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Abstract

Eukaryotic genomes are organized into chromatin, divided into structurally and functionally 

distinct euchromatin and heterochromatin compartments. The high level of compaction and the 

abundance of repeated sequences in heterochromatin pose multiple challenges for the maintenance 

of genome stability. Cells have evolved sophisticated and highly controlled mechanisms to 

overcome these constraints. Here, we summarize recent findings on how the heterochromatic state 

influences DNA damage formation, signaling and repair. By focusing on distinct heterochromatin 

domains in different eukaryotic species, we highlight heterochromatin contribution to the 

compartmentalization of DNA damage repair in the cell nucleus and to repair pathway choice. We 

also describe the diverse chromatin alterations associated with the DNA damage response in 

heterochromatin domains and present our current understanding of their regulatory mechanisms. 

Finally, we discuss the biological significance and the evolutionary conservation of these 

processes.
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Introduction

In eukaryotic cell nuclei, the genetic information is packaged in the form of chromatin 

(Kornberg 1977) where DNA wraps around histone proteins to form nucleosomes (Luger et 

al. 1997) and higher-order structures (Bonev and Cavalli 2016). The different levels of 

chromatin organization are central to cell function as they constitute key vectors of 

epigenetic information, which dictates cell identity (Allis and Jenuwein 2016). Among 

higher-order chromatin structures, heterochromatin domains are critical chromatin 

compartments with a major influence on chromosome segregation and stability (Allshire and 

Madhani 2017). Originally defined as chromosomal regions that remain compact throughout 

the cell cycle (Heitz 1928), heterochromatin domains are generally gene-poor, mostly 

transcriptionally silent and are characterized by specific sets of histone modifications and 
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associated proteins. Recent advances in super-resolution microscopy have provided a refined 

three-dimensional picture of chromatin in vivo at nanoscale resolution, revealing that 

heterochromatin domains are formed by larger, denser and less mobile nucleosome clutches 

compared to euchromatin (Ricci et al. 2015; Nozaki et al. 2017; Ou et al. 2017). Beyond 

these general features, heterochromatin actually exists in various forms that are structurally 

and functionally distinct: while constitutive heterochromatin remains condensed and mostly 

transcriptionally silent throughout development and cell divisions (Saksouk et al. 2015), 

facultative heterochromatin corresponds to regions of the genome where gene silencing is 

dynamically regulated (Trojer and Reinberg 2007). A typical example of facultative 

heterochromatin is the inactive X chromosome in female mammals (Gendrel and Heard 

2014), but it also includes genomic regions that interact with specific nuclear structures, 

such as the lamina-associated domains (LADs) located at the nuclear periphery (van 

Steensel and Belmont 2017) and nucleolus-associated domains (NADs; Matheson and 

Kaufman 2016). Constitutive heterochromatin is found at subtelomeric regions (Schoeftner 

and Blasco 2009) and at pericentromeres (Saksouk et al. 2015), which surround repetitive 

centromeric DNA (McKinley and Cheeseman 2016). Each of these heterochromatin 

domains is defined epigenetically by specific histone post-translational modifications, 

histone variants and associated proteins (Fig. 1), in addition to DNA methylation, which 

contributes to transcriptional silencing.

In recent years, a growing number of studies focused on understanding how heterochromatin 

domains are established during development and then perpetuated through replication and 

cell division. Another major challenge for heterochromatin maintenance is the response to 

DNA damage, which poses a constant threat to both genome and epigenome stability (Dabin 

et al. 2016). Furthermore, with the exception of LADs, heterochromatin is highly enriched 

for repetitive sequences, including tandem satellite sequences and transposable elements 

(Padeken et al. 2015), which compromises faithful DNA replication and repair, with a risk of 

aberrant homologous recombination between ectopic repeats leading to chromosome 

rearrangements and aneuploidy (Peng and Karpen 2008). Silencing of transposable elements 

through heterochromatinization is also critical for genome stability (Padeken et al. 2015). 

The issue of genome and epigenome maintenance is thus particularly prominent in 

heterochromatin.

Here, we review recent advances in our understanding of DNA damage formation, signaling 

and repair in heterochromatin domains, and describe heterochromatin reorganization 

associated with the DNA damage response. We focus mainly on the response to DNA 

double-strand breaks (DSBs) and UV photoproducts in diverse eukaryotic cell systems, 

including yeast, Drosophila and mammalian cells. We highlight that even though they share 

common features, not all heterochromatin domains are treated equal following a genotoxic 

stress challenge.

DNA damage formation in heterochromatin domains

Chromatin organization in the cell nucleus has a significant impact on the DNA damage 

response, from damage formation to repair. Indeed, chromatin loops were recently identified 

as a source of topoisomerase 2-mediated DNA breaks in mammalian cells, putting forward 
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chromatin organization as a major driver of genome fragility (Canela et al. 2017). 

Heterochromatin organization in particular markedly impacts genome stability, as illustrated 

by higher mutation rates in human cancer cells, both in constitutive (Schuster-Böckler and 

Lehner 2012) and facultative heterochromatin (Jäger et al. 2013). Furthermore, mutation 

patterns strongly associate with nuclear organization, with heterochromatin at the nuclear 

periphery, LADs in particular, displaying higher mutation frequencies in various cancer 

types (Smith et al. 2017). These studies suggest that DNA damage formation and/or repair is 

influenced by higher-order chromatin organization in the cell nucleus. Over the last few 

years, several studies have addressed how tridimensional chromatin organization and 

compaction affect the susceptibility of DNA to damage. In vitro manipulation of chromatin 

compaction by adjusting magnesium concentration on permeabilized human nuclei and on 

mitotic chromosomes revealed that the levels of DSBs induced by ionizing radiation in 

compact chromatin were 5 to 50-fold lower than in decondensed chromatin, implying that 

chromatin compaction protects genomic DNA from radiation damage (Takata et al. 2013). 

The question of DSB generation in different chromatin domains was then tackled in vivo 
both in mouse and human cells. For this, several genome-wide approaches were developed 

for mapping DSBs across the genome at single-nucleotide resolution, including BLESS 

(Crosetto et al. 2013), END-seq (Canela et al. 2016) and DSBCapture (Lensing et al. 2016), 

which established the higher susceptibility of transcriptionally active euchromatin to 

endogenous DSB formation. In contrast, breaks induced by aphidicolin were enriched in 

centromeric and pericentromeric chromatin, most likely reflecting the higher sensitivity of 

DNA repeats to replication stress. Mechanistic insights into how heterochromatin may 

hinder endogenous break induction are still lacking. The low levels of transcription in 

heterochromatin may preserve this chromatin compartment from transcription-induced 

genome instability {Gaillard:2016fw}. In terms of molecular players, a recent study in 

Drosophila put forward linker histone H1 as preventing the accumulation of R-loop-induced 

DNA damage in heterochromatin (Bayona-Feliu et al. 2017). Further work is still needed to 

fully dissect the mechanisms that control DSB distribution between euchromatin and 

heterochromatin domains.

While the genome-wide distribution of DSBs is established, contrasting reports continue to 

emerge regarding the formation of UV-induced DNA lesions in mammalian genomes. 

Single-nucleotide resolution mapping of cyclobutane pyrimidine dimers (CPDs) and 

pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) by HS-Damage-seq in UV-irradiated 

human fibroblasts (Hu et al. 2017) showed that the distribution of both types of UV lesions 

was essentially uniform throughout the genome. In contrast, a concomitant study using a 

similar genome-wide mapping approach in human fibroblasts showed that lamina-associated 

heterochromatin at the nuclear periphery was more vulnerable to UV damage than 

euchromatin (García-Nieto et al. 2017). Furthermore, immunofluorescence-based detection 

of UV damage revealed that 6-4PP were excluded from pericentromeric heterochromatin in 

mouse fibroblasts (Han et al. 2016), suggesting that the highly condensed heterochromatin 

environment may interfere with the formation of some UV lesions. Thus, it is not yet 

entirely clear whether the UV mutation signature observed in human cancer cells (Smith et 

al. 2017) results from higher damage formation or from slower repair in heterochromatin. 

Therefore, the role of nuclear organization and chromatin compaction on DNA damage 
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formation remains an important field of study with broad implications for our understanding 

of genome stability and mutational landscapes.

Impact of heterochromatin on DNA damage signaling

One of the earliest consequences of DNA damage infliction is the recruitment of DNA 

damage signaling kinases, which initiates a complex cascade of events leading to cell cycle 

checkpoint activation. Among the many targets of these kinases, the histone variant H2A.X 

gets rapidly phosphorylated in large chromatin domains surrounding DSBs, giving rise to 

γH2A.X foci (Rogakou et al. 1998), which serve as a platform for recruiting downstream 

checkpoint and repair factors (Smeenk and van Attikum 2013). While this is a general 

response to DNA damage, several studies in yeast and mammalian cells originally showed 

that silenced chromatin domains were refractory to H2A.X phosphorylation (Cowell et al. 

2007; Kim et al. 2007) and hampered DNA damage checkpoint signaling (Brunton et al. 

2011). However, closer examination of the DDR in a time-resolved fashion later showed that 

H2A.X (H2A.v in Drosophila) was phosphorylated within pericentromeric heterochromatin 

domains in mouse and Drosophila cells, while subsequent steps of damage signaling 

occurred outside heterochromatin domains after a relocation of the breaks to the periphery of 

the domains (Chiolo et al. 2011; Jakob et al. 2011; Tsouroula et al. 2016; Janssen et al. 

2016) or even to the nuclear periphery in Drosophila cells (Ryu et al. 2015; Ryu et al. 2016). 

Noteworthy, such relocation specifically affects DSBs repaired by recombination, as 

discussed in the following sections. In plant cells, the situation is more complex with the 

existence of a heterochromatin-specific histone variant H2A.W.7, which is phosphorylated 

in response to damage, while H2A.X phosphorylation takes place primarily in euchromatin 

(Lorković et al. 2017).

Furthermore, dynamic chromatin compaction appears to play an important regulatory role in 

DNA damage signaling. Indeed, tethering heterochromatin factors to a LacO array in the 

absence of DNA damage in human cells induces local chromatin condensation and is 

sufficient to activate early steps in DNA damage signaling but not downstream effectors 

(Burgess et al. 2014). While the exact molecular mechanism by which chromatin 

condensation initiates early damage signaling is unknown, it might involve the repressive 

histone mark H3K9me3 and its ability to stimulate the acetyltransferase activity of Tip60, 

which then contributes to the activation of the DNA damage signaling kinase ataxia-

telangiectasia mutated (ATM) (Sun et al. 2005; Sun et al. 2009). However, these assumptions 

are based on studies performed in euchromatin domains, and further studies are needed to 

clarify the role of heterochromatin compaction in damage signaling.

Altogether, these studies demonstrate that heterochromatin is permissive for DNA damage 

signaling and that heterochromatin features including histone marks and chromatin 

compaction exert a positive role in response to DNA damage by contributing to checkpoint 

activation.
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Impact of heterochromatin on DNA repair efficiency

In the highly compartmentalized eukaryotic nucleus, both the chromatin state and the 

nuclear position of DNA lesions have a significant impact on repair pathway choice and 

repair efficiency (Kalousi and Soutoglou 2016). In this regard, compact heterochromatin 

domains may be seen as a barrier to repair factor recruitment, underlying higher mutation 

rates (Fig. 2a). Indeed, it was observed that excision of CPDs, the main UV photoproducts 

repaired by the nucleotide excision repair (NER) pathway (Marteijn et al. 2014), was 

significantly slower in H3K9me3-containing chromatin in human cells (Han et al. 2016). 

Recently, a high-throughput sequencing method, known as XR-seq, was used to analyze 

oligonucleotide fragments excised during NER in UV-irradiated fibroblasts, further 

establishing the slower repair associated with heterochromatin regions (Adar et al. 2016). 

Furthermore, transcription-coupled NER does not operate in poorly transcribed 

heterochromatin domains. These differences in NER efficiency underly cancer-associated 

mutagenesis, with an increased mutation density in heterochromatin regions and a reduced 

mutation rate in euchromatin that is abrogated by loss-of-function of NER factors (Polak et 

al. 2014; Zheng et al. 2014). Similarly, a lower efficiency of mismatch repair (Jiricny 2013) 

contributes to higher mutation rates in heterochromatin (Supek and Lehner 2015). Although 

early steps of DNA break repair proceed efficiently in pericentromeric heterochromatin 

(Chiolo et al. 2011; Jakob et al. 2011) slower DSB repair has been observed at 

chromocenters in mouse cells, where, about 25% of radiation-induced DSBs are repaired 

with slow kinetics and they predominantly localize at the vicinity of pericentromeric 

heterochromatin domains (Goodarzi et al. 2008). In contrast, sequence-specific DSBs 

induced by the I-SceI endonuclease in Drosophila are repaired with similar kinetics in 

euchromatin and pericentromeric heterochromatin (Janssen et al. 2016). This may reflect 

differences between species or between DNA ends, radiation-induced breaks requiring more 

processing than endonuclease-induced breaks. In the future, DSB genome-wide mapping 

techniques (Crosetto et al. 2013; Canela et al. 2016; Lensing et al. 2016) will be 

instrumental for analyzing DSB repair efficiency and pathway choice in distinct chromatin 

compartments.

Impact of heterochromatin on DNA repair pathway choice

In line with the heterogeneity of the eukaryotic nucleus, there are regional differences in 

DNA repair pathways between euchromatin and heterochromatin compartments. 

Heterochromatin being mostly transcriptionally silent, global genome NER (GG-NER) is 

predominant over transcription-coupled NER (TC-NER) in heterochromatin regions with a 

major role of the GG-NER factor DNA damage binding protein 2 (DDB2) in promoting 

CPD removal from H3K9me3-containing chromatin (Han et al. 2016). Heterochromatin is 

also a major determinant in the regulation of DSB repair outcome (Fig. 2b). Repair of 

genomic DSBs is achieved either by homology-based pathways, i.e. error-free homologous 

recombination (HR) and mutagenic single strand annealing (SSA), or by non-homologous 

end joining (NHEJ), with alternative end joining (A-EJ) serving as a back-up (Mladenov et 

al. 2016). The repetitive nature of heterochromatin increases the risk of illegitimate 

recombination during repair. Therefore, a tight control of recombination events is critical in 

these domains. In particular, the silenced chromatin state plays a key role in repressing 

Fortuny and Polo Page 5

Chromosoma. Author manuscript; available in PMC 2019 March 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



mitotic recombination at centromeres and telomeres, as revealed in DNA methyltransferase 

(DNMT)-deficient mouse cells showing increased telomeric and centromeric recombination 

accompanied by changes in centromere and telomere repeat length (Gonzalo et al. 2006; 

Jaco et al. 2008). This suggests that prevention of illicit recombination in these 

compartments is important to maintain centromere and telomere integrity. Likewise, 

telomere hyper-recombination and subsequent chromosomal fusions in mouse embryonic 

stem cells are prevented by the telomere-associated protein Rif1, which mediates 

heterochromatic silencing by maintaining H3K9me3 levels at subtelomeric regions (Dan et 

al. 2014). The importance of the silenced chromatin state in controlling recombination has 

also been observed in Drosophila cells, where completion of recombinatorial repair requires 

a SUMO-dependent relocation of DSBs outside H3K9me2- and HP1a-containing domains 

(Chiolo et al. 2011; Ryu et al. 2015; Ryu et al. 2016). Similarly, in budding yeast, silent 

information regulators (Sir) inhibit recombinational repair in silenced chromatin domains 

(Sinha et al. 2009). Interestingly, this inhibition is relieved through the eviction of Sir3p by 

the SWI/SNF chromatin remodeler (Sinha et al. 2009), suggesting that the constraints on 

recombinational repair in silenced chromatin can be alleviated by the action of chromatin 

remodelers. Similar to mitotic recombination, meiotic recombination is also repressed in 

silenced chromatin, as observed in fission yeast centromeres (Ellermeier et al. 2010). 

Furthermore, when recombination happens in silenced chromatin, error-free repair pathways 

are promoted. In budding yeast for instance, subtelomeric Sir3p-repressed chromatin 

promotes HR by inhibiting excessive DNA-end resection (Batté et al. 2017), and in fission 

yeast centromeric chromatin Rad51-dependent HR is favored over SSA (Zafar et al. 2017). 

Heterochromatic DSBs also rely largely on HR for their repair in G2 mouse cells (Beucher 

et al. 2009) and in Drosophila cultured cells, where pericentromeric heterochromatin appears 

to be largely repaired through Rad51-dependent HR (Chiolo et al. 2011; Tsouroula et al. 

2016). Yet, in fly tissues, which are mostly in G1, NHEJ predominates over HR in 

pericentromeric heterochromatin (Janssen et al. 2016). Several studies have provided 

mechanistic insights into how DSB repair could be regulated in heterochromatin based on 

the involvement of heterochromatin-associated factors in euchromatin repair (Lemaître and 

Soutoglou 2014). In particular, heterochromatin protein 1 (HP1) has been identified as a 

main player in the control of DNA-end resection and shown to operate through the 

recruitment of Breast Cancer 1 (BRCA1) (Baldeyron et al. 2011; Soria and Almouzni 2013; 

Lee et al. 2013). In addition to HP1, other heterochromatin-associated factors function with 

BRCA1 in controlling resection, including the histone H3K9 methyltransferases SET 

Domain Bifurcated 1 (SETDB1) and Suppressor of Variegation 3-9 Homolog (Suv39H1/2) 

(Alagoz et al. 2015). Another important player in the repair of heterochromatic DSBs is p53-

binding protein 1 (53BP1) (Noon et al. 2010; Kakarougkas et al. 2013). In line with this, 

Suppressor Of Cancer Cell Invasion (SCAI) has been identified as a 53BP1- and HP1-

associated factor that promotes repair of heterochromatic DSBs by facilitating ATM-

dependent signaling (Hansen et al. 2016). Together, this intricate network of molecular 

players is critical for preventing unscheduled repair, thus suppressing mutagenic events in 

heterochromatin domains.
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Heterochromatin domains and compartmentalization of DNA repair

Not all heterochromatin domains have the same impact on repair pathway choice, resulting 

in a compartmentalization of DNA repair within the eukaryotic nucleus. This has been 

extensively studied in response to DSBs (Fig. 2b), by tethering DSBs to defined 

heterochromatin compartments (Lemaître et al. 2014) or by targeted introduction of DSBs 

into repetitive sequences (Torres-Rosell et al. 2007; van Sluis and McStay 2015; Harding et 

al. 2015; Tsouroula et al. 2016; Doksani and de Lange 2016). Thus, important differences 

have emerged regarding how DSBs are processed in distinct silenced chromatin 

compartments. In mouse cells, both centromeric and pericentromeric DSBs are repaired 

through HR and NHEJ, but HR is restricted to S/G2 for DSBs arising in pericentromeric 

heterochromatin while centromeric DSBs recruit the HR factor RAD51 throughout 

interphase (Tsouroula et al. 2016). Future work will address the molecular bases of these 

differences by assessing the importance of centromere specific histone variant and histone 

modifications in allowing HR of centromeric DSBs in G1 cells. Furthermore, NHEJ repair 

occurs inside centromeric and pericentromeric chromatin domains in mouse cells as opposed 

to late steps of HR, which are confined to the periphery of these domains after a relocation 

of the breaks (Tsouroula et al. 2016). In contrast to what observed at centromeres and 

pericentromeres, NHEJ does not contribute to repair of telomeric DSBs, which are processed 

by HR and A-EJ in mouse embryonic fibroblasts (Doksani and de Lange 2016). Stricking 

differences are also found among heterochromatin domains interacting with nuclear 

structures, with LADs being repaired by error-prone NHEJ and A-EJ (Lemaître et al. 2014), 

whereas nucleolar DSBs are repaired within NADs by NHEJ and HR (Torres-Rosell et al. 

2007; van Sluis and McStay 2015; Harding et al. 2015). The DSB repair pathways that 

operate in other facultative heterochromatin domains like the inactive X chromosome still 

remain to be characterized. Future studies will also be needed to fully understand the 

molecular determinants and the biological relevance of such compartmentalization of DSB 

repair in the eukaryotic cell nucleus for genome and epigenome stability.

Heterochromatin reorganization in response to DNA damage

The DNA damage response is accompanied by a marked reorganization of heterochromatin 

(Fig. 3). In particular, decondensation of damaged heterochromatin has been observed in 

response to radiation- and nuclease-induced breaks, as reported for pericentromeric 

heterochromatin in flies (Chiolo et al. 2011) and in mouse embryonic fibroblasts (Jakob et 

al. 2011; Tsouroula et al. 2016), and for the inactive X chromosome in female human 

fibroblasts (Müller et al. 2013). This is thus a conserved response between eukaryotic 

species affecting both constitutive and facultative heterochromatin compartments. Future 

studies will address whether this is also a general response to various types of DNA lesions 

besides DSBs. Remarkably, the decompaction of damaged heterochromatin is not 

accompanied by a detectable loss of heterochromatin-specific histone marks such as 

H3K9me3 and H4K20me3 at the pericentromere, suggesting that heterochromatin identity 

may be preserved during this process (Goodarzi et al. 2011; Tsouroula et al. 2016; Natale et 

al. 2017). Nevertheless, more in depth studies are needed to fully characterize the local 

changes in histone marks upon DNA damage in constitutive heterochromatin domains. 

Whether facultative heterochromatin marks are maintained also remains to be determined. 
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Notably, however, the response to DNA damage in heterochromatin is not always associated 

with chromatin decondensation as recently reported for uncapped telomeres (Timashev et al. 

2017; Vancevska et al. 2017).

Indeed, super-resolution imaging reveals that the DNA damage response elicited by removal 

of shelterin components occurs without substantial telomere decompaction, but is 

accompanied by telomere clustering. Understanding the molecular mechanisms that trigger 

heterochromatin decompaction in response to DNA damage may clarify the differences 

observed between distinct heterochromatin domains.

Among the mechanisms that may drive damaged heterochromatin decompaction, ATM-

dependent phosphorylation of the heterochromatin building factor KRAB-domain associated 

protein 1 (KAP1) was shown to trigger euchromatin relaxation (Ziv et al. 2006) and to 

facilitate the repair of heterochromatic DSBs at mammalian pericentromeres (Goodarzi et al. 

2008). KAP1 phosphorylation indeed results in dissociation of the chromatin remodeler 

Chromodomain Helicase DNA Binding Protein 3 (CHD3) (Goodarzi et al. 2011), allowing 

the opposing imitation switch (ISWI) remodeler to promote chromatin relaxation (Klement 

et al. 2014). In addition to KAP1 phosphorylation, desumoylation of KAP1 by the SUMO1/

Sentrin Specific Peptidase 7 (SENP7) also regulates this pathway (Garvin et al. 2013).

Besides chromatin decompaction, another striking feature of the response to DNA damage 

in heterochromatin domains is the relocation of DNA lesions (Amaral et al. 2017). Indeed, 

the decompaction of damaged heterochromatin at pericentromeres (Chiolo et al. 2011; 

Janssen et al. 2016) and the inactive X (Müller et al. 2013) is accompanied with a relocation 

of DSBs to the periphery of heterochromatin domains and to the nuclear periphery in 

Drosophila. Notably, a similar relocation of DSBs has been observed at centromeric 

chromatin (Tsouroula et al. 2016) and nucleoli (Torres-Rosell et al. 2007; van Sluis and 

McStay 2015; Harding et al. 2015), DSBs being repaired by HR at the periphery of the 

domains. The mechanisms underlying the relocation of pericentromeric DSBs have been 

extensively investigated. It has been shown that DSB relocation relies at least in part on the 

activation of DNA damage checkpoint kinases in Drosophila and requires functional DNA 

end resection both in Drosophila and mouse cells (Chiolo et al. 2011; Tsouroula et al. 2016). 

The molecular details of how resection drives DSB mobility are still elusive. In this respect, 

it would be important to examine the possible contribution of chromatin remodeling factors, 

which promote DSB mobility in yeast (Dion and Gasser 2013). Moreover, in light of recent 

studies involving nuclear actin and myosin in the DNA damage response (Belin et al. 2015; 

Lottersberger et al. 2015; Kulashreshtha et al. 2016; Aymard et al. 2017), it will be 

interesting to investigate the role of cytoskeletal and motor proteins in this process. 

Relocation of DSBs also involves demethylation of the heterochromatin mark H3K56me3 

by the Lysine Demethylase 4A (KDM4A) in Drosophila cells (Colmenares et al. 2017). 

Despite the strong similarities between model organisms regarding the mobility of 

heterochromatic DSBs, there are also mechanistic discrepancies, with pericentromeric DSBs 

being ultimately relocated to the nuclear periphery in Drosophila cells (Ryu et al. 2015; Ryu 

et al. 2016), which so far has not been observed in mouse cells (Tsouroula et al. 2016). In 

addition, exclusion of the RAD51 recombinase from heterochromatin domains is dependent 

on HP1 and Structural Maintenance of Chromosomes (SMC) 5/6 in Drosophila (Chiolo et 
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al. 2011) and not in mouse cells (Tsouroula et al. 2016). Functionally, the dynamic 

relocation of DSBs resulting in their extrusion from heterochromatin domains is thought to 

be critical for the prevention of illegitimate recombination between heterochromatic repeats 

through a spatial separation between DNA end resection and homology search (Fig. 3).

Even though heterochromatin is markedly reorganized in response to DNA damage to 

control and facilitate repair, somehow surprisingly, chromatin silencing components 

including HP1 and H3K9me2/3 appear to accumulate at euchromatic damage sites. In 

particular, the heterochromatin component HP1 is required for DNA repair and is mobilized 

in response to DNA damage, being recruited to both UV- and laser-induced DNA lesions in 

a H3K9me3-independent manner in mammalian cells (Luijsterburg et al. 2009; Dinant and 

Luijsterburg 2009; Baldeyron et al. 2011) HP1 is loaded at DSBs together with the Suv39H1 

methyltransferase, which deposits H3K9me3 resulting in local spreading of silencing marks 

spanning several kilobases around DSBs (Ayrapetov et al. 2014). Interestingly, deposition of 

silencing epigenetic marks is also favored at sites of replication stress, although the 

underlying mechanisms are not fully elucidated yet (Nikolov and Taddei 2015). The 

deposition of silencing marks at euchromatic DSBs was proposed to promote DNA damage 

signaling (Ayrapetov et al. 2014) and may also contribute to transcriptional silencing in 

response to DNA damage (Capozzo et al. 2017).

Conclusions and perspectives

DNA lesions arise in all chromatin compartments and among them compact heterochromatin 

domains pose major constraints to DNA damage repair. In recent years, exciting progress 

has been made in understanding how heterochromatin regulates DNA damage formation, 

signaling and repair, with the characterization of repair pathways operating in distinct 

heterochromatin domains. Recent studies have also identified important heterochromatin 

alterations that accompany the DNA damage response. However, mechanistic insights into 

the reorganization of damaged heterochromatin are still missing, and their functional 

relevance is not yet completely understood. Most importantly, whether and how the original 

heterochromatin state is restored after DNA damage repair is still an open question. Future 

studies will address this important issue and dissect the mechanisms for heterochromatin 

maintenance following genotoxic stress. This may also shed new light on heterochromatin 

instability associated with tumorigenesis and on the heterochromatin alterations that arise 

during cellular aging (Criscione et al. 2016).
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Figure 1. Main heterochromatin domains and their distinctive features in mammalian cells.
Constitutive and facultative heterochromatin domains are depicted and their characteristic 

histone variants, modifications and associated proteins are listed. Although it is not 

heterochromatin per se, we also consider centromeric chromatin, which is rich in repetitive 

sequences and surrounded by constitutive heterochromatin domains. CENP: centromere 

protein, HC: heterochromatin, HP1: heterochromatin protein 1, LAD: lamina-associated 

domain, NAD: nucleolus-associated domain, PRC2: polycomb repressive complex 2, 

TRF1/2: telomeric repeat binding factor 1/2.
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Figure 2. DNA damage repair in heterochromatin domains.
a Balance between repair efficiency and mutation rates in euchromatin (EC) and 

heterochromatin (HC). b Compartmentalization of DNA double-strand break (DSB) repair 

and nucleotide excision repair (NER) pathways in the mammalian cell nucleus. A-EJ: 

alternative end-joining, GG-NER: global genome NER, HR: homologous recombination, 

LAD: lamina-associated domain, NAD: nucleolus-associated domain, NHEJ: non-

homologous end-joining, TC-NER: transcription-coupled NER.
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Figure 3. Heterochromatin reorganization in response to DNA damage.
Main alterations of heterochromatin domains in response to DNA double-strand breaks 

(DSBs, blue stars) and functional relevance. HC: heterochromatin, LAD: lamina-associated 

domain, NAD: nucleolus-associated domain.
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