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Artemisinins induce endoplasmic reticulum stress in acute
leukaemia cells in vitro and in vivo
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Abstract

Lossof endoplasmic reticulum (ER) homeostasis leads toERstress, thusprolongedacti-

vation can lead to apoptosis. Herein, artesunate (ART) induced ER stress in leukaemia

cells, resulting in eIF2α phosphorylation, activation of transcription factor 4, subse-

quentCHOPupregulation andXBP1 splicing. Furthermore, in vitro cyclin/CDKs reduc-

tion induced G1-phase arrest. An in vivo xenograft model showed a consistent pattern

of ART in reducing tumour burden, supporting roles in the UPR pathway, which we

speculate could lead to apoptosis by NOXA activation. Moreover, ART were capable

of increasing the survival of mice. Taken together, our data indicate that ARTmay rep-

resent an interesting weapon to fight leukaemia.
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Acute myeloid leukaemia is a malignant clonal expansion of progenitor

cells in the bone marrow, characterized by the differentiation arrest

of myeloid progenitor cells [1]. Curative therapies, including intensive

chemotherapy and allogeneic hematopoietic stem cell transplantation,

are generally applicable to a minority of younger patients, whereas

most elderly individuals exhibit poor prognosis and survival [2]. Thus,

new therapeutic approaches with low toxicity and high potency are

required.

Artemisinin (ARS), a natural compound that has been used for more

than two millennia in traditional Chinese medicine as a remedy for

fevers and chills, is currently used to treat malaria with no side effects

[3]. ARS derivatives are sesquiterpene lactones with an endoperox-

ide moiety that is essential for activity [4]. In addition to the range

of beneficial effects, ARS has shown anticancer activities in vitro and

in vivo, including apoptosis induction, cell cycle arrest and oxidative

stress response [4, 5].
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Herein, we report our in vitro and in vivo results regarding the use

of two ARS derivatives in leukaemia, artesunate (ART) and artemether

(ARM), which are water and oil soluble, respectively. The endoplas-

mic reticulum (ER) represents a complex membranous network that

mediates the folding and trafficking of transmembrane and secretory

proteins [6]. The unfolded protein response (UPR) pathway consists of

threeER transmembraneproteins, including inositol-requiringprotein-

1 (IRE1), PKR-like ER kinase (PERK) and activating transcription fac-

tor 6 (ATF6). Loss of ER homeostasis leads to ER stress, which can

be induced by various pathophysiological insults, including oxidative

stress [7]. Severe or prolonged ER stress and uncontrollable UPR can

activate ER stress-associated cell death signalling [8]. Therefore, acti-

vation of ER stress could represent a strategy to lead cancer cells to

death and control cancer progression [9].

In our study, we detected decreased proliferation of the leukaemia

cell lines, U937 (IC50 of 3.59 μM) (Figure 1A) and HL-60 (IC50 of
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F IGURE 1 ART derivatives induce apoptosis mediated by NOXA and activation of the ER stress pathway in leukemic cells. (A) U937 leukemic
cells were exposed to increasing concentrations of ART, and cell viability was assessed byMTT following 24 and 48 h of treatment. (B) U937 cells
were exposed to increasing concentrations of ART. Cell apoptosis was assessed by Annexin V and flow cytometry. (C) ART changes in NOXA
protein after 24 h and (D) the expression of p-eIF2α, ATF4 and CHOPwere analysed in U937 cells treated with ART at different time points.
GAPDHwas used as loading controls. Relative luminescence units (RLU), compared to untreated cells, are shown (mean± SEM, n= 3 [cell lines]).
(E) XBP1mRNAwas analysed by standard RT-PCR after ART treatment of U937 cells at different time points. The upper band represents 210 bp
(unspliced) and the lower band represents 184 bp (spliced). (F) U937 cells were exposed to IC50 of ART. FACSwas used for determination of O2

–

production after 18 h. (G) U937 cells were exposed to increasing concentrations of ART for 24 h. FACSwas used for determination of cell cycle
distribution. (G–M) ART changes the expression of cell cycle-related proteins after 24 h. Control cells were exposed to DMSO. Data were analysed
by ANOVA, followed by post hoc comparisons (Tukey–Kramer test). *p< 0.05, **p< 0.01, ***p< 0.001 and ****p< 0.0001, significantly different
from control cells

0.35 μM) (Figure S1A), at 24 h after treatment, dependent on the

concentration and time of ART treatment. Additionally, ARM also

reduced the viability of both cell lines (IC50 of 17.1 and 26.7 μM after

24 h of ARM treatment, in U937 and HL-60, respectively) by MTT

assay (Figure S1B,C). No toxicity was observed in peripheral blood

mononuclear cells (PBMCs), suggesting a selective anti-tumour effect

(Figure S1D,E). Of note, at 24 h of ART treatment, apoptotic cells

were observed in U937 (Figure 1B) and HL-60 cultures (Figure S1F).

ART presented a higher potential to kill leukemic cells, compared to

ARM (Figure S1G,H). Our data showed a strong NOXA expression in

U937 cells after 24 h of ART treatment (Figure 1C). The increase of

NOXA expression has been shown by other [10]. Therefore, our data

corroborate that of other ARS derivatives.

Interestingly, our data showed an activation of the PERK and IRE1

branches in vitro, which increase proteins, such as p-eIF2α, ATF4,
CHOP, and XBP1 splicing. An increase in phosphorylation of α-subunit
of the eukaryotic translation initiation factor-2 (p-eIF2α), which is

believed to sense accumulating misfolded protein and attenuation of

global translation, was detected transiently after ART treatment, fol-

lowedbyan increase in the transcription factor4 (ATF4), 6 h later. ATF4

has the ability to target CHOP and switch to a terminal outcome in

cases where ER stress response is not resolved [11]. Studies indicated
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F IGURE 2 Effects of ART upon the activation of the PERK branch of the ER stress pathway of U937 xenograft tumours and upon the survival
of the PML–RARamodel. (A) Schematic diagram showing transplantation of 1× 107 U937 cells into NOD/SCIDmice (Ethics Committee Number
4957-1/2018) (day 0), followed by control or ART (200mg/kg) i.p. injections on days 10, 12, 14, 16 and 18. (B) Representative images of tumours
after ART treatment for 18 days (compared to controls), showing tumour size reduction. (C) The representative column diagrams show tumour
volumeweight and (D) tumourmass. The changes in mice weight (E) over the course of time of the experiment in the U937 xenograft model are
shown.Western blot analyses of (F) CHOP, (G) CDK2, (H) NOXA, (I) p-eIF2α, (J) p21, (K) p27, (L) cyclin A and (M) CDK4. (N) ART treatment
significantly prolonged survival of the PML–RARamodel, showing that ART has antileukemic activity in vivo. (O) Illustration of artesunate
hypothetic mechanism in leukaemia cells. The bar graphs showmeans± SEMof relative luminescence units (RLU), compared to vehicle mice
(n= 5). GAPDHwas used as the loading control. **p< 0.01, ***p< 0.001 and ***p< 0.0001, significantly different from control groups

NOXA as an important activator of apoptosis in response to ER stress

[12]. Finally, an increase in CHOP protein expression was observed at

6 h after ART treatment, which was maintained until 15 h in U937

(Figure 1D) and HL-60 cells (Figure S1J). In addition, we observed an

increase of XBP1 splicing in U937 (Figure 1E) and HL-60 (Figure S1I)

cultures after ART treatment with a continuous increase until 9 h fol-

lowed by a decrease. We further observed an enhanced in sXBP1 pro-

tein expression in the HL-60 cell line after 6 h followed by another

increase after 12 and 15 h after ART treatment (Figure S1J). Thus,

our data corroborate the results recently published by Moses and col-

leagues [13] and suggest that the effects of ART on leukaemia cell lines

are mediated, at least in part, by activation of ER stress, thereby reaf-

firming that CHOP levels may serve as a biomarker for artemisinin

actions.

Multiple disturbances can cause accumulation of unfolded proteins

in the ER, such as redox regulation induced by oxidants, leading to pro-

tein unfolding andmisfolding [8].Wemeasured superoxide levels in the

cytosol of U937 cell lines by Mitosox (Thermo Fisher, Waltham, MA,

USA) following 18 h of ART treatment (3.5 μM) and found an increase

in O2
– production (Mean Fluorescence Intensity (MFI) from 42.78 ± 3

to 60.87 ± 0.90) (Figure 1F). Our data further showed a G1-phase

arrest at 24 h after ART treatment ofU937 cells (43.75% to 68.9%with

2.5 μM; p < 0.0001) (Figure 1G), contributing to a decrease of cyclin A

(10-fold) (Figure 1L) which is repressed during the G1-phase of the cell

cycle and activated at the S-phase entry. In addition, a decrease in the

expressions ofCDK2 (5-fold) (Figure 1H), CDK4 (5-fold) (Figure 1I) and

CDK6 (2-fold) (Figure 1J), with no alterations in p27 expression with

low doses (Figure 1K), were observed. Furthermore, ART induced an
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increase in cyclin B (Figure 1M), expressed during the G2/M-phase of

cell cycle.

Additionally, in our xenograft model (Figure 2A), ART treat-

ment (200 mg/kg/i.p.) reduced tumour growth (Figure 2B). Our data

demonstrated a reduction in tumour volume (from 1461 ± 178 to

702 ± 216 mm3, p = 0.0071) (Figure 2C) and in tumour mass at the

end point (from 1.37 ± 0.12 to 0.73 ± 0.15 g, p = 0.0044) in ART-

treated mice, compared with mice treated with 5% sodium bicarbon-

ate in saline solution (Figure 2D). Nodifferenceswere observed inmice

weight (Figure 2E). Additionally, an increase in CHOP (p = 0.0012)

(Figure 2F) and a decrease in CDK2 (p = 0.039) (Figure 2G) protein

expression were observed in ART-treated mice. Interestingly, despite

not having observed any significant difference, three mice (out of five)

showed increased NOXA expressions (p = 0.209) (Figure 2H), p-eIF2α
(p= 0.121) (Figure 2I), p21 (p= 0.126) (Figure 2J) and p27 (p= 0.0687)

(Figure 2K). No difference was observed in cyclin A (p = 0.211) (Fig-

ure 2L) and CDK4 (p = 0.716) (Figure 2M). Thus, in our in vivo results

we show, to our knowledge for the first time, the activationof thePERK

branch in leukemic cells when treated with ART.

Finally, a survival analysis of the acute promyelocytic leukaemia

model [14, 15] treated with ART was conducted. For the generation

of this model, NOD/SCID mice were sub-lethally irradiated with 2 Gy,

and 1 × 106 leukemic cells were intravenously injected into the tail

vein [16]. Blood counts were monitored weekly and, after the con-

firmation of leukaemia (12th day), mice (n = 10) were submitted to

daily intraperitoneally injections of ART (25 mg/kg, i.p.) until death.

An extended survival of ART-treated mice (p = 0.0027) was observed,

compared to untreatedmice (Figure 2N).

In summary, our data demonstrate a consistent pattern of ART

in reducing tumour burden in the xenograft model, supporting roles

in UPR pathway, principally the PERK branch. We speculated that

the CHOP-target gene NOXA regulated the cell fate. Moreover, ART

was capable of increasing the survival of the PML–RARa model. ART

reduced leukaemia cell growth, accompanied by increased apoptosis,

G1-phase cell cycle arrest and the reduction of CDKs and cyclin A in

vitro.Herein,wehypothesized an important direct antileukemic poten-

tial forART-type drugs (Figure 2O). Recently,wedemonstrated an indi-

rect antileukemic effect of ART through the modulation of monocytes

to a tumoricidal phenotype [17]. Taken together, our data indicate that

ARTmay represent an interesting weapon to fight leukaemia.
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