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Abstract

Background: Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is
currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be
involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial
agent. The mechanisms involved in all these processes are quite controversial.

Methodology/Principal Findings: In this article, we report spectroscopic, calorimetric and biochemical data on the
penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to
mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to
mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major
change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates
vesicles, increases membrane rigidity and acquires an a-helical structure. With PG membranes, penetratin does not
aggregate vesicles but decreases membrane fluidity and acquires a structure with both a-helical and b–sheet contributions.

Conclusions/Significance: These data from membrane models suggest that the different penetratin actions in eukaryotic
cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid
structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical
secondary structure but requires a different conformation compared to that in solution.
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Introduction

Cell penetrating peptides (CPP) and Protein Transduction

Domains (PTDs) are potential therapeutic vectors for the delivery

of molecules inside eukaryotic cells (for review see [1–3]). These

peptides are alternative to more ‘‘aggressive’’ methods used to

introduce molecules into cells such as trituration [4] and

microinjection. Such peptides (i.e. Tat, penetratin, polyarginine)

are usually rich in basic amino acid residues, and some of them are

derived from proteins suggesting that they play a role in messenger

protein transduction [5]. Penetratin, a peptide derived from the

homeodomain transcription factor Antennapaedia was described

as one of the first peptides to successfully carry active molecules

inside cells and is one of the most studied PTDs [6–8].

Different physicochemical parameters are involved in mem-

brane binding and penetration of CPPs [9]. Cell penetration is

known to be independent from receptors and metabolic energy.

Several studies have demonstrated that endocytosis is also involved

in the internalization of basic peptides [10,11]. However, to reach

the cytosol and the nucleus, the peptides must escape from the

endosome through the endosomal membrane barrier. Thus, a

direct interaction with membrane lipids seems to be important for

their cytosolic or nuclear localization.

Several mechanisms for CPP membrane translocation have

been proposed. These include an ‘‘electroporation-like’’ mecha-

nism [12], neutralization of arginine residues by guanidinium-

phosphate complex formation [13], and inverted micelles

formation [14] (for reviews see [1,2,15]). However, the electropo-

ration mechanism has been contested and recently a direct

translocation through the bilayer has been suggested [16].

Experiments with model membranes have established that the

translocation in large unilamellar vesicles (LUVs) is dependent on

membrane potential and is modulated by the lipid composition

[17]. However, in giant unilamellar vesicles (GUVs), membrane

translocation was not dependent on membrane potential [18,19].

This difference of potential sensitivity may be related to membrane

curvature and/or membrane tension that are higher in LUVs than

in GUVs. A more positively curved membrane will need a driving

potential that may not be necessary for a flat membrane. Using

membrane models, we have previously shown that penetratin and
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different basic peptides induce membrane invaginations which

results in the formation of tubular structures [20–22]. We

suggested that membrane curvature induced by basic peptides

could be crucial to their mechanisms of internalization [23].

Positive curvature-induction would be necessary for pore forma-

tion of amphipathic peptides. Negative curvature would be related

to the formation of tubes (‘‘physical endocytosis’’) [20] and

inverted micelles. Another important property of basic peptides is

their capacity to aggregate membranes. This property observed for

several peptides [20,24] shows that a peptide can be covered by

phospholipids and therefore could be related to the peptide

induced formation of very thin tubes and inverted micelles.

With regards to the protein transduction domains present in

transcription factors (i.e. penetratin), it should be considered that

these molecules may be able to cross the plasma membrane for

their internalization and also for their release to the extracellular

medium by the cells. Therefore, the basic domain has to be able to

interact with the external leaflet of the plasma membrane rich in

phosphatidylcholine (PC) for cell import, and also the internal

leaflet rich in phosphatidylethanolamine (PE) and negatively

charged phospholipids such as phosphatidylserine (PS) for cellular

export. Notice that the external leaflet of the eukaryotic cells has

(even if it is in low abundance), negatively charged lipids.

Moreover, the recently observed antimicrobial activity of pene-

tratin suggested its interaction with PE and phosphatidylglycerol

(PG) rich membranes [25].

Besides the capacity of peptides to modify the arrangements of

membrane phospholipids, peptide structural changes might be

important for membrane translocation. For example Pep-1 and

pVec adopt an a-helix when associated to phospholipids [26,27].

Penetratin has been extensively studied by a circular dichroism (CD)

approach. The results show that penetratin is able to acquire a–

helix and b–sheet conformations in different conditions [24,28–33].

In this study, penetratin actions on phospholipids typical of the

extracellular leaflet of eukaryotic cells (PC), of the intracellular

leaflet (PE) and of the microbial membranes PG and PE) were

investigated. We analyzed the penetratin capacity to modify the

membrane lipid organization by Fluorescence and Infrared

spectroscopy, by plasmon waveguide resonance and by differential

scanning calorimetry. The accompanying peptide structural

changes were studied by Circular dichroism and Fourier

transformed Infrared spectroscopy. The results indicate that

penetratin is able to induce different peptide-lipid arrangements

depending on the type of phospholipid. The implications of the

presented data in penetratin membrane activities are discussed.

Results

Penetratin-induced vesicle aggregation
To quantify penetratin ability to provoke membrane bridging,

we measured the aggregation of PC, PE and PG LUVs by

monitoring the turbidity of the sample (Fig. 1A). Penetratin

induced a strong and progressive increase in the turbidity of the

PE suspension starting from a rather low peptide/lipid molar ratio

(1/100). At a peptide/lipid ratio of 1/30 the OD reached a

plateau. An important increase in OD was also observed following

penetratin addition to PC LUVs, starting at a peptide/lipid molar

ratio of 1/50. The plateau was reached at a peptide/lipid ratio of

1/15. At the lipid concentrations used in these experiments

(20 mg/ml lipids), penetratin induced only a marginal increase in

the absorbance of a PG LUVs suspension. Penetratin-induced

aggregation of PG vesicles was only observed for lipid concentra-

tions higher than 0.5 mg/ml (at peptide/lipid ratios higher than

1/7 not shown).

LUVs aggregation was also studied by flow cytometry. As

shown in figure 1, the dot plots of PC, PG and PE LUVs were

quite similar indicating that the size and granulocity of these LUVs

were similar (Fig. 1B,C,D). The addition of penetratin to the

LUVs suspensions changed the dot distribution of PE and PC

LUVs. The vesicle population was strongly concentrated for PE

and a smaller but evident effect was also observed for PC LUVs

(Fig. 1F,G). On the contrary, PG LUVs showed no significant

change in dot distribution after penetratin addition indicating the

absence aggregation (Fig. 1E).

Penetratin interaction with planar lipid bilayers
Plasmon waveguide resonance (PWR) permitted us to obtain

information about peptide binding affinity and to follow the

peptide-induced changes in the lipid mass density and organiza-

tion. From the spectral changes (using the resonance minimum

position), upon incremental addition of peptide, an apparent

dissociation constant for the interaction of the peptide with the

membrane was obtained. Apparent, because upon peptide binding

to the membrane, two processes occur: mass and structural

changes of the peptide itself and mass and structural changes of the

lipid bilayer to accommodate the peptide. A second type of

information can be obtained with this technique that arises from

the use of both perpendicular p- and parallel s-polarized light to

create resonances, which allows characterization of the mass and

structural changes induced by the peptide on the membrane.

Numerical values of the PWR spectral changes occurring after

addition of penetratin to the membrane bilayers of different

composition are shown in Table 1. As previously reported [34],

the binding of penetratin to the PC bilayer produced a biphasic

event, with a decrease in the resonance angle position both for p-

and s-polarization at low concentrations (up to 0.1 mM), followed

by positive shifts for both polarizations at higher concentrations.

From the second binding event a binding affinity has been

calculated, with a Kd of 0.6 mM. The low concentration event was

characterized by a large decrease in the resonance minimum that

after graphical analysis has been mainly attributed to a decrease in

mass which can only be explained by an efflux of lipids into the

plateau Gibbs border [35]. In the second binding event, positive

shifts were observed for both polarizations, mainly related to mass

changes (80%, increase) and some structural changes (20%)

(Table 1). We propose that those correspond to a rearrangement of

the peptide and the lipids with lipid influx into the bilayer core and

repacking of the lipids around the peptide.

The interaction of penetratin with the zwitterionic PC/DOPE

bilayer produced, like for PC, two binding events with negative

shifts followed by positive shifts for both polarizations (Table 1). A

Kd of 0.01 mM was obtained, indicative of a high affinity of

penetratin for this lipid composition. The magnitudes of the

spectral changes of both events were smaller than those observed

in the case of PC. Concerning the first binding event, this could be

related with the fact that PE has a smaller head group than PC

and so induces smaller lipid rearrangements. The two binding

events were associated with a large mass change and a structural

change component.

In the case of PG, only one binding event was observed,

penetratin led to positive shifts for both p- and s-polarizations

(Table 1). A considerable enhance in the binding affinity was

observed, when compared with the zwitterionic PC, with a Kd of

0.04 mM. This binding event is characterized mainly by a change

(increase) in mass that cannot be solely explained from the peptide

weight itself (as it could not lead to such large spectral change,

considering its small mass) but could arise from an efflux of the

lipid from the plateau Gibbs border into the membrane. With PG

Diversity in Penetratin-Membrane Interactions
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Figure 1. Vesicle aggregation by penetratin. A) LUVs aggregation was measured by turbidimetry at plateau as a function of peptide/lipid molar
ratio. PE (%); PC (&); PG (#). Flow cytometry analysis of PG, PC and PE LUVs populations. Notice that the size and granulocity are equal for the three
LUVs (B,C,D). After penetratin addition PG LUVs distribution does not change (E), but the dot plot distribution for PC (F) and PE (G) change due to
LUVs aggregation. (Representative of 3 and 2 experiments).
doi:10.1371/journal.pone.0015819.g001
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the first binding event observed with PC and PC/DOPE was

absent because there are no repulsive interactions in this case

between the peptide and the lipid head groups but rather

attractive ones are established between the positively charged

amino acids and negatively charged lipid. The magnitude of the

spectral changes (Table 1) are slightly larger than those observed in

the second binding event of penetratin to PC and result from a

higher reorganization of the lipid (higher packing) around the

peptide due to favourable electrostatic interactions.

The differences in peptide ability to produce membrane

aggregation did not seem to correlate with a difference in the

peptide-membrane affinity but correlated with the binding

process; biphasic for PC and PC/DOPE and monophasic for

PG (no aggregation). These facts suggested that different

mechanisms according to lipid polar head charge and structure

were involved. Therefore, we investigated peptide-induced

changes on membrane organization and whether these changes

were related to differences in peptide structure.

Membrane fluidity alterations after penetratin binding
To evidence possible modifications in membrane fluidity

induced by penetratin interaction with lipids we used the

fluorescent probe Laurdan. When inserted in membranes,

Laurdan distributes equally between lipid phases and displays a

phase-dependent emission spectral shift, from 440 nm in the

ordered lipid phase to 490 nm in the disordered lipid phase [36–

38]. This effect is attributed to reorientation of water molecules

present at the lipid interface near Laurdan’s fluorescent moiety,

i.e., water dipolar relaxation process.

In our case, Laurdan emission spectra in PC, PE or PG vesicles

presented two fluorescence maxima (Fig. 2) at 430 nm and

490 nm, attributed to the fluorescence emission of Laurdan

molecules in the ordered and fluid phase, respectively. The

presence of penetratin induced an increase in the fluorescence

emission intensity at 430 nm on PE (Fig. 2A) and PG (Fig. 2B)

LUVs. With PE, penetratin induced also a relative decrease in the

intensity at 490 nm. No significant changes were observed for PC

LUVs (Fig. 2C).

The GP parameter permitted us to quantify the effect of the

peptide (Fig. 2D,E). In the case of PE LUVs the GP increased

from 20.060 in the absence of peptide to 0.017 in its presence

(DGP = 0.07760.007). For PG LUVs, GP also significantly

increased from 20.175 to 20.116 in the presence of peptide

(DGP = 0.05960.019). Thus, penetratin had an ordering effect on

both PE and PG LUVs. This effect was stronger for PE and non

significant for PC LUVs (DGP = 0.01960.013). The presented

experiments were performed at 37uC but similar results were

obtained at 25uC (not shown).

Peptide effect on lipid phase thermal transition
The interaction of the peptide with lipids was also monitored by

following the changes in lipid phase pre-transition arising from the

conversion of Lb’ to Pb’, and the main phase transition

corresponding to the conversion from Pb’ to La (Tm) upon

peptide/lipid interaction. Most molecules that interact with lipids

affect the pre-transition that arises from an alteration in the head

group tilting. As for the main transition, its enthalpy is mainly due

to the disruption of van der Waals interactions between the fatty

acid chains, and perturbations on this transition are indicative of

intercalation of the peptide between the fatty acid chains.

Molecules that perturb the main phase transition often decrease

the cooperativity of the phase transition characterized by the

transition half width. The studies presented here were performed

with P/L molar ratios of 1/100, 1/50, 1/25 and 1/10.

The DMPC pre-transition was abolished in the presence of

penetratin at P/L ratio of 1/10 (not shown) and the cooperativity

of the main transition was affected from P/L 1/25. Tm increased

from 23.4uC for the lipid alone to 24.7uC in the presence of

peptide at the highest P/L ratio, reflecting a small rigidification of

the membrane by the peptide (Table 2). Overall, the perturbation

by the peptide of the phase transition was small, indicating a rather

superficial interaction of the peptide in the lipid surface without

penetration in the fatty acid chain region.

The DMPG thermogram (in the absence of peptide) was not

symmetric and exhibited a marked low temperature shoulder.

Such effect has been reported in the literature and can be

explained by strong charge-charge repulsion between the head

groups [39]. Contrarily to what was observed with DMPC,

DMPG showed a strong perturbation of both the pre-transition

and main phase transition by penetratin. The increase in peptide

concentration leads to a gradual decrease in the main transition

enthalpy to an almost abolishment at P/L ratio of 1/10. A great

effect in the Tm was also observed with almost 9uC shift,

indicating a strong rigidification of the membrane (Table 2).

In the case of DMPE only the main phase transition can be

observed, this transition corresponds to the gel to fluid phase

transition. Penetratin induced close to 50% reduction in DH and

an increase of 3.8uC in Tm (Table 2). As mentioned above, the

increase in Tm indicates that penetratin favours the gel versus the

fluid phase, so it contributes to rigidify the membrane. As for the

enthalpy (DH) of the transitions, a considerable decrease was

observed upon penetratin interaction with DMPG and DMPE

(which effect increased with peptide concentration), stronger in the

first case, and not much effect was observed in the case of DMPC.

The decrease in enthalpy, which was accompanied by an increase

in the spectra half-width (data not shown) indicates a decrease in

the phase transition cooperativity due to peptide perturbation

(intercalation) of the fatty acid chain packing.

Consequences of peptide binding on lipid ester bond
hydration

Peptide-induced modifications in bilayer hydration were

recorded by measuring ester bonds (C = O) stretching vibrations.

This vibration is sensitive to the hydrogen-bonding environment of

lipids. For PG (Fig. 3A), a single broad carbonyl peak centred

around 1733 cm21 was observed. This broad carbonyl peak is

composed of two separate components, as indicated by second

derivative minima (not shown): a ‘‘dehydrated’’ carbonyl

(1743 cm21) and a ‘‘hydrated’’ carbonyl (1724 cm21) [40].

Penetratin induced a shift of the absorption band towards higher

wavenumbers (Fig. 3A). Analysis of the second derivative minima

indicated that the shift in the absorption band was due to an

increase in the proportion of non hydrated carbonyl absorption.

Table 1. Effects of penetratin on PC, PC/DOPE (1/1) and PG
bilayers observed by PWR.

Lipid PC PC/DOPE PG

Binding process 1st 2nd 1st 2nd only one

Spectral change in p (mdeg) 219 +24 212 +15 +34

Spectral change in s (mdeg) 225 +32 218 +17 +38

Mass-related change 76% 80% 76% 84% 85%

Structural-related change 24% 20% 24% 16% 15%

Affinity (Kd) 0.6 mM 0.01 mM 0.04 mM

doi:10.1371/journal.pone.0015819.t001
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The same phenomenon, i.e. an increase in the dehydrated

carbonyl absorption, although less intense, was observed with

PC LUVs (Fig. 3B). In the case of PE LUVs, the contours of the

ester carbonyl band near 1735 cm21 are fairly broad. This band is

composed of several components with maxima near 1742, 1722,

and 1714 cm21 (Fig. 3C). Upon penetratin interaction, there is a

marked decrease in the relative spectral intensity in the low

wavenumber range of the band contour, and an increase of the

high wavenumber component around 1742 cm21 (Fig. 3C). These

data indicates that with the three different phospholipids,

penetratin interaction results in a decrease in the C = O hydrogen

bonding as a consequence of peptide adsorption to the membranes

[40–42].

Ordering effect of penetratin on lipid acyl chains
The C-H stretching vibration of the lipid acyl chains give rise to

bands in the spectral region 3100–2800 cm21. The strongest

bands correspond to the asymmetric and symmetric CH2

stretching at around 2920 and 2850 cm21 [43]. The position of

these vibration frequencies illustrates the degree of ordering of the

acyl chains in the bilayer. No significant spectral shifts were

recorded after penetratin binding to PG or PC LUVs (Fig. 3D,E).

Penetratin binding to PE vesicles induced a change in the profile of

the C-H stretching region of this lipid. A shift of symmetric and

asymmetric CH2 bands from 2852 to 2850 cm-1 and from 2923 to

2921 cm21 was observed (Fig. 3F). This indicates that the fluidity

of the membrane decreases [40,42,44].

Peptide structure in the absence or presence of lipids
As described above, penetratin interacts with PC, PG and PE

membranes but, as the effect on the membranes depends on

phospholipids composition, the binding mechanism seems to be

different. Penetratin is known to be a ‘‘structural chameleon’’ that

can modulate its secondary structure according to its environment

Figure 2. Modifications in liposome-Laurdan fluorescence induced by penetratin. Normalized fluorescence spectra of Laurdan in PE (A), PG
(B) and PC (C) LUVs in the absence (dotted line) or presence (continuous line) of penetratin at 1/25 P/L molar ratio. D) Calculated GP values for PE, PG
and PC LUVs in the absence (white) or presence of penetratin (black). E) Delta GP induced by penetratin on PE, PG and PC LUVs. (Mean of 3
experiments).
doi:10.1371/journal.pone.0015819.g002

Table 2. Thermodynamic parameters for the interaction of penetratin with MLVs of different composition and at different P/L
ratio.

Lipid Alone P/L (1/100)a P/L (1/50) a P/L (1/25) a P/L (1/10) a

Tm (6C) DH (kcal/mol) Tm (6C) DH (kcal/mol) Tm (6C) DH (kcal/mol) Tm (6C) DH (kcal/mol) Tm (6C) DH (kcal/mol)

DMPC 23.4 6.6 23.1 7.6 23.2 7.5 24.0 7.4 24.7 6.1

DMPG 32.7 5.6 36.5 4.9 37.8 3.3 38.5 3.7 41.3 0.4

DMPE 49.5 5.8 51.6 5.5 52.1 4.5 52.9 3.8 53.3 3.0

a; Here MLVs were used instead of LUVs and the peptide interacts only with the most external lipid layer. Therefore, the P/L ratios indicated here are overestimated.
doi:10.1371/journal.pone.0015819.t002
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[31,33]. Moreover, the structural plasticity of penetratin seems to

be important for membrane interaction and internalization

processes. Therefore, by means of circular dichroism (CD) and

FTIR spectroscopy, we investigated whether the different binding

mechanism of penetratin to each type of lipids can be associated

with a particular secondary structure.

CD spectrum of penetratin in buffer solution has characteristics

of a peptide adopting mainly a random coil structure (Fig. 4A). In

the presence of PG LUVs, penetratin CD spectrum shows a

transition to an a-helical structure as indicated by two negative

peaks at 208 and 222 nm. A negative peak was also observed

around 212 nm, which can be attributed to some b-sheet content.

In the presence of PC LUVs, penetratin adopted mainly a random

coil structure (Fig. 4A) with a negative peak around 214 nm that

can be attributed to a b-sheet contribution. Because of the strong

aggregation of PE LUVs in the presence of penetratin and

problems due to light scattering, we were not able to obtain the

CD spectrum. We used instead FTIR spectroscopy to gain

information about structural changes of the peptide in the

presence of lipids. In the absence of lipids, the infrared spectrum

of the peptide in the amide I region was centred at 1644 cm21

(Fig. 4B), consistent with a predominantly random conformation

[45–47]. A shoulder was observed at 1608 cm21 which could

correspond to association of b-sheet structures, favoured by the

high concentration of peptide used. In the presence of PG LUVs,

the strong absorption band observed at 1616 cm21 and the

corresponding shoulder at 1681 cm21 confirmed the presence of

intermolecular antiparallel b-sheet structures (Fig. 4B) [45,48].

The main absorption band with a maximum at 1647 cm21,

presented shoulders around 1652 cm21, corresponding to a-helix

contribution, as established by CD, and 1637 cm21 and

1672 cm21 indicating the presence of intramolecular antiparallel

b-sheet structures. For the peptide bound to PE LUVs, the main

absorption band was centred at 1651 cm21 which indicated that

penetratin adopted mainly an a-helical structure (Fig. 4B). In the

presence of PC LUVs the peptide adopted mainly a random

conformation; however, shoulders became visible at 1654 cm21

and 1630 cm21 corresponding to a certain amount of a-helix and

b-sheet structures (Fig. 4B).

Discussion

In this study we characterized the membrane aggregation

capacity of penetratin using LUVs of three different compositions:

PC and PE main phospholipids of, respectively, the outer and

inner leaflets of eukaryotic cells and PG, a phospholipid highly

represented in prokaryotes’ outer leaflet.

Membrane aggregation experiments by turbidimetry and

cytometry showed that penetratin is able to aggregate very

efficiently PE and PC but is unable to aggregate PG membranes.

This finding contrasts with the report describing the penetratin

induced membrane aggregation with DMPG and DOPG LUVs

[24]. However, to observe LUVs aggregation, the P/L ratios used

by this authors were equal or higher than 1/13.6. The differences

in vesicle aggregation were not due to the affinity of the peptide for

the membranes because first, the affinity for PE and PG was

higher than for PC (which aggregates) and second, the mass

changes observed by PWR were very similar for PC and PE

membranes and even higher for PG membranes. However, the

PWR analysis showed that the binding process for PG was

monophasic in contrast to the binding to PE and PC which were

biphasic indicating a different interaction mode. This difference

Figure 3. Penetratin effect on phospholipids C = O and C-H vibrations. LUVs spectra in the absence (black line) or presence of penetratin
(grey dashed line): Infrared spectra of lipids in the region of C = O stretching vibration. A) PG; B) PC; C) PE. Infrared spectra of lipids in the region of C-H
stretching vibration. D) PG; E) PC; F) PE.
doi:10.1371/journal.pone.0015819.g003
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correlates with the aggregation capacity and suggests that the

peptide-induced lipid perturbation/reorganization and/or peptide

secondary structure is different for the three lipids. Therefore, we

investigated different structural aspects of these peptide-membrane

interactions.

The lipid fluidity studies by Laurdan fluorescence spectral shift

(GP) and phase transition temperature shift by DSC revealed that

penetratin is able to reduce the lipid fluidity of PE and PG

membranes but not (or very little) the fluidity of PC membranes.

Penetratin interaction with PC membranes induced only small

changes in the transition temperature and fluidity of the

membrane, a small change in C = O vibration and no change in

C–H stretching. These data is in agreement with the observation

of Binder and Lindblom that penetratin does not affect C–H

stretching and C = O vibration on DMPC [49]. Overall, the small

perturbation of the membrane by the peptide indicates a rather

superficial interaction of the peptide in the PC membrane surface

without affecting the fatty acid chain region mobility.

Contrarily to what was observed with DMPC, in the case of

DMPG, DSC measurements showed a strong perturbation of both

the pre-transition and main phase transition temperatures by

penetratin which leads to a gradual decrease in the main transition

enthalpy with the increase in P/L ratio to an almost abolishment

at P/L ratio of 1/10. These data indicates a strong rigidification of

the membrane. This was in agreement with the GP changes

measured by the peptide induced laurdan shift of the spectra and

the strong C = O vibration change. A favourable interaction

between the positively charged penetratin amino acids and the

negatively charged lipids is evidenced here and is in agreement

with many other studies. The rigidification of the membrane by

the peptide may be due to the strong electrostatic interaction

between the peptide and the lipid head groups that reduces the

charge repulsion between the lipid head groups allowing the lipids

to become closer. The great effect observed on the main phase

transition enthalpy suggests that penetratin affects not only the

head group tilting but also the fatty acid chain packing. Penetratin

induced a 50% reduction in DH and an increase of 3.8uC in Tm

for DMPE. As mentioned above, the increase in Tm indicates that

penetratin favours the gel versus the fluid phase, so it contributes to

rigidify the membrane. This data again, correlates with the

stronger decrease in membrane fluidity observed with laurdan.

The FTIR experiments also showed a higher change in the C = O

vibration spectra. It must be noticed that for PE, the C-H

stretching was perturbed by the peptide suggesting that it can

penetrate deeper into the bilayer compared to the PC and PG.

This could arise from the small size of the PE head group, allowing

deeper penetration.

Concerning the structural analysis of the peptide in contact

with the membranes (CD and FTIR), the results indicate that in

contact with PC, penetratin remains quite ‘‘unstructured’’. In

association with PG, both CD and FTIR results show that the

peptide adopts both a helix and b sheet structures and that b
sheets can interact forming anti parallel structures. This is in

agreement with different reports on penetratin showing different

degrees of a–helix and b–sheet structures in PG containing

membranes [19,24,31,32]. Finally, in the presence of PE the

peptide acquires an a-helical conformation. A comparison of the

PWR magnitude of the spectral shift observed with p- and s-

polarized light in the second binding event (Table 1) indicates that

the shifts obtained with s-polarized light are larger than those

obtained with p-polarized light. Such spectral changes may

indicate that the peptide is placed with its long axis parallel to the

lipid bilayer.

Altogether, these data indicate that penetratin is a versatile

peptide that is able to induce different changes depending on the

nature of the membrane lipids. A putative model of interaction is

proposed in figure 5. The relatively unstructured peptide in

solution is able to interact with different phospholipids and to

adopt different structures. In the case of negatively charged

phospholipids (PG), penetratin experiments a one-step binding,

mainly by electrostatic interaction. Peptide binding results in a

decrease of mobility of the bound phospholipid with the

consequent decrease of membrane fluidity. At the same time,

the peptide becomes structured with a–helical and b–sheet

contributions. This conformation allows antiparallel interaction

of peptide molecules on the membrane surface but does not allow

interaction with other membranes precluding vesicle aggregation

(Fig. 5A). With zwitterionic phospholipids, penetratin will be able

to bind by electrostatic and non electrostatic interactions resulting

in a two-step binding. In the first step, the peptide will be able to

separate the lipids and in the second step the phospholipids

redistribute again in a more compact bilayer probably by the

structural change of the peptide. However, depending on the

nature of the lipid, the peptide will acquire different conformation.

Figure 4. Penetratin structure in the absence or presence of
membranes. A. Circular dichroism spectra of penetratin and B. FTIR
spectra of penetratin in the absence and presence of LUVs. Peptide in
solution in 0.5 mM HEPES buffer, pH 7.4, (black thin line) in the
presence of PG LUVs (gray line), PC LUVs (black thick line) and PE LUVs
(dashed line).
doi:10.1371/journal.pone.0015819.g004
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In the case of PC, the membrane remains quite fluid and the

peptide remains ‘‘unstructured’’ but different than in solution.

Notice that the CD and FTIR spectra of penetratin in solution are

different in solution and when interacting with PC. This situation

allows membrane aggregation induced by one peptide interacting

with two membranes or by homotopic peptide dimerization

(Fig. 5B). For PE, during the second step, penetratin increases its

a–helical structure allowing enough compaction of the membrane

and resulting in an important decrease of fluidity. This difference

compared to PC, could be due to the smaller head group of the PE.

Then, as in the case with PC, membrane aggregation will result

from one or two peptide molecules bridging (Fig. 5C).

Considering the presented data, we can speculate on the

importance of the different penetratin properties in different

situations. For the antimicrobial activity [25], there is not enough

data in the literature to allow a mechanistic explanation. However,

the presence of b–structures and membrane rigidity observed with

PG membranes will serve as basis for future interpretations on the

toxic effect of penetratin. For the export of transduction proteins,

the capacity of penetratin to bridge membranes could participate

in membrane pinching on rich PE membrane domains. There is

also little information concerning the export of transduction

proteins. For cell penetration, penetratin interacts with a PC rich

membrane and three different points merit discussion. First, the

data indicates that the structuration on a or b structures is not

important for penetration. This is in agreement with the study

comparing Tat, R7W and penetratin that shows a negative

correlation between a–helicity and efficient peptide internalization

[29], and with the study showing that a coil structure will be

related to direct translocation [50]. Second, the membrane

decrease in fluidity may not be important. Moreover, a strong

rigidification could block local membrane deformations necessary

for peptide internalization. Additionally, membrane rigidification

in certain membrane domains could lead to lateral membrane

heterogeneity with regions of low tension in between different

domains that the peptide may use to more easily perturb the

membrane as suggested by different studies [51–53]. Third, the

capacity of the peptide to induce membrane bridging (i.e.

structures in which the peptide is covered with phospholipids),

could be very important to provoke the membrane deformations

such as membrane curvature, tubulation and inverted micelles

formation necessary for cellular uptake.

Figure 5. Model for penetratin-phospholipid membranes interactions. A) The association of penetratin with PG membranes results in the
conformational change of the peptide with a-helix and b-sheet contributions and a decrease in membrane fluidity. B) With PC membranes, the
peptide associates in a two step processes but remains quite unstructured and does not change notably the fluidity of the membrane. It induces
membrane aggregation. C) With PE penetratin binds membranes in a two step processes with an accompanying structural change (mainly a-helix).
The membrane experiments a decrease in fluidity and strong membrane aggregation is allowed. Arrows indicate the phospholipid movements
induced by penetratin as observed by PWR. The increase in membrane rigidity is indicated by the straight lines of lipid acyl chains. The small circles at
the bottom represent membrane vesicles and their degree of aggregation induced by penetratin. For more details see the discussion.
doi:10.1371/journal.pone.0015819.g005
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Materials and Methods

Materials
Dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphati-

dylglycerol (DMPG) and dimyristoylphosphatidylethanolamine

(DMPE) were purchased from Genzyme (Switzerland). Dioleoylpho-

sphatidylethanolamine (DOPE) was purchased from Avanti Lipids

(Alabama, USA). L-a-phosphatidylcholine (PC), L-a-phosphatidyl-

DL-glycerol (PG) and L-a-phosphatidylethanolamine (PE) from egg

yolk, and deuterium oxide were purchased from Sigma. Laurdan

was purchased from Molecular probes. Penetratin (RQI-

KIWFQNRRMKWKK) was synthesized using Boc solid phase

strategy and was purified by HPLC as previously described [20].

Preparation of membranes
Multilamellar vesicles (MLVs) were obtained by dissolving the

appropriate amounts of lipids in a mixture of chloroform and

methanol, 2/1 (v/v), followed by solvent evaporation under

nitrogen. Final traces of solvent were removed in a vacuum

chamber attached to a liquid nitrogen trap for 3–4 h. Lipid films

were hydrated with 10 mM HEPES pH 7.4 and vortexed

extensively at a temperature above the phase transition temper-

ature of the lipid to obtain MLVs. Large unilamellar vesicles

(LUVs) of different composition were prepared by extrusion of

MLVs through a polycarbonate filter (pore diameter 100 nm) as

described in [54]. Laurdan was added at a lipid molar ratio of 1/

100. The peptide was added to LUVs (aggregation, fluorescence

or FTIR experiments), planar bilayers (PWR studies) or MLVs

after their formation (DSC studies) to obtain the required peptide/

lipid molar ratio.

Differential Scanning Calorimetry
Calorimetry was performed on a high-sensitivity Differential

Scanning Calorimeter (Calorimetry Sciences Corporation). A scan

rate of 1uC/min was used and there was a delay of 10 min

between sequential scans in a series that allows for thermal

equilibration. Data analysis was performed with the fitting

program CPCALC provided by CSC and plotted with Igor.

The total lipid concentration used was 1 mg/ml. For peptide

concentrations corresponding to P/L 1:10, no thermal events were

observed over the temperature range of 0–100uC. This indicates

that the endothermic events observed in this study arise solely from

phase transitions of the phospholipids vesicles. A minimum of

three heating and cooling scans were performed.

Fluorescence spectroscopy
Fluorescence measurements were performed with a Cary

fluorimeter (Varian). The excitation and emission band-pass were

set at 5 nm. Spectra were recorded 10 min after addition of

penetratin to LUVs (P/L molar ratio 1/25), using a 1 cm path

length quartz cuvette, thermostated at 37uC or 25uC. All

fluorescence spectra were corrected for the baseline signal.

Laurdan emission spectra were recorded from 400 to 600 nm

using a 365 nm excitation wavelength in the absence or presence

of penetratin in 0.5 mM HEPES buffer (pH 7.4). The excitation

generalized polarization (GP) was calculated as

GP~ I440{I490ð Þ= I440zI490ð Þ

where I440 and I490 are the fluorescence intensities at the

maximum emission wavelength in the ordered (440 nm) and

disordered (490 nm) phases [38].

Fourier transformed infrared spectroscopy
LUVs were prepared as described above, using 0.5 mM

HEPES-2H2O (p2H 7.4) buffer. The p2H was measured with a

glass electrode and was corrected by a value of 0.4 according to

[55]. The liposome suspension was mixed with penetratin at a P/L

molar ratio of 1/30 and incubated at 30uC for 10 min. For control

experiments, spectra of the liposome suspension or of the peptide

dissolved in 0.5 mM HEPES-2H2O (p2H 7.4) buffer were also

recorded. To avoid spectral contribution of unbound peptide,

removal of unadsorbed peptide was performed by centrifugation at

160 0006g for 40 min (Beckman Airfuge). The pellet was

resuspended in 24 ml of HEPES-2H2O buffer.

Samples were loaded between two CaF2 circular cells, with a

50 mm Teflon spacer. FTIR spectra were recorded with a Nicolet

510 M FTIR spectrometer which was continuously purged with

dry air. The nominal spectral resolution was 4 cm21; 256 scans

were collected and co-added per sample spectrum, and Fourier-

transformed for each sample. Every infrared spectrum was

representative of at least three independent measurements. The

infrared spectra of the corresponding buffer and residual water

vapour were subtracted from the infrared spectrum of the sample.

Peak position was determined using second derivative minima.

Circular dichroism spectroscopy
CD spectra were recorded with a Jobin Yvon CD6 dichrograph.

The instrument outputs were calibrated with D(+)210-camphor-

sulfonic acid. The samples were scanned in a quartz optical cell

with a 1 mm path length and recorded from 195 to 260 nm with

0.5 nm step. The measurements were performed at 37uC. Four

scans were accumulated and averaged after buffer (or LUVs)

spectra subtraction and baseline correction. Each presented

spectrum is the average of 3 independent measurements. The

CD spectra were recorded in 0.5 mM HEPES buffer (pH 7.4), at a

peptide concentration of 43 mM and a peptide/lipid molar ratio of

1/25. CD measurements are reported as delta e (M21 cm21) per

residue.

Plasmon waveguide resonance (PWR) spectroscopy
PWR spectra are produced by resonance excitation of

conduction electron oscillations (plasmons) by light from a

polarized CW laser (He-Ne; wavelength of 632.8 and 543.5 nm)

incident on the back surface of a thin metal film (Ag) deposited on

a glass prism and coated with a layer of SiO2 [56]. Experiments

were performed on a beta PWR instrument from Proterion Corp.

(Piscataway, NJ) that had a spectral resolution of 1 mdeg. The

sample to be analyzed (a lipid bilayer membrane) was immobilized

on the resonator surface and placed in contact with an aqueous

medium, into which penetratin was introduced. The self

assembled lipid bilayers were formed as previously described

[35]. PWR spectra, corresponding to plots of reflected light

intensity versus incident angle, can be excited with light whose

electric vector is either parallel (s-polarization) or perpendicular (p-

polarization) to the plane of the resonator surface. Spectral

simulation [56] and/or graphical analysis [57] allow one to obtain

information about changes in the mass density, structural

asymmetry, and molecular orientation induced by bimolecular

interactions occurring at the resonator surface. Here, the graphical

analysis method was employed [35].

Affinities between the peptide and the lipids were obtained by

plotting the PWR spectral changes that occur upon incremental

additions of ligand to the cell. Since the PWR is only sensitive to

the optical properties of material that is deposited on the resonator

surface, there is no interference from the material that is in the

bulk solution. Data fitting (GraphPad Prism) through a hyperbolic
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saturation curve provides the dissociation constants. It should be

noted that since concomitantly with the binding process other

processes, such as membrane reorganization and solvation occur

the dissociation constants correspond to apparent dissociation

constants.

LUVs aggregation measurements
LUVs aggregation was monitored by turbidimetry (absorbance

at 340 nm) with a Cary spectrophotometer (Varian) as described

[58]. Different quantities of penetratin were added to a 100 ml

quartz cuvette containing 2 mg lipids in a HEPES 0.5 mM pH 7.4

buffer to obtain the desired peptide/lipid ratios and the

absorbance was followed until it reached a plateau (30 minutes

after peptide addition).

A second method was used to measure the aggregation of LUVs

induced by penetratin. 2 mg of penetratin were incubated with

10 mg of LUVs in 500 ml of buffer (0.5 mM HEPES buffer,

pH 7.4). After 20 min of incubation at room temperature the

samples were analyzed by flow cytometry as previously described

[59]. Briefly, the analysis of the forward scatter (FSC) and the side

scatter (SSC) was performed using a LSR II cytometer (Beckton

Dickinson) equipped with a 15 mW 488 nm air cooled argon ion

laser. A constant SSC detector was used. FSC was set in log scale.

For each experiment, 5 000 events were collected.
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