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Abstract GPR109A has generated expanding interest since
its discovery as the receptor for niacin a decade ago, along
with deorphanisation as the receptor for endogenous ligand
3-hydroxy-butyrate shortly after. This interest is generated
especially because of the continuing exploration of niacin’s
“pleiotropic” mechanisms of action and its potential in the
“cross-talk” between metabolic and inflammatory pathways.
As GPR109A’s primary pharmacological ligand in clinical
use, niacin has been used for over 50 years in the treatment
of cardiovascular disease, mainly due to its favourable ef-
fects on plasma lipoproteins. However, it has become ap-
parent that niacin also possesses lipoprotein-independent
effects that influence inflammatory pathways mediated
through GPR109A. In addition to its G-protein–mediated
effects, recent evidence has emerged to support alternative
GPR109A signalling via adaptive protein β-arrestins. In this
article, we consider the role of GPR109A and its down-
stream effects in the context of atherosclerosis and vascular
inflammation, along with insights into strategy for future
drug development.
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Introduction

GPR109A belongs to a family of three G-protein–coupled
receptors that share significant sequence homology and whose
known cognate ligands are metabolites of hydroxycarboxylic

acid [1•]. Despite the discovery by Altschul in 1955 of the
beneficial effects of nicotinic acid (niacin) on plasma lipopro-
teins [2], it was not until in 2003 that the G-protein–coupled
receptor (GPCR) GPR109A [also known as hydroxy-
carboxylic acid (HCA) receptor 2 (HCA2), HM74a, or
NIACR1] was found to be a receptor target of niacin [3–5].
Two years later, GPR109A was deorphanised when the en-
dogenous ligand ketone body 3-hydroxy-butyrate was found
by Taggart et al. [6]. Since then, many other synthetic agonists
of GPR109A had been developed (Acipimox, Acifran, MK-
0354, etc.) [1•]. Other members of the HCA receptors family
have also been deorphanised: lactate was found as the endog-
enous ligand for GPR81 (HCA1 receptor) [7], whereas β-
oxidation intermediate 3-hydroxyl-octanoic acid was found
for GPR109B (also known as HCA3 receptor, HM74, or
NIACR2) [8].

Over the last twenty years, HMG-CoA reductase inhibi-
tors, statins, have become the first-line treatment of
dyslipidaemia. Although treatment with these compounds
achieves substantial LDL-c reduction, significant residual
cardiovascular risk remains [9–11]. There is strong epide-
miological evidence of an inverse relationship between
HDL-c level and coronary heart disease risk, regardless of
the LDL-c level [12, 13], which persists in patients who are
treated with statins [10]. Thus, besides targeting LDL-c,
recent clinical focus has been expanded to elevate or modify
the properties of plasma HDL [14, 15], and to counteract the
inflammatory processes associated with atherosclerosis
[16–18]. The GPR109A agonist niacin reduces atherogenic
lipoproteins LDL-c, VLDL-c, and Lp(a), and is currently the
most potent drug available to raise plasma HDL-c (by up to
30 %) [19]. In addition, activation of GPR109A with niacin
also antagonises known inflammatory pathways in adipo-
cytes [20] and in some leukocytes [21]. Therefore, with its
“pleiotropic” potential, niacin has re-entered the forefront
and has fuelled accelerated clinical studies, as well as basic
research into the biological role of GPR109A and its down-
stream signalling pathways (Fig. 1).
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Niacin and Its Mechanisms of Action

GPR109A has a high affinity for niacin; however, the effects
of niacin on plasma lipoproteins [22] are complex and
currently not entirely understood. GPR109A is highly
expressed in adipocytes [23], as well as other cell types
including neutrophils [24], macrophages [25], keratinocytes
[26] and Langerhans cells [26]. In adipocytes, GPR109A
activation results in Gi/G0 protein-mediated inhibition of
adenylate cyclase, leading to a decreased cAMP response
[4, 27]. Suppression of cAMP has also been reported in
HM74a-transfected CHO-K1 [4], 293EBNA [3], and
HEK293 [27] which is at least partially ascribed to inhibi-
tion of adenylate cyclase, mediated by GPR109A. We have
also observed a suppression of cAMP in nonstimulated,
basal monocytic cells (Chai et al. 2013, unpublished). The
reduction in cAMP in adipocytes leads to a reduced activity
of protein kinase A and a decrease in hormone sensitive
lipase activity resulting in an inhibition of lipolysis.
According to one hypothesis, reduced triglyceride hydroly-
sis and free fatty acid (FFA) release leads to diminished FFA
flux to the liver, thus limiting substrate availability for

hepatic triglyceride and VLDL-c synthesis [28]. However,
this prevailing “FFA hypothesis” was recently refuted by a
study using a humanized genetic mouse model, in which
niacin lost its efficacy in inhibiting FFA release in animals
lacking GPR109A, but retained its effect on plasma HDL
and triglycerides.[29••] Treatment in mice with selective
GPR109A agonist MK-1903 demonstrated antilipolytic ac-
tion but showed no effects on plasma triglycerides, LDL-c,
as well as HDL-c. The authors went on to further support
their findings in separate human clinical trials, in which both
MK-1903 and another GPR109A agonist (SCH900271)
resulted in reduced FFA lipolysis but neither showed the
anticipated effects in plasma lipoproteins. Taken together,
this suggests that although niacin exerts its antilipolytic
effects via GPR109A, it may have an independent mecha-
nism of action in altering plasma lipoproteins [30].

Niacin has other actions on the liver that are also
GPR109A-independent as shown in a study by Jin et al.
[31]. Using a human hepatoblastoma (HepG2) cell line,
niacin increased intracellular apolipoprotein B degradation
and reduced secretion of apolipoprotein B into the culture
media. Niacin has also been shown to reduce hepatic

Fig. 1 Diagram showing the putative GPR109A downstream sig-
nalling mechanisms. α, β, γ: G-protein subunits; β-Arr: β-arrestin;
numbers refer to respective references. GPR109A activation results
in G-protein–coupled receptor kinase (GRK)-mediated self-

phosphorylation and recruitment of β-arrestins. In addition to me-
diating GPR109A receptor internalisation and recycling, β-arrestins
also directly mediate downstream signalling independent of the
G-protein pathways
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reuptake of HDL particles by inhibiting the surface-
expressed ATP-synthase β-chains, which facilitate
holoparticle HDL endocytosis [32]. In addition, high con-
centrations of niacin in vitro non-competitively inhibit he-
patocyte microsomal diacylglycerol aceltransferase-2 [33],
which catalyses the formation of triglyceride from diac-
ylglycerol and fatty acetyl-CoA, a committed step in triglyc-
eride synthesis [34].

The “pleiotropic” Effects of Niacin

Although it remains unclear whether niacin directly affects
hepatic HDL-c synthesis via GPR109A, there is intriguing
evidence that it does so in adipose tissue. Adipose tissue is
the largest free cholesterol reservoir and abundantly ex-
presses ATP-binding cassette transport A1, a key cholesterol
transporter for HDL biosynthesis [35]. In this context, niacin
was shown to stimulate PPARγ, LXRα and ABCA1 mRNA
expression dose-dependently and promote ApoA-I-induced
cholesterol efflux in 3T3-L1 adipocytes [36]. In addition,
both niacin and its structurally-distinct GPR109A/B agonist
acifran were able to induce nuclear expression of PPARγ
and enhance PPARγ transcriptional activity [37]. Important-
ly, the authors showed that these effects were pertussis
toxin–sensitive and required phospholipase A2. Further-
more, niacin-mediated PPARγ activity was observed in
GPR109A-CHO transfectant cells but not in vector-only
control cells, indicating that GPR109A is critical for niacin’s
effect on the reverse cholesterol transport (RCT) PPARγ-
LXRα-ABCA1 pathway.

Reverse Cholesterol Transport and HDL

The effects of GPR109A-mediated ABCA1 upregulation,
the resultant cholesterol efflux, and HDL biosynthesis have
potential indirect beneficial effects on vascular inflamma-
tion. HDLs have long been shown to exhibit anti-
inflammatory properties by virtue of their ability to inhibit
monocyte transmigration in response to oxidized LDL [38].
In addition, HDLs inhibit cytokine-induced expression of
vascular cell adhesion molecule (VCAM)-1, intercellular
adhesion molecule (ICAM)-1, and E-selectin in human um-
bilical vein endothelial cells (HUVEC’s) within the physio-
logical range of HDL levels [39–41]. It was shown that
HDL’s also inhibit tumour necrosis factor-α (TNF-α) stim-
ulated endothelial cell sphingosine kinase activity, which
may also serve to be atheroprotective [42], as there is
reduced nuclear translocation of NF-κB, a key step in the
inflammatory pathway by which TNF-α stimulates the
expression of endothelial adhesion molecules [43]. The
ability of HDL’s to alter endothelial cell adhesion protein

expression has also been demonstrated in animal models.
Infusion of rHDL containing ApoA-I and phosphatidylcho-
line to apoE-/- mice reduced VCAM-1 expression and
monocyte infiltration within 1 week [44]. Interestingly, nia-
cin supplementation (0.6 % and 1.2 %) in the diet of New
Zealand white rabbits for 2 weeks was also associated with
significantly improved endothelial dysfunction independent
of changes in plasma lipids. At 24 hours following
periarterial carotid collar implantation, endothelial expres-
sion of VCAM-1, ICAM-1 and monocyte chemotactic
protein-1 (MCP-1) were reduced in comparison to controls
[45]. In human subjects heterozygous for a loss-of-function
ABCA1 mutation who have low plasma HDL, their im-
paired forearm blood flow (a surrogate indicator of impaired
endothelial function) was restored to that of normal controls
4 hours after a single infusion of rHDL [46]. Niacin treat-
ment was also found to improve endothelial dysfunction in
patients with coronary artery disease and low HDL-c, but
not with normal HDL-c [47].

Direct Anti-inflammatory Effects

In addition to the indirect anti-inflammatory effects mediat-
ed by HDLs, more recently, the relevance of niacin and
GPR109A activation with its direct anti-inflammatory po-
tential in the vasculature has begun to emerge. A number of
laboratories have reported nonlipoprotein–mediated effects
of niacin that may have a bearing on atherosclerosis pro-
gression and risk [48••, 49]. In addition to the potentially
favourable lipoprotein modulating effects of niacin, study
of the pharmacology and mechanisms of action of niacin
have revealed anti-inflammatory effects in monocytes/
macrophages [50, 51], adipose tissue [20], and vascular
endothelium [49, 52]. In an elegant study by Lukasova et
al., using LDL-receptor knockout mice, niacin reduced the
progression of atherosclerosis. Importantly, this was lipo-
protein independent, as there were no changes to LDL-c,
VLDL-c and HDL-c levels. Moreover, these beneficial ef-
fects were abrogated in Ldlr-/- & GPR109A-/- ‘double
knockout’ mice [50]. Through bone marrow transplantation,
mediation of antiatherosclerotic mechanisms was shown to
be via GPR109A in marrow-derived cells, which was fur-
ther supported by the inhibition of MCP-1 induced recruit-
ment of macrophages into the peritoneal cavity and impaired
macrophage recruitment to atherosclerotic plaques. This
study also reported a reduction in the expression of adhesion
molecules in atherosclerotic vessels of nicotinic acid–treated
Ldlr–/– mice. These data suggest novel GPR109A receptor
mediated antiatherosclerotic effects of niacin, which are not
dependent on alterations in lipoproteins.

In support of this finding, we have recently reported
potent anti-inflammatory effects of niacin in both human
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adipocytes [20] and monocytes [21], which are mediated via
GPR109A-dependent mechanisms. In adipocytes, niacin in-
hibits TNF-α stimulated expression and secretion of inflam-
matory cytokines MCP-1, regulated and normal T cell
expressed and secreted (RANTES) and fractalkine [20].
Under conditions of inflammation associated with cardio-
vascular disease, increased secretion of proatherogenic,
proinflammatory cytokines and chemokines contribute sig-
nificantly to the recruitment of inflammatory T-cells and
macrophages into atherosclerotic lesions [53–55]. Adipose
tissue has the potential to contribute to processes involved in
both systemic and local (perivascular) inflammation in the
context of atherosclerosis, both of which may be influenced
by the actions of niacin. More importantly, niacin also
inhibited toll-like receptor (TLR)-4 and TLR-2 induced
expression and secretion of pro-inflammatory cytokines
TNF-α, interleukin-6 (IL-6), and MCP-1 in human mono-
cytes [21]. Furthermore, this anti-inflammatory effect of
niacin was contingent upon the expression of GPR109A as
siRNA knockdown of GPR109A abrogated the effect. Nia-
cin profoundly inhibited TLR-4 induced nuclear accumula-
tion of activated NF-κB in human monocytes and that this
inhibition was independent of the prostaglandin and
PPAR-γ pathways. Interestingly, the effect of niacin on cell
adhesion and chemotaxis was very rapid. Treatment of
monocytes with niacin for just one hour potently inhibited
monocyte adhesion to activated HUVEC, and to VCAM,
mediated by the integrin, very late antigen 4 (VLA-4).
Monocyte chemotaxis was also significantly reduced. Since
monocyte recruitment to activated vascular endothelium and
chemotaxis within the sub-endothelial space are key events
in vascular inflammation and atherosclerosis, this suggests
that niacin can potentially exert very rapid effect in modu-
lating events of early vascular inflammation.

Niacin promotes the expression of ABC transporter pro-
teins in adipocytes [36], and importantly, in macrophages
[48••], mediated by GPR109A. Recently, the strong rela-
tionship between ABC transporters and vascular inflamma-
tion is emerging. ABCA1 primarily interacts with apoA-I to
efflux cholesterol to form nascent HDL particles. The inter-
action between apoA-I and ABCA1 was shown to activate
signalling molecules such as Janus Kinase 2 [56]. This
ABCA1-mediated Janus Kinase signalling activates STAT3
independently of the lipid transport function of ABCA1.
ABCA1 was also shown to be responsible in regulating
macrophage responsiveness to TLR agonists by modulation
of lipid raft cholesterol and MyD88-dependent TLR mobi-
lization to lipid rafts [57]. Similar findings have also been
reported for another ABC transporter protein ABCG1,
where ABCG1-deficient macrophages showed increased
cholesterol accumulation and enhanced TLR signalling in
response to TLR-4 stimulation [58]. In animal models defi-
cient in ABCA1 and ABCG1 there is expansion of Lin– Sca-

1+ Kit+ (LSK) haematopoietic progenitor cells leading to
leukocytosis, and accelerated atherosclerosis in mice,
suggesting a role of ABC transporters in haematopoietic stem
cell proliferation [58]. Moreover, transplantation of Abca1–/–

Abcg1–/– bone marrow into apoA-1 transgenic mice with
elevated levels of HDL suppressed the LSK population, re-
duced leukocytosis, reversed the myeloproliferative disorder,
and accelerated atherosclerosis. This implies that cholesterol
efflux mechanisms, such as ABCA1, ABCG1, and HDL, may
directly regulate the proliferation of myeloid progenitor
populations, which are intricately linked to leukocyte flux
and accelerated atherosclerosis [59].

The observation that niacin plays a role in atherosclerosis
regression in both mice [48••] and humans [60], and that, via
GPR109a, it has the capacity to act directly on monocyte/
macrophage function by upregulating proteins that are in-
volved in cellular cholesterol efflux, raises the important
possibility that niacin may exert GPR109A–mediated ef-
fects in human macrophage-derived foam cells to induce
cholesterol efflux leading to plaque regression. We have
recently found expression of GPR109A in ex vivo human
carotid atherosclerotic plaques and in non–foam cell plaque
macrophages but not in lipid-laden “foam cell” macro-
phages. We have also found in vitro evidence that foam cell
transformation downregulates GPR109A mRNA and pro-
tein expression, and that niacin loses its effect on ABC
transporter protein upregulation, and importantly, functional
cholesterol efflux promotion in transformed “foam cells”
compared to basal human macrophages (Chai et al. 2013,
unpublished). Although the mechanism of GPR109A
downregulation in “foam cells” remains to be elucidated,
involvement of the adaptor proteins, β-arrestins, which re-
cently emerged to be responsible to some downstream
GPR109A effects, is thought to be probable.

Arrestins

As a member of 7-transmembrane receptor (7TMR) GPCR,
GPR109A expression is regulated by agonist-induced
internalisation and recycling mediated by arrestins [61],
which are partly responsible for the desensitisation charac-
teristic of GPCR signalling. In recent years, new evidence
has shed light into how this pathway may not only act as a
negative feedback to regulate GPR109A expression but may
also transduce cellular signals independent of the G-protein
pathway. The arrestin family consists of four isoforms, two
expressed only in the visual system (visual and cone
arrestin) and two that are ubiquitously expressed, β-
arrestins 1 and 2 [61–63]. Both β-arrestin 1 and 2 are
expressed in 3T3-L1 adipocytes, differentiated THP-1 mac-
rophages, and Langerhans cells, and are thought to mediate
the pharmacological effects of GPR109A activation.[64•]

325, Page 4 of 10 Curr Atheroscler Rep (2013) 15:325



Using GPR109A-expressing stable cells transfected with
yellow-fluorescent protein (mYFP) tagged β-arrestin 1 or
β-arrestin 2, Walters et al. found that GPR109A activation
by niacin rapidly recruited β-arrestin 1 from the cytosolic
compartment to the cell membrane.[64•] This interaction
with the activated GPR109A was shown to cause β-
arrestin to undergo receptor activation–dependent confor-
mational changes using an intramolecular bioluminescence
resonance energy transfer–based (BRET-based) biosensor.
Both β-arrestin 1 and 2 were shown to interact with IκBα,
which prevented its phosphorylation and degradation [65,
66]. As a result, they effectively inhibited NF-κB activity
and modulated NF-κB mediated gene activation in the clas-
sic inflammatory pathway. Furthermore, recent evidence has
suggested a direct involvement of β-arrestin 1 in specific
gene activation in cell nuclei. It was observed that GPCR
activation leads to nuclear translocation of β-arrestin 1 [67],
which is selectively enriched at specific promoters such as
that of p27 and c-fos, where it facilitates the recruitment of
histone acetyltransferase p300, resulting in enhanced local
histone H4 acetylation and transcription of these genes.
Collectively, these studies have expanded our knowledge
of the role of β-arrestins in cell signalling, and revealed how
they can act as key scaffolding proteins to guide receptor
signals from cell membrane to various target cascades to
activate different cellular pathways.

One important consequence of the divergent signalling of
GPR109A, independently via both G-proteins pathways and
β-arrestins, is to challenge our previous thinking about the
linearity of GRCR signalling.Walters et al. elegantly dissected
the signalling pathways mediating niacin’s pharmacological
action and side effects and found that while niacin’s anti-
lipolytic effect was mediated by G-proteins, its side effect of
cutaneous flushing, caused by activation of cytosolic phos-
pholipase A2 and subsequent release of prostaglandin D2 in
cutaneous Langerhans’ cells (and keratinocytes), was mediat-
ed by β-arrestin 1.[64•] β-arrestin 1–deficient mice displayed
reduced cutaneous flushing in response to niacin, although the
improvement in serum free fatty acid levels was similar to that
observed in wild-type mice. This “biased” or preferential
agonism opens the opportunity to dissociate side-effects from
a drug’s therapeutic actions through the development of “bi-
ased” ligands. In this regard, recently developed GPR109A
partial agonists, such as MK-0354, have been shown to de-
crease serum FFAs, but do not inducing cutaneous flushing
[68–70].

Endogenous Ligand 3-HB and Other Inflammatory
Pathologies

Besides its potential pharmacological value, there remain
important biological questions as to the physiological role of

GPR109A, for which the cognate ligand is 3-hydroxy-
butyrate (3-HB). 3-HB is a ketone body that is produced
from acetyl-CoA in hepatocytes and is an alternative energy
source to the brain and, to a lesser extent, the heart when
glucose availability is low during fasting or starvation. Ac-
tivation of GPR109A in adipocytes inhibits fatty acid re-
lease, possibly acting as a negative feedback against
excessive lipolysis in starvation [71]. Indeed plasma con-
centration of ketones can change over several orders of
magnitude under normal physiology [72]. We have previ-
ously shown anti-inflammatory effects of GPR109A activa-
tion in both adipocytes [20] and stimulated monocytes [21],
those being two principal cell types bearing GPR109A.
Each of these cell types is implicated in inflammatory pa-
thologies relating to obesity and/or high caloric intake. It is
therefore plausible that a metabolic mediator that is regulat-
ed and released by the liver over a large dynamic range in
starvation might be involved in the suppression of inflam-
mation in these cell types [73]. This “cross-talk” between
the metabolic and inflammatory pathways was further
highlighted by a recent study, which showed that high-fat
diet and diet-induced obesity in mice significantly reduced
the expression of GPR109A and its downstream effector
PPARγ in adipose tissue [74].

However, the physiological function of GPR109A in
immune cells is still largely unknown. Activation of
GPR109A by the bacterial fermentation product, butyrate,
was shown to exert anti-inflammatory effect in colonic
inflammation [75] and tumour-suppressing effects in in-
flammation related colon cancer [76]. In colonic mucosa
from patients with ulcerative colitis, butyrate was shown to
inhibit IFNγ-induced STAT1 activation, and caused Fas-
mediated apoptosis of T cells by inhibiting histone
deacetylase 1 activity, which was bound to the Fas promotor
in T cells. Knocking down GPR109A resulted in altered
expression of genes related to multiple inflammatory signal-
ling pathways in mouse colonic epithelial cells [75]. Fur-
thermore, in cerebral hypoxia, 3-HB is also shown to be
neuroprotective [77–79]. Although this may reflect adapta-
tions to metabolic substrate utilization or energetics, im-
mune cell modulation via GPR109A is another plausible
explanation. In the common immune-mediated skin disorder
psoriasis, which was thought to be caused by dysregulated
T-cell activation in the skin, one of the therapeutic agents in
clinical use, monomethyl fumarate (MMF), and its related
compound dimethyl fumarate (DMF), which is a promising
novel oral therapeutic option shown to reduce disease activ-
ity and progression in patients with relapsing–remitting
multiple sclerosis [80], were shown to cause cutaneous
flushing by the same mechanism as niacin, mediated by
GPR109A [26]. Whether the therapeutic effects of MMF
and DMF were also mediated via GPR109A is currently
debated, the known antagonism of classic inflammatory
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pathways by GPR109A activation and both drugs’ immune-
modulatory effects in the treatment of psoriasis and multiple
sclerosis respectively, however, provides strong hint for its
involvement.

GPR109A Agonists in Drug Development

Niacin has been in clinical use for more than half a century.
Many previous clinical trials have shown that niacin reduces
atherosclerosis, estimated from coronary angiography [81,
82], carotid ultrasound [83–86] and MRI [60]. For a detailed
review on historical clinical trials concerning niacin, readers
are referred to our recent article [87]. However, despite two
recent meta-analyses confirming benefits in cardiovascular
(CV) outcomes associated with the use of niacin [88, 89],
two large CV outcome trials have recently reported disap-
pointing results.

The Atherosclerosis Intervention in Metabolic syndrome
with Low HDL/HIGH Triglyderides: impact on Global
Health Outcomes (AIM-HIGH) [90] study was terminated
early in 2011 due to a lack of efficacy. Although this study
was criticized for its design [91, 92] and the use of small
“spike” doses of niacin in the placebo group to conserve
blinding, a much larger phase III trial HPS2-THRIVE [93]
also reported negative results. This study enrolled 25,673
patients considered to be at high risk for cardiovascular
events from the United Kingdom, Scandinavia, and China.
Participants received extended release niacin and laropiprant
plus statin therapy versus statin therapy alone, with a medi-
an follow-up period of 3.9 years. Shortly before this review,
it was announced by Merck that the HPS2-THRIVE trial did
not reach its primary endpoint [94], and the European Med-
icines Agency has recommended suspension of niacin/
laropiprant products in the EU for adults with dyslipidaemia
[95]. With two recent negative outcome trials, one would
argue that it appears that niacin does not confer any addi-
tional cardiovascular benefit in patients optimally treated
with statins. However, these findings have to be interpreted
cautiously, as we still do not fully understand how niacin
exerts its lipoprotein effects and the pathophysiological
significance of GPR109A activation in human atheroscle-
rotic plaque.

There are at least 5 novel candidates of selective
GPR109A agonists from Merck, Arena, Schering-Plough,
Glaxo Smith-Kline (GSK), and Incyte [96]. GSK was the
first pharmaceutical company to develop small molecule
agonist for GPR109A. Their first clinical candidate of
GPR109A agonist was GSK-256073; however, neither the
chemical structure nor its clinical data were published.
Incyte’s clinical candidate INCB-19602 reduced FFA in a
phase I clinical trial but subsequent phase II trial in diabetic
patients was terminated (ClinicalTrials.gov identifier:

NCT00698789). Merck, Arena, and Schering-Plough have
also developed a couple of interesting GPR109A agonists.
MK-0354 was developed as a partial GPR109A agonist [70,
97]. Phase I pharmacodynamic studies revealed potent FFA
effect with MK-0354 compared to extended release niacin.
But in a phase II lipid efficacy study, no clinically mean-
ingful changes of plasma LDL-c, HDL-c, and triglyceride in
dyslipidaemic patients after MK-0354 treatment for 4 weeks
[69]. This was initially thought to be a partial agonist effect
of MK-0354 but two other recent clinical candidates MK-
1903 and SCH900271, which are both full GPR109A ago-
nists, were found to show similar effects.[29••] Given the
dissociation revealed in GPR109A knockout mice between
niacin’s GPR109A-mediated FFA effect and GPR109A-
independent plasma lipoprotein effect, this lack of lipid
efficacy from selective GPR109A agonists is perhaps un-
surprising. Nevertheless, with modern molecular imaging
techniques [98], some of these advanced candidates may
be reinvestigated in selective patient cohorts, especially in
those with accelerated vascular inflammation [99].

Conclusion

The pathophysiological and pharmacological roles of
GPR109A still remain unclear. There is firm in vitro and
in vivo evidence in animals that GPR109A activation is
anti-inflammatory; but with the latest data from clinical
trials, clinicians are certainly doubtful in the “HDL hypoth-
esis” with regards to the benefits of raising HDLs, either by
niacin or by other agents such as CETP inhibitors, in the
treatment of atherosclerosis. The presence of GPR109A in
adipocytes and immune cells, both cell types contribute to
the inflammatory states in obesity, which is regulated by a
systemic metabolites 3-HB synthesised by the liver over a
large dynamic range, suggests a potential role in the “cross-
talk” between metabolic and inflammatory pathways. By
discovering the downstream signalling pathways of
GPR109A, one may unlock the true potential of GPR109A
activation not just in atherosclerosis and vascular inflamma-
tion, but also in other systemic inflammatory processes and
metabolic diseases.
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