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Human parainfluenza 3 and respiratory syncytial viruses detected in pangolins
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ABSTRACT

Pangolins have gained increasing global attention owing to their public health significance as potential zoonotic hosts
since the identification of SARS-CoV-2-related viruses in them. Moreover, these animals could carry other respiratory
viruses. In this study, we investigated the virome composition of 16 pangolins that died in 2018 with symptoms of
pneumonia using metagenomic approaches. A total of eight whole virus sequences belonging to the
Paramyxoviridae or Pneumoviridae families were identified, including one human parainfluenza virus 3, one human
respiratory syncytial virus A, and six human respiratory syncytial virus B. All of these sequences showed more than
99% nucleotide identity with the virus isolated from humans at the whole-genome level and clustered with human
viruses in the phylogenetic tree. Our findings provide evidence that pangolins are susceptible to HPIV3 and HRSV
infection. Therefore, public awareness of the threat of pangolin-borne pathogens is essential to stop their human

consumption and to prevent zoonotic viral transmission.
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Introduction

Human respiratory syncytial virus (HRSV) and
human parainfluenza 3 virus (HPIV3) are the most
common viral pathogens that cause respiratory infec-
tions, especially acute lower respiratory tract infec-
tions, in infants and children worldwide[1]. Almost
all children are infected with HRSV at least once by
the age of 24 months[2]. HRSV belongs to the Orthop-
neumovirus genus of the Pneumoviridae family and
HPIV3 belongs to the genus Respirovirus of the Para-
myxoviridae family. They are filamentous, enveloped,
negative-sense, single-stranded RNA viruses of the
order Mononegavirales, discovered in the 1950s, and
are currently thought to be human-specific[3,4].
Closer human contact with wildlife has increased the
risk of zoonotic disease transmission to humans. Pango-
lins are animals that have long been hunted, traded, and
trafficked by humans for spiritual use, traditional medi-
cine, and bushmeat consumption[5]. They are valued in
different cultures. Owing to ongoing illegal trade, pango-
lins are now at the risk of extinction. Pangolins are the
animals other than bats found to be infected with

SARS-CoV-2-related coronaviruses[6-8], and have a
high risk of transmitting zoonotic diseases. Therefore,
the identification of potential zoonotic pathogens carried
by pangolins is of great significance to human health.
Viruses belonging to more than 30 families have been
identified from pangolins including Sendai virus, parai-
nfluenza virus 5, Dongyang pangolin virus, and Lishui
pangolin virus.[9-14].

In this study, we used the metagenomic approach to
detect the 16 pangolins that had displayed similar
clinical symptoms of pneumonia, and identified the
human respiratory viruses in pangolins.

Methods
Sample collection

Sixteen Malayan pangolins were rescued by the
Guangxi Zhuang Autonomous Region Terrestrial
Wildlife Medical-aid and Monitoring Epidemic Dis-
eases Research Center during their routine anti-smug-
gling operations between July and September 2018.
The pangolins however, died between September
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and October. The animals were dissected and partial
lung tissues were collected for sequencing. Lung tissue
samples from three pangolins were collected for
pathological examination. The collected tissue samples
were fixed with 10% formalin solution for 24 h,
embedded in paraffin, sectioned at 4-6 um, and
stained with hematoxylin-eosin followed by micro-
scopic observation (Nikon ECLIPSE TS100).

Viral RNA extraction and reverse-transcription
polymerase chain reaction

Viral RNA was extracted from 200 uL of lung hom-
ogenate supernatant and eluted in 50 pL nuclease-
free water using a High Pure viral RNA Kit (Cat.
No. 11858882001 Roche, Switzerland) according to
the manufacturer’s instructions. Reverse-transcription
polymerase chain reaction (RT-PCR) was performed
in a 20 pL reaction system using a First-Strand Syn-
thesis System Kit (Invitrogen, Thermo Fisher Scien-
tific, USA) following the manufacturer’s instructions.
The reactions were conducted in a Veriti 96-well ther-
mal cycler (Applied Biosystems, USA) programmed as
follows: 25 °C for 10 min, 50 °C for 50 min, and 85 °C
for 5 min, followed by a final step at 4 °C for 5 min.
Finally, 1 uL RNase H was added to the reaction
tube and incubated for 20 min at 37 °C.

Library preparation and RNA sequencing

First-strand cDNA fragments were used to prepare a
sequencing library using the NEBNext® Ultra II Direc-
tional RNA Library Prep Kit for Illumina® (NEB,
Germany) according to the manufacturer’s instruc-
tions. The sequencing library construction mainly
consisted of seven steps: first-strand cDNA synthesis,
second-strand cDNA synthesis, DNA fragmentation,
end-repair/dA-tailing, adaptor ligation, USER-
enzyme digestion, and library enrichment using
PCR. Purification was performed at every step using
AMPure® XP beads (Beckman Coulter, USA). The
constructed library was qualified using qRT-PCR
(Applied Biosystems, Thermo Fisher Scientific,
USA). Finally, the prepared libraries were sequenced
using NovaSeq S2 reagent kits on a NovaSeq 6000
instrument (Illumina, USA).

Bioinformatic analysis

For sequencing reads, Fastp (v0.20.0)[15] and
BBNorm[16] were used for quality control and rep-
etition. The remaining reads were compared against
viral genome databases using diamond BLASTX to
identify virus-associated reads. To rule out false posi-
tives, viral reads were clustered using Cd-hit[17] and
compared against the non-redundant nucleotide (nt)
database, and taxonomic lineage information was

obtained from the top blast hit of each read. The com-
plete genome was assembled using CLC 12.0, and the
reference genome was selected based on BLAST results.
A read mapping tool in CLC 12.0 was used to estimate
the read number of pangolin viruses. Sequences were
first aligned with related viral sequences within the
clade using the maftt v7.037 b programme to determine
the relatedness of each virus[18]. Maximum likelihood
trees were subsequently reconstructed based on
sequence alignment using PhyML 3.0, employing the
GTR substitution model[19,20].

Ethics statement

The animals (pangolins) were rescued and treated by
the Guangxi Zhuang Autonomous Region Terrestrial
Wildlife Medical-aid and Monitoring Epidemic Dis-
eases Research Center under ethics approval (Wild
Animal Treatment Regulation No. [2011] 85). The
sample collection followed the guidelines listed in
Pangolins Rescue Procedure, November 2016.

Results
Study animals

The rescued pangolins were divided into six groups
labelled as A-F according to the time of rescue
(Table 1). The different groups were placed in different
rooms to prevent the spread of infectious diseases. All
of them showed signs of pneumonia, including vary-
ing degrees of lethargy, loss of appetite, and breathing
difficulties, and died between September and October
2018 (Table 1). Three pangolins from different groups
were sampled for histological examination, and lung
tissue samples from all 16 pangolins were collected
for sequencing. Autopsy photographs of the three
pangolins revealed pulmonary edema with hemor-
rhage (Figure S1-S3, Panels A and B). In addition,
interstitial lung congestion and inflammatory cell

Table 1. General information of the rescued Malayan
pangolins.

Sex

Sample ID  Date of death  Date of rescue  Group Male Female
MJO1 Sep.7,2018  Aug.7, 2018 A Vv

MJ02 Sep.7,2018  Aug. 8, 2018 A Vv

MJO3 Sep. 14,2018  Aug. 13,2018 B Vv

MJo4 Sep. 16,2018  Aug. 13, 2018 B v

MJ05 Sep. 19,2018  Sep. 4, 2018 C v
MJ06 Sep. 20, 2018 Sep. 4, 2018 C v
MJ07 Sep. 20, 2018 Sep. 4, 2018 C v
MJos Sep. 23,2018  Sep. 14, 2018 D v

MJ09 Sep. 24,2018  Sep. 21,2018 E v

MJ10 Sep. 24,2018  Sep. 13, 2018 D v
MJ11 Sep. 25,2018  Sep. 4, 2018 C Vv

MJ12 Sep. 29,2018  Aug. 13, 2018 B v
MJ13 Sep. 29,2018  Jul. 8, 2018 F v
MJ14 Oct. 2,2018  Sep. 14, 2018 D v
MJ15 Oct. 4,2018  Sep. 14,2018 D Vv

MJ16 Oct. 6,2018  Sep. 21, 2018 E v




infiltration were observed, and edema fluid, fibrin, and
red blood cells were present in the alveolar cavity
(Figure S1-S3, Panels C and D).

Metagenomic analysis

The proportion of bacterial data in the pangolin
sequencing data is very small, and most of them
seem to be normal bacteria in the environment. Bac-
terial infection doesn’t seem to explain that the 16
pangolins showed similar signs of illness; furthermore,
considering the limited ability of bacteria to spread, we
speculated a possible viral spread occurring before or
after the rescue through unexpected transmission
route. Based on the sequencing results of lung tissue
samples from all 16 pangolins, we characterized
viruses in the samples at the species level, and all
viruses, such as phage, endogenous viruses, and
plant viruses, normally carried by mammals were
excluded. HRSV and HPIV3 were detected in all the
samples (Figure 1). Dongyang pangolin virus, canine
pneumovirus, murine orthopneumovirus, and pesti-
virus were present in several samples. In addition, a
small number of reads associated with HKU4,
HKU5, and MERS-CoV coronavirus belonging to
Merbecovirus, were detected in sample MJ13.

Complete sequences of human
orthopneumovirus and human respirovirus

We constructed the complete genomes of several
viruses in some samples with sufficient data and
obtained one complete sequence of HPIV3 from
sample MJ04, one complete sequence of HRSV sub-
type A (HRSVA) from sample MJ07, and six com-
plete sequences of HRSV subtype B (HRSVB) from
samples MJ04, MJ05, MJ06, MJ10, MJ13, and MJ16
(Figure 2). Additionally, we also observed that
genes associated with virus-host interactions and
viral RNA replication had high coverage of sequen-
cing reads in these viruses, including nucleocapsid
protein and phosphoprotein in HPIV3, and attach-
ment glycoprotein and phosphoprotein in HRSVA
and HRSVB (Figure 2). These complete sequences
showed >99% nucleic acid identity to those of
viruses isolated from humans (Figure 3).

Phylogenetic analysis of the novel pangolin
viruses

Phylogenetic analysis based on the complete genomes
revealed that these viruses were most closely related to
viruses found in humans (Figure 4A). In addition to
pangolin coronaviruses, which are associated with
SARS-CoV-2[6,7], several viruses previously discov-
ered in pangolins are closely related to animal viruses
in the phylogenetic tree. For example, the pangolin

Emerging Microbes & Infections 1659

respirovirus isolate M5 is most closely related to a
murine respiratory virus[21]; and mammalian rubula-
virus 5 strain PIV5-GD18 shares more than 99% simi-
larity with mammalian rubulavirus 5 of Panthera
tigris, lesser panda, and pig[11]. Additionally, Sendai
viruses identified in pangolins are most closely related
to mouse Sendai virus[9]. In this study, we observed
that the complete sequences of pangolin viruses clus-
tered with those of human viruses in the phylogenetic
tree (Figure 4A). The complete genomes of HRSVB
were obtained from several samples; therefore, we
investigated whether these pangolin HRSVBs had a
similar source of infection or intraspecific trans-
mission. The results showed that six strains of
HRSVB belonged to three separate clades in the phy-
logenetic tree, suggesting that several human-to-pan-
golin transmissions may have occurred. However, it
is also possible that pangolins naturally carry
HRSVB (Figure 4B).

Discussion

In the present study, we sequenced lung tissue samples
of 16 Malayan pangolins that died in 2018. These pan-
golins were infected with HPIV3, HRSVA, and
HRSVB to varying degrees, with HRSVB being more
prevalent. A total of one HPIV3, one HRSVA, and
six HRSVB complete sequences were obtained from
high-throughput sequencing data and all sequences
had over 99% similarity to known human viruses.
HRSV and HPIV3 have previously been identified
only in humans[22,23]; herein, we present evidence
that these viruses can also infect pangolins.

Cell surface receptors are key factors determining
the host range of viruses[24]. The similarity of viral
receptors between pangolins and humans greatly
increases the risk of cross-species transmission of
potentially natural viruses from pangolins to humans.
Pangolin angiotensin-converting enzyme 2 (ACE2)
shares approximately 84% amino acid similarity with
human ACE2, which has been identified as a receptor
for SARSr-CoV-2. Additionally, the insulin-like
growth factor-1 receptor (IGF1R) is involved in the
binding of HRSV to human cells[25]. Pangolin
IGFIR shares more than 97% amino acid similarity
with human IGFIR, which may account for HRSV
infections in pangolins. In humans, a2,3/a2,6-linked
sialic acid receptors are required for binding of
HPIV3 to respiratory epithelial cells; therefore,
HPIV3 may use structurally similar receptors to infect
pangolins. The presence of these two receptors is also
associated with the spread of influenza in human[26-
28]. In addition, we observed that the pathological
changes in lung tissue were closely related to pneumo-
nia. Further, increased expression of genes related to
viral genome replication was detected indicating
increased viral load, which may have increased disease
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Figure 1. Overview and abundance of viral species in pangolin lung tissue samples. The darkest colour represents more than 20
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severity. Unfortunately, we failed to obtain any
samples for sero-antibodies testing. The conduct of
animal infection experiments of healthy pangolins
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with HRSV and/or HPIV3 would provide more infor-
mation; however, it is difficult to carry out such exper-
iments as pangolins are protected. Although these
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pangolins were likely infected by these viruses through ~ (which may carrying pathogens) is also a potential
contact with humans, especially handlers and smug-  route of disease transmission. Although pangolins do
glers, the possibility that they naturally carried the  not carry as many dangerous pathogens as bats, they
virus cannot be ruled out. can still act as vectors for human virus transmission.
In conclusion, our study demonstrates that pango-  Therefore, enhancing the protection of wildlife,
lins are susceptible to HPIV3 and HRSV infection,  stopping illegal capture and trading of wildlife, and dis-
suggesting that in addition to direct person-to-person  tancing from the natural habitat of animals are effective
contact and airborne routes, smuggling of pangolins  ways to reduce the transmission of zoonotic diseases.
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