: Gibbs phase rule; magnetic systems; phase diagrams

1. Introduction

Just a few years after Andrews’ experimental discovery of the critical opalescence in
carbon dioxide (which Andrews himself coined as the critical point) [1], Gibbs introduced
the phase rule [2,3]. The so-called Gibbs phase rule (GPR) is solely based on general
thermodynamics arguments and can give a remarkable account of the possible number of
phases that can coexist for a given system, as well as how many of them can become equal
(i.e., critical) at certain conditions. For example, in the temperature–pressure plane, a pure
substance (such as water, alcohol, glycerin, carbon dioxide, etc.) can present a line of two
coexisting phases, points where three phases coexist, and also points where two phases can
become equal. This is in remarkable agreement with the experimental phase diagram of
single compounds, where one has lines of gas-liquid, gas-solid, and liquid-solid coexisting
phases, only one triple point, and one critical point (a more complete description of such a
phase diagram, with water as an example having multiple triple points, will be discussed
below in the text).

Despite being almost one and a half centuries old, the GPR is in fact quite useful not
only in physics and chemistry, but also in various other areas, including geochemistry [4],
geology [5], materials [6], science education [3,7–9], and even biological systems [10], just
to cite a few examples. Interestingly enough, up to our knowledge, the GPR has been
underused in the area of phase transitions and critical phenomena, especially concerning
the most symmetric examples of magnetic systems. This lack of interest in the GPR could
perhaps be associated with the apparent violations of the rule encountered in ferromagnets
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and even in the helium four-phase diagram [11]. Fisher himself [11] has shown that these
violations can be restored by properly taking into account the symmetries involved in
the system. However, he left open the question of a practical way to implement these
symmetries in the GPR.

It is thus our purpose to derive a generalized phase rule for systems where the usual
GPR is violated and apply it to some known spin Hamiltonian models showing that
the corresponding phase diagrams are indeed in agreement with this more fundamental
thermodynamic behavior. This is achieved by properly taking into account the external
fields needed to break the degeneracy of the ground states of the system in order to compute
the desired thermodynamic number of degrees of freedom. It is also an interesting feature
of the scheme that one can easily identify where the constraints come from. It turns out
that such a phase rule could be quite useful in the study of more complex models. In
addition, it will also allow the proper description of the phases, the phase coexistence,
and the corresponding critical and multicritical behavior present in these systems (which,
as we will see below, are sometimes still misnamed and not suitably characterized in
the literature).

The structure of this paper is as follows. In the next section, we present a way to
introduce the GPR and its modification due to Zernike. In Section 3, we describe a simple
scheme to generalize the GPR, which is quite suitable to apply to more symmetric spin
Hamiltonians. The corresponding results of some particular models are then discussed in
Section 4. Some final remarks are presented in the last section.

2. Gibbs Phase Rule

The GPR, especially when no chemical reactions are present, is the subject of many
text books (see, for instance, refs. [12,13]) and can be obtained following different ap-
proaches [3,7–9,14,15]. What one seeks is knowledge of the number of independent ther-
modynamic variables f , or degrees of freedom, which is necessary to completely specify
the thermodynamic state of the system. This number is obtained by computing the total
number of extensive variables Ne minus the number of constraints Nc eventually imposed
on the thermodynamic variables of the system, namely

f = Ne − Nc. (1)

For completeness, we will discuss herein one particular approach that seems to be quite
suitable to be extended to the magnetic Hamiltonians treated below.

Consider, initially, a generic system consisting of ν parts or subsystems, in which
any part has n components, as schematically depicted in Figure 1a. Suppose that all
the walls are adiabatic, immovable, impermeable, and perfectly shield any external field.
To completely specify the thermodynamic state of this system, one can thus furnish, for
each subsystem α, the extensive variables energy Uα, volume Vα, magnetization Mα, and
number of particles of the n components Nαi, i = 1, 2, · · · , n. As in this work we will be
concerned with magnetic systems, only the magnetization has been considered; however, if
one deals with systems presenting electrical properties, the polarizations Pα should also be
considered. This means that we have a total of f = Ne = ν(N f + n) variables, or degrees
of freedom, and no constraints at all (note that the constraints we are talking about here
refer to relations among the thermodynamic variables and have nothing to do with the
walls separating the subsystems). Each subsystem will thus have its own temperature Tα,
pressure pα, external field Hα, and chemical potentials µiα. Notice that zero external field is
compatible with finite magnetizations for ferromagnetic compounds.

It is clear that N f above is also the number of fields coming from the corresponding
extensive variables Uα, Vα, and Mα. It turns out that N f will in fact determine the dimension
of the phase diagram. Although N f is usually larger than three, we can work in some
hypersurface projections in this hyperspace of thermodynamic fields. For a simple fluid
with no magnetic properties, we have N f = 2, coming from the temperature and pressure,
which are the respective fields of the extensive variables Uα and Vα, with a phase diagram in
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two dimensions. In the most general case, instead of considering the magnetization vector,
it is easier to compute N f by counting the number of independent external fields, including
those necessary to break the possible degeneracy of the ground state. It should be said
that sometimes some of these fields, although conceptually well defined, could have no (or
possibly quite difficult) physical realization, as is the case of the helium-4 superfluid related
to the phase of the wave function, and the antiferromagnet related to the staggered field.
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Figure 1. (a) A generic system with ν phases. In each phase α = 1, 2, . . . , ν there are n components with
internal energy Uα, volume Vα, magnetization Mα, and number of particles Nαi for each component
i = 1, 2, · · · , n. (b) Sketch of a hypersurface with dimension f ′ < f , where the left has ν coexisting
phases and the right has ν′ different coexisting phases. Along the dashed line (with dimension f ′ − 1),
ν + ν′ phases coexist.

Suppose now that the internal partitions are made diathermic, movable, and mag-
netically unshielded. The new equilibrium state will correspond to equal temperatures,
pressures, and magnetic fields. In this situation, the number of degrees of freedom reduces
to f = N f + nν, since the fields N f are the same for all subsystems. It is also possible
to refine the specification of N f by writing N f = 2 + Nm f , with the number 2 coming
from temperature and pressure, and Nm f giving just the specific magnetic field quantities.
However, for practical purposes, it is better to compute N f straight from the beginning,
since some models do not have pressure (rigid models), and even temperature (geometric
systems), as required variables.

At this point, it is still possible to reduce the number of degrees of freedom by just
changing the way of furnishing the component variables. Instead of the extensive number of
particle variables Nαi, we can use the corresponding molar fractions ηαi (or particle number
fraction), where ∑n

i=1 ηαi = 1 for every α phase. This will reduce one thermodynamic
variable for each subsystem, resulting in f = N f + nν− ν.

Now, considering permeable internal partitions, at equilibrium the subsystems will
coexist when all chemical potentials are equal µαi = µβi. In this case, we indeed have an
actual system with ν coexisting phases, which can be thought of as having no walls at all,
as is studied in most thermodynamics text books. This will further decrease the number of
degrees of freedom by n(ν− 1) and we have finally

f = N f + n− ν. (2)

The original GPR for simple fluids is recovered with N f = 2.
As a simple example, for a single one-component non-magnetic fluid, one has n = 1

and the phase diagram has two dimensions for N f = 2. Thus, the occurrence of one
phase has f = 2, which corresponds to a surface; the coexistence of two phases has f = 1,
meaning a line in the phase diagram; and three coexisting phases has f = 0, which can
occur only in some points on the phase diagram. In addition, when two coexisting phases
along a line become identical (by becoming identical, we mean here they reach a critical
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condition or undergo a second-order phase transition), we have an extra constraint and
one less degree of freedom (for instance, the densities are equal), implying f = 0. As a
consequence, we have only critical points and no critical lines. It is quite interesting that
the phase diagram of H2O with its complex different solid phases presents only two-phase
coexisting lines, triple, and critical points [16]. Quadruple points and critical lines are
forbidden by Equation (2) and, consequently, do not appear in the phase diagram.

Equation (2) can still be extended to more general conditions because depending on the
values of the external fields, one or more phases, as shown in Figure 2, can become identical
in a critical way. This will imply extra constraints that will further reduce the degrees of
freedom. One example has already been discussed above in the case of the critical point of a
single component system, and this example is illustrated in Figure 2a,b. Figure 2 also shows
some examples of how three and four coexisting phases can become identical, together
with the most commonly used nomenclature to designate the corresponding multicritical
points. When two phases become identical, as in Figure 2d,g, we have one extra constraint.
When three phases become identical, as in Figure 2e,i, we have two extra constraints (if the
densities of phases α and β, and phases α and γ are respectively equal, we automatically
have the identity of densities β and γ). Four phases becoming identical, as shown in as in
Figure 2j, implies three constraints, and so on. This means that Equation (2) reads now

f = N f + n− ν1 − ν2 − 2ν3 − 3ν4 − · · · , (3)

where ν1 is the number of single phases, ν2 is the number of two phases becoming identical,
ν3 is the number of three phases becoming identical, and so on.
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Figure 2. Sketch of two (upper row), three (middle row), and four (lower row) different phases
according to the Griffiths scheme [17], where the full lines represent a real interface (a meniscus)
between two phases, while the dashed lines represent phases becoming identical, i.e., critical. (a) Two
coexisting phases; (b) two phases becoming identical in a usual critical point; (c) three coexisting
phases in a triple point; (d) one pair of phases becoming identical in a critical end point; (e) three
phases becoming identical in a tricritical point; (f) four coexisting phases in a quadruple point;
(g) one pair of phases becoming identical resulting, in this case, in a critical end point with 2-phase
coexistence [18]; (h) two pairs of phases becoming identical resulting in a double critical end point;
(i) three phases becoming identical forming a tricritical end point; (j) four phases becoming identical,
which turns out to be a tetracritical point.
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It is worthwhile to mention that in the literature there is not a clear convention on
how to name a particular configuration of whole coexisting phases. However, from what
has been learned so far, we can say that if we have ν coexisting phases and none of them
are critical, this is a multiple point, with the Latin terminology for the number of phases
(Latin(ν)ple, as in triple, quadruple, quintuple, etc.). If some of the phases become identical,
one has a multicritical point, with the Greek terminology for the number of equal phases
(Greek(ν)critical, as in tricritical, tetracritical, pentacritical, etc.). Figure 2 gives examples
for ν = 2, ν = 3, and ν = 4, which makes it easy to generalize for cases of more than
four phases (see, for instance, ref. [19] for cases with five and eight phases). In general,
if we originally have ν coexisting phases, we can say that: (i) if only two phases become
identical, one has a critical endpoint with (ν− 2)-phase coexistence (ν = 3 is a critical end
point and ν = 2 is a critical point); (ii) if only three phases become identical, one has a
tricritical endpoint with (ν− 3)-phase coexistence (ν = 4 is a tricritical end point and ν = 3
is a tricritical point); (iii) and so on for tetra, penta, etc. critical points; (iv) if two different
pairs of phases become identical, one has a double critical endpoint with (ν− 4)-coexisting
phases (ν = 4 is a double critical endpoint); (v) the same is true for two different sets of
three, four, etc. phases becoming identical; (vi) if one pair of phases and another different
set of three phases become simultaneously identical, we have a critical-tricritical endpoint
with (ν− 5)-coexisting phases. Generalization for even more complex arrangements is
straightforward. The above nomenclature has been thought of considering only points,
but can be naturally extended to lines, surfaces, volumes, etc. of the respective phase
configurations, such as double critical endline, tetracritical endsurface, critical-tricritical
endvolume, and so on.

3. Generalized Gibbs Phase Rule

The more general GPR given by Equation (3) is known as the Zernike rule [20]. Note
that Equation (3) applies for completely non-symmetric systems. However, some symmetry
properties among the phases will not reduce the number of degrees of freedom as fast as
Equation (3). For example, if, for some reason, phase α is related to phase γ through some
special symmetry property and phase β is related to δ by the same symmetry, then when α
becomes equal to β, γ automatically becomes equal to δ, and instead of two constraints,
only one constraint is involved in the process. As we shall see below, this is what happens
in the double critical endpoint of Figure 2f for the Blume–Capel model. This means that the
symmetry properties of the Hamiltonians must be carefully taken into account when using
the phase rules discussed above.

For the present practical purposes, however, instead of using Equation (3), it is much
more convenient to start with Equation (2), where ν phases already coexist, and just count
the additional constraints Nad required to accommodate the new specific condition, i.e.,

f = N f + n− ν− Nad. (4)

Two different scenarios can now be considered.

(i) First, ν phases can coexist in a subset of a hypersurface of dimension f ′ and another
different ν′ phases coexist in a different subset of the same hypersurface, as schemati-
cally shown in Figure 1b. When the proper free energy of any two phases in different
subsets are equal, we have one more constraint Nad = 1, and on the reduced hyper-
surface f ′ − 1, one now has ν + ν′ coexisting phases. The special case ν = ν′ = 1 is
equivalent to the usual GPR where two phases coexist on a subspace of a reduced
dimension of one unity. By proper free energy, we mean here the corresponding free
energy as a function of the suitable fields. That is why we have worked with the
chemical potentials in the general case of fluids, because µαi are just the molar (or per
particle) Gibbs free energy. For more details on what free energy one has to consider
in the case of magnetic systems, see Ref. [21].



Entropy 2022, 24, 63 6 of 14

(ii) Second, sometimes the ν (or ν′) phases in the hypersubspace can become equal. In this
case, Nad should be computed according to the procedure outlined in the previous
section, properly taking into account the symmetries of the system.

Actually, it seems that such lack of symmetry analysis has made the use of the GPR
rather obscure when treating magnetic models. In addition, the generalized GPR above is
more in the direction of a procedure to be followed than a simple application of a closed
equation, as in the original GPR. Once the path of the generalized GPR is understood, it
turns out to be amazingly simple. Moreover, an interesting point in this method is the
ability to identify which thermodynamic quantity the constraints Nc and Nad come from.

4. Gibbs Phase Rule for Hamiltonian Models

The above procedure is general and can be applied to any system. In this section,
we present some theoretical models and discuss the application of the generalized GPR
on the corresponding phase diagrams. We will follow the scheme of using Equation (4)
and identifying the corresponding constraints in order to compute the desired degrees
of freedom f . Most of the models have already a consensual phase diagram obtained
either from exact results or reliable theoretical approximations, including as computer
simulations. However, in some cases there is lack of information regarding the respective
phase diagram, and the present generalized GPR can provide some clear insights of what
one can expect regarding the type of boundaries of the corresponding phases. We hope
that these examples can give a helpful account on how to extend the treatment to either
more general or related Hamiltonians.

4.1. Ising Model

The easiest and mandatory model is the spin-S Ising model [22–24], which can be
written as

H = −J ∑
〈ij〉

σiσj − H
N

∑
i=1

σi, (5)

where J is the exchange interaction, H is the external field, and the first sum is over nearest-
neighbor sites 〈i, j〉 on a lattice with N sites. Each site of the lattice has a spin S, taking
values σi = 0,±1,±2, · · · ,±S for integer S, and σi = ±1/2,±3/2, · · · ,±S for half-integer
S. At H = 0, the pair interaction term has the time reversal symmetry, so the ground state
corresponds to two-fold degenerated ferromagnetic (F+ and F−) states, where all spins
are either aligned in the +S state or the −S state, with magnetization per spin given by
m± = ±S. The increase of temperature decreases the spin alignment so that |m±| < S,
and the system eventually reaches a paramagnetic (P) phase with no net magnetization
m± = 0. The effect of the external field is to break this degeneracy. Thus, besides H,
one has the temperature T as the other thermodynamic field, which comes from the spin–
spin interaction part of the energy. Accordingly, the phase diagram has two dimensions
(N f = 2) and Equation (4) reduces to f = 3− ν for a one-component system n = 1 and no
additional constraints Nad = 0. One phase, which in this case can be either ferromagnetic or
paramagnetic, occupies a surface ( f = 2); two phases coexist along a line ( f = 1), which can
also be seen as reducing f = 2 by one constraint that comes from both phases having the
same free energy; a critical point, where two phases become identical, can only be located
at a point on the coexistence line ( f = 0), because one has one additional constraint Nad = 1
coming from the equality of the magnetization (or, equivalently, the order parameter) of
both phases. This is a well-known result and is schematically shown in Figure 3.

Note, however, that from the GPR there is also another possible scenario in which
the ferromagnetic phases also coexist with the P phase along two symmetric lines (that
may also present two symmetric critical points), making the open circle at H = 0 a triple
point instead. This is not what really occurs in this model, since any non-zero external field
completely destroys the phase transition in this system. This is a clear example that the
GPR is able to say what is permitted for nature, but not how nature itself decides to behave.
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Interestingly enough, as we shall see below, the q-state Potts model in an external field has
a similar behavior as shown in Figure 3 for q > 5 with a multiphase coexistence at H = 0.
However, there is just one critical point for H > 0, since there is no symmetry for negative
values of the external field, and only a first-order transition line for H < 0.

m
+

0

H

TTc

P

F

P

m
−

0

0

F

+

−

Figure 3. Phase diagram of the Ising model in the temperature T vs field H plane. The two ferromag-
netic phases (F+ and F−), with spins aligned along the external field as indicated by the arrows (with
magnetizations m+ and m−), coexist at H = 0 along the horizontal dashed-dotted line. The circles
are critical points. The other two symmetric dashed-dotted lines are spurious coexistence lines of the
ferromagnetic and paramagnetic (P) phases (with null magnetization indicated by the zeros), which
are allowed by the GPR (in this case the circle at H = 0 would be a triple point instead). The two
symmetric lines can eventually terminate at new critical points.

4.2. Blume-Capel Model

A more compelling example that quite completely illustrates the use of the generalized
GPR in magnetic systems is the Blume–Capel model [25,26]. It is in fact the simplest
generalization of the Ising model given by Equation (5), and is obtained by including a
crystal field term ∆, so that the Hamiltonian can be written as

H = −J ∑
〈ij〉

σiσj − H
N

∑
i=1

σi + ∆
N

∑
i=1

σ2
i . (6)

The crystal field is only relevant for S > 1/2. If we just consider Equation (2), we have
N f = 3, f = 4− ν, and a phase diagram in three dimensions. Thus, a single phase is stable
in a volume of the phase diagram ( f = 3), two phases can coexist on a surface ( f = 2),
three phases coexist along a line ( f = 1), four phases can coexist only at isolated points
( f = 0), and there is no possibility of tricritical points ( f = −1). This is what we obtain
without any symmetry analysis. However, the symmetries of the model play a crucial role
in determining the topology of the phase diagram for any value of S and some values of
f above are in fact underestimated (for instance, it is possible to have a line of quadruple
points with f = 1 and tricritical points with f = 0 as well).

First, let us see what the phases of the model are and some exact results one can obtain
at zero temperature (for more details see Ref. [27]). For ∆ ≤ 0, we have a behavior similar to
the Ising model. However, as ∆ increases, the spin state σ = 0 is more populated for integer
S and the states σ = ±1/2 are more populated for half-integer S. Specifically at T = 0 and
H = 0, for ∆ < ∆0 = dJ, where d is the spatial dimension of the hypercubic lattice, we
have a two-fold ground state as in the Ising model. For ∆ > ∆0, all spins are in the σ = 0
state for integer S, while for half-integer S, we have another two-fold ground state with the
spins now all aligned either in the σ = 1/2 state or σ = −1/2 state. For different values of
the external field, one has ∆0 = dJ + |H|/S for integer S and ∆0 = dJ + |H|/(S + 1/2) for
half integer S. This clearly means that the phase diagram strongly depends on S. Thus, it
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will be instructive to see in detail the cases S = 1 and S = 3/2 separately first, and only
afterwards generalize to larger spin values.

S

S

2

0

−

2

S
2

+

T

H

∆

0

0

m
+

m
−

S=1

(a)

*

S>1

H=0

∆

T

d

(b)

Figure 4. (a) Phase diagram of the spin S = 1 Blume-Capel model in the crystal field ∆, temperature
T, and field H space. The arrows indicate the two ferromagnetic phases with magnetizations m+

and m−, and the zeros indicate the paramagnetic phase. The two ferromagnetic phases coexist on
the surface S0

2 at H = 0, while the ferromagnetic phases coexist with the paramagnetic phase on
the two wings S+

2 and S−2 for positive and negative fields, respectively. Dashed-dotted lines are
two-phase coexistence lines that meet at the triple point given by the full triangle located at ∆0 = dJ.
The dashed-dotted-dotted line is a triple line that ends up at the tricritical point given by the open
triangle. Full lines are usual second-order phase transition lines. (b) H = 0 plane phase diagram
for integer spin S > 1. There are S− 1 dashed lines with four coexisting phases, each of the lines
terminating at double critical endpoints (open squares). The star at T = 0 and ∆ = d is a multiphase
point with 2S + 1 coexisting phases. The inset shows the forbidden decomposition, according to the
generalized GPR, of the tricritical point into a critical endpoint and another double critical endpoint.

4.2.1. Spin S = 1

The global phase diagram of the spin S = 1 Blume–Capel model is schematically
shown in Figure 4a. We have three different phases, namely two ferromagnetic phases and
one paramagnetic phase, in perfect agreement with the GPR. Single phases occupy volumes
in the diagram ( f = 3); two phases, having the same free energy, coexist on surfaces
( f = 2), with the two ferromagnetic phases with opposite magnetization (same magnitude)
coexisting only at H = 0 on S0

2 surface, and two symmetric wings with the ferromagnetic
phases coexisting with the paramagnetic one on S+

2 and S−2 surfaces (the magnetization
of the ferromagnetic phases are different from zero, while in the paramagnetic phase no
magnetization is present); and three phases coexisting along a line ( f = 1). Eventually, the
magnetizations of the two coexisting phases in each of the three surfaces become equal in
critical lines ( f = 1). Accordingly, the three critical lines meet at the tricritical point (the
actual reason Griffiths named this point tricritical). The phases configuration on surfaces
S0

2, S+
2 , and S−2 are as in Figure 2a, while at their border critical lines, their configuration

is as in Figure 2b. The dashed-dotted-dotted line can be represented by Figure 2c and the
open triangle by Figure 2e.

It is interesting to see the role of symmetry regarding this triple line. As discussed
above, to derive the Zernike rule (3), the tricritical point should have two constraints in
the asymmetric case and therefore seems to violate the GPR for the presence of a tricritical
point ( f = −1). Here, however, the two ferromagnetic phases always have opposite
magnetizations due to the time reversibility of the Hamiltonian at H = 0. Thus, if one
ferromagnetic phase has zero magnetization, the other phase will automatically also have
the same magnetization because of this symmetry, meaning that just one constraint is
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involved, namely m+ = m− = 0, then reducing f = 1 of the triple line to f = 0 at the
tricritical point.

Another remarkable feature of the generalized GPR is that it does not allow this
tricritical point to be decomposed into a critical endpoint and another double critical
endpoint, as is shown in the inset of Figure 4b. This new situation would require the
impossible constraint m+ = m− 6= 0.

4.2.2. Spin S = 3/2

The main difference now lies in the phases for large values of the crystal field; instead
of the paramagnetic phase due to the zero component of the integer spin, there is another
ferromagnetic phase coming from the components±1/2. This means that on the plane H =
0 ( f = 2) and low temperatures, for small (and negative) crystal fields two ferromagnetic
phases with opposite magnetizations m+

1 and m−1 coexist, while for large values of crystal
fields, two other ferromagnetic phases with smaller magnetization magnitude m+

2 and
m−2 coexist. When the free energy of just one of the larger magnetization phases becomes
equal to the free energy of any other smaller magnetization phase, as discussed then in the
text, the other two phases will also coexist. In this way, only one constraint is necessary to
allow for the presence of a line of quadruple points ( f = 1), which seemed to be forbidden
according to the discussion in the beginning of this section.

A sketch of the phase diagram is shown in Figure 5a. The symmetric wings are surfaces
where two ordered phases with different magnetizations coexist. Along the quadruple line
at H = 0, four phases with magnetizations m+

1 , m+
2 , m−1 , and m−2 coexist, as in Figure 2f.

When m+
1 = m+

2 , due to the time reversal symmetry one also has m−1 = m−2 , so with one
additional constraint we obtain f = 0, which is in this case a double critical endpoint [28],
well illustrated in Figure 2h. Nevertheless, the generalized GPR does not rule out the
possibility of a tetracritical point here (Figure 2j is an example), which will be the condition
of m+

1 = m+
2 = 0, and the same is true for negative magnetizations, as is schematically

shown in the inset (1) of Figure 5b. Therefore, the equality of the magnetizations is one
sufficient constraint for multicriticality and we do not expect the specific null value for
the magnetizations to be one additional constraint. The decomposition of this tetracritical
point into a critical endpoint with 2-phase coexistence (see Figure 2g) and another tricritical
point, as depicted in the inset (2) of Figure 5b, is also permitted by the generalized GPR.
Although both situations above are spurious and do not happen in the global phase
diagram of this system [28,29], such decomposition has actually been seen in the spin-3/2
Baxter–Wu model [19].

4.2.3. S > 1 and S > 3/2

For larger values of the spin S, multiwings will appear in the phase diagram. The
projection on the H = 0 plane is shown in Figures 4b and 5b for integer and half-integer
spins, respectively. S− 1 (S− 1/2) quadruple lines spring from the multiphase point H = 0
and ∆ = d and terminate at double critical endpoints [27] for integer (half-integer) S.

At the multiphase point H = 0, ∆ = d, we have 2S + 1 coexisting phases, which seems
to violate the rule, since we have seen that the maximum number of allowed phases is
four. This is in fact an anomalous point. At H = 0 and ∆ = d, if all the spins are aligned
in any of the states −S,−S + 1, · · · , S− 1, S, the free energy will be the same. This means
that the constraint of equality of the free energy is independent on the value of the spin
state. However, outside of this anomalous point, the generalized GPR applies, and as only
four phases can coexist, the only possible scenario is the springing of quadruple lines. This
is a remarkable theoretical understanding of why the general spin Blume–Capel model
presents such behavior at low temperatures.
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Figure 5. (a) Phase diagram of the spin S = 3/2 Blume–Capel model in the crystal field ∆, temperature
T, and field H space. The arrows indicate the four ferromagnetic phases with different magnetization
magnitudes related by the time reversal symmetry (m+

1 and m+
2 , and the corresponding inverse

ones m−1 and m−2 ). For low temperatures, two ferromagnetic phases, with opposite magnetization
directions, coexist on the S0

2 surface for H = 0. Along the dashed line on S0
2 there are four phases

coexisting, making it a quadrupole line. The full square at ∆ = d is also a quadrupole point, while
the open square is double critical endpoint. The two symmetric wings are similar to the wings for the
spin S = 1 case, the difference now being a coexistence with another ferromagnetic phase instead.
The full lines correspond to second-order phase transition lines. (b) H = 0 plane phase diagram
for half-integer spin S > 1/2. There are S− 1/2 dashed lines with four coexisting phases, each of
the lines terminating at double critical endpoints (open squares). The star at T = 0 and ∆ = d is a
multiphase point with 2S + 1 coexisting phases. The inset (1) shows a tetracritical point, represented
by the open square, and the inset (2) shows a decomposition of the tetracritical point into a critical
end point with 2-phase coexistence (open square) and one additional tricritical point (open triangle).
Both situations are spurious, but are allowed by the generalized GPR.

4.3. Two-Dimensional q-State Potts Model

The literature is full of systems where the above analysis can be straightforwardly
applied. We will briefly discuss below the q-state Potts model [30] in order to demonstrate
the importance of taking the symmetry breaking fields of the ground states.

The Hamiltonian of the q-state Potts model can be written as

H = −J ∑
〈i,j〉

δσiσj − H1

N

∑
i=1

δ1,σi , (7)

where the first sum is over nearest–neighbor pairs on a square lattice with N sites. Each
lattice site has a spin variable σi = 1, 2, · · · , q, and δσiσj is the Kronecker delta, which is 1
when the pair σiσj are in the same state and 0 otherwise. J is the ferromagnetic exchange
interaction and H1 represents the external field applied in the 1 direction. Exact results
have shown that at H1 = 0, this model has a second-order phase transition for q ≤ qc, and
a first-order phase transition for q > qc, with qc = 4 [31,32]. The situation, however, for
H1 6= 0 is not yet completely clear. Due to its complexity, much less work has been devoted
to the study of the effects of an applied magnetic field along one of the state components.
For example, for q > qc and H1 > 0, a first-order line ending up at a critical point has been
theoretically predicted [33] and afterwards detected by Monte Carlo simulations [34]. The
use of the generalized GPR could furnish some insights about the possible behavior of the
coexisting phases in this model.

At H1 = 0 and below the transition temperature, we have q coexisting phases. In
order to break the degeneracy of these states, one needs q − 1 external fields acting on
each state. The reason for having only q− 1 instead of q fields is because positive fields
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favor the corresponding state and negative fields tend to suppress this state. Thus, having
all q− 1 fields with negative values will favor the last state and there is no need for an
extra field in this direction. This means that the total number of fields N f (including the
temperature), which is also the dimension of the phase diagram, is given by N f = q. For a
one-component system we now have f = q + 1− ν− Nad. One single phase occupies the
whole hypervolume of the q-dimensional phase diagram, since Nad = 0 and f = q. On the
other hand, having q coexisting phases means f = 1, which must be a line. This line should
be along H1 = 0, as expected.

The effect of the external field is to favor the occupancy of the 1 state for H1 > 0 and to
suppress the occupancy of this state for H1 < 0. We can thus expect to have q− 1 coexisting
phases for negative fields. This means that f = 2 on a surface. On this surface, however,
we can have, with just one additional constraint, either all magnetizations becoming equal
to zero, meaning the existence of a critical line, or the ordered phases coexisting with
the paramagnetic one, in another multiple line. It is interesting that in this case, and
contrary to the Ising model, depending on the value of q, both situations actually occur.
Figure 6 sketches a projection of the q-dimensional phase diagram of the Potts model in
two dimensions on the temperature versus external field plane for q = 3, 4 in (a) and for
q > 5 in (b). In (a), positive fields destroy the transition, as in the Ising model, and for
negative fields there is a second-order phase transition in the same universality class as the
q− 1-state model.

1
m    rich

Tc
q

Tc
q−1

0

H

T

1

2 3
m  = m   = ... = m

f = 2

f’ = 2

q

0

q = 3, 4

(a)

1
m    rich

Tc
q

Tc
q−1

0

H

T

1

2 3
m  = m   = ... = m

f = 2

f’ = 2

q

0

0

q > 5

(b)

Figure 6. Projection onto the external field H1 versus temperature T subspace of the phase diagram of
the Potts model in two dimensions. Open circles and full lines are second-order phase transitions; at
the full circle q + 1 phases coexist; along the dashed line and the dashed-dotted-dotted line q phases
coexist; and along the dashed-dotted line two phases coexist. mi are the magnetizations of the state i.
For positive fields, the phase is rich in the 1 state alignment, while for negative fields the other states
are more populated. f and f ′ designate the dimension of the surface. In (a), we have q = 3, 4 and in
(b), q > 5. The phase diagram for q = 5 should be similar to that in (b) with the dashed-dotted-dotted
line becoming a full line.

For q > 5, we have the sketch in Figure 6b, with all lines obeying the generalized GPR.
The line and the critical point for positive values of H1 has been located for some values
of q > 4 using the Wang–Landau Monte Carlo method [34]. Nevertheless, the first-order
transition line for H1 < 0 still needs to be studied in detail. What we can surely say is that
we do not expect any critical points along this first-order transition line, since as H1 → −∞
the model reduces to the q− 1-state model, which undergoes another first-order phase
transition.

The particular case q = 5 is even more interesting, since H1 → −∞ should correspond
to a four-state Potts model that has a second-order transition. Thus, the phase diagram
should be similar to that shown in Figure 6b, with the dashed-dotted-dotted line becoming
now a tetracritical line. The full circle could be a tetracritical endpoint. A less probable
scenario, permitted by the generalized GPR, could be a first-order line for H1 < 0 ending
at a tetracritical point only in the limit H1 → −∞. Future works on this model could surely
elucidate this still open question.
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We end this subsection by saying that the three-dimensional q = 3-state and q > 3-
Potts model should have similar phase diagrams as the q = 5-state and q > 5-state model,
respectively, in two dimensions.

5. Final Remarks

It is not surprising that the GPR has been underused in the study of the phase diagrams
of magnetic systems. However, the apparent violations of the GPR can be restored by taking
into account the proper symmetry-breaking fields of the ground state. Fisher has shown
that the inclusion of these fields works nicely for the antiferromagnet, as well as for liquid
Helium [11]. In this paper, a generalized GPR, which is an extension of Fisher’s original
idea, has been proposed in order to study the possible coexisting phases and the presence
of multicriticality in magnetic systems. As examples, we have applied the generalized
rule to the Ising, Blume–Capel and Potts models in a detailed way. We believe we have
presented the most comprehensive discussion of the complete phase diagram of the general
spin Blume–Capel model and the two-dimensional Potts model in an external field. The
results for both these models are sparsely discussed in the literature (barely for the Potts
model in an external field), with some transition lines still in need of further investigations
by more reliable methods.

The Heisenberg model, with three-component spin variables, has a similar phase
diagram as the Ising model [35]. However, with Heisenberg spins, we can also consider
long-range dipolar interactions D. The competition between the short-range exchange
interaction J and the long-range dipolar interaction D will result in a single phase multi-
domain configuration, which is actually observed in real magnetic materials. Thus, we
have one extra field that, below the critical temperature, will mix the F+ and F− phases for
H = 0, resulting in ferromagnetic phases with null magnetization.

An immediate extension of the Blume–Capel model is the Blume–Emmery–Griffiths
model [36,37], which includes a biquadratic term of the form −K ∑〈ij〉 S2

i S2
j . The phase

diagram is now four dimensional, and three-dimensional projections can be drawn for
different values of the biquadratic exchange interaction K. In this case, the dimension
of the hyperspaces will be increased by one unit, and we will have, for instance, critical,
triple, and quadruple surfaces, tricritical lines, and double critical endlines, as well as new
sublattice phases populated with zero spin configurations for integer values of S [37].

It is clear that the present procedure can be applied to other statistical mechanical
models. Among the vast variety of systems, we can cite some with a still increasing
experimental attraction: disordered systems such as spin glass [38,39], where the strength
of the disorder is treated as an additional field; cold atoms and colloidal systems [40,41],
orientational ordering in colloidal molecular crystals and colloidal spin ice [42–46], vortex
systems [47,48], old water ice [49], and magnetic ice [50,51].
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