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Purpose: Sepsis is a serious life-threatening condition characterised by multi-organ failure due to a disturbed immune response
caused by severe infection. The pathogenesis of sepsis is unclear. The aim of this article is to identify potential diagnostic and
prognostic biomarkers of sepsis to improve the survival of patients with sepsis.
Methods: We downloaded 7 datasets from Gene Expression Omnibus database and screened the immune-related differential genes
(IRDEGs). The related functions of IRDEGs were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). CIBERSORT was used to evaluate the infiltration of the immune cells, and Pearson algorithm of R software was
used to calculate the correlation between the immune cell content and gene expression to screen the genes most related to immune cells
in sepsis group, which were intersected with IRDEGs to obtain common genes. Key genes were identified from common genes based
on the area under the receiver operating characteristic curve (AUC) greater than 0.8 in the 6 datasets. We then analyzed the predictive
value of key genes in sepsis survival. Finally, we verified the expression of key genes in patients with sepsis by PCR analysis.
Results: A total of 164 IRDEGs were obtained, which were associated mainly with inflammatory and immunometabolic responses.
Ten key genes (IL1R2, LTB4R, S100A11, S100A12, SORT1, RASGRP1, CD3G, CD40LG, CD8A and PPP3CC) were identified with
high diagnostic efficacy. Logistic regression analysis revealed that six of the key genes (LTB4R, S100A11, SORT1, RASGRP1, CD3G
and CD8A) may affect the survival prognosis of sepsis. PCR analysis confirmed that the expression of seven key genes (IL1R2,
S100A12, RASGRP1, CD3G, CD40LG, CD8A and PPP3CC) was consistent with microarray outcome.
Conclusion: This study explored the immune and metabolic response mechanisms associated with sepsis, and identified ten potential
diagnostic and six prognostic genes.
Keywords: sepsis, diagnostic biomarker, prognostic biomarkers

Introduction
Sepsis is a common clinical emergency and critical illness, and is regarded as one of the life-threatening infectious
diseases.1 There are approximately 48.9 million septic patients and 11 million septic patients die worldwide each year,
accounting for 19.7% of all the global deaths.2

From the perspective of immunology, the essence of sepsis is life-threatening multiple organ dysfunction caused by
immune response and regulation disorder caused by severe infection.3 In other terms, sepsis progresses from excessive
immune activation to widespread immunosuppression.4 What is more, the main cause of sepsis death is important organ
dysfunction, which is characterized by impaired vascular barrier function, disordered immune regulation, excessive
coagulation, impaired vascular regulation and ischemia, which further leads to multiple organ failure and death.3

Growing evidence supports immunosuppression as a major cause of sepsis-related deaths,5 and the main reason of
immunosuppression is the death of immune cells, especially the apoptosis of T and B lymphocytes.6–8

Sepsis is considered a medical emergency because it can rapidly develop into organ dysfunction and death even if
active medical treatment is taken immediately.9 Although our understanding of the pathogenesis of sepsis has progressed,
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it is still a worldwide health challenge due to high morbidity and high mortality. In the last few years, many technologies
have been developed to diagnose sepsis reliably and quickly, but none of them is widely used in clinical practice.10,11

Bioinformatics analysis helps people to explore the molecular mechanisms underlying disease development and
provides a new and effective method for identifying potential diagnostic biomarkers, assessing prognosis and redirecting
treatment. Therefore, to better improve early diagnosis techniques and optimise treatment of sepsis, we use bioinfor-
matics to identify diagnostic and prognostic relevant biomarkers and potential therapeutic targets for sepsis.

Materials and Methods
Microarray Data
We downloaded data from the Gene Expression Omnibus (GEO) database, the largest and most complete public gene
expression data resource in the world today.12 The array-based gene expression profile dataset GSE69528 included whole
blood samples from 83 septic patients and 55 uninfected controls. The array-based gene expression profile dataset GSE13904
included whole blood samples from 52 septic children, 106 septic shock children and 18 normal children. The array-based
gene expression profile dataset GSE25504 included whole blood samples from 25 sepsis-infected human neonates and 37
controls. The array-based gene expression profile dataset GSE26440 included whole blood samples from 98 septic shock
children and 32 controls. The array-based gene expression profile dataset GSE28750 included whole blood samples from 10
septic patients and 20 controls. The array-based gene expression profile dataset GSE145227 included peripheral blood
mononuclear cell samples from 10 septic children and 12 controls. The array-based gene expression profile dataset
GSE54514 included whole blood samples from 26 septic survivors, 9 sepsis non-survivors and 18 controls.

Screening for Differentially Expressed Genes (DEGs) from Blood Microarray Datasets
of Sepsis Patients
DEGs between sepsis patients and control individuals in GSE69528 were screened by the “limma” package13 and
volcano plots of DEGs were plotted using the “ggplot2” package14 to show the differential expression. P < 0.05 and |
log2FC |> 1 were considered statistically significant.

Screening of Immune-Related DEGs
From the Immunology Database and Analysis Portal (IMMPORT) database (https://www.immport.org/home), we down-
loaded totaling 2483 immune-related genes (IRGs). The overlapping genes between IRGs and DEG were identified as
immune-related differential DEGs (IRDEGs) by Venn diagram analysis, and were analysed by R language and cluster
analysis packages for subsequent Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia (KEGG) pathway
enrichment analysis.

Estimate the 22 Immune Cell Types in Sepsis and Screen the Genes Most Related to
Immune Cells in the Sepsis Group
Cibersort R package was used for cellular immune infiltration analysis to obtain the immune cell content matrix.15 The
Pearson algorithm of R software was applied to calculate the correlation between the cell content and gene expression in
the sepsis group samples, and the genes with a correlation coefficient greater than 0.7 were further intersected with
IRDEGs to obtain common genes.

Screening Key Genes According to Receiver Operating Characteristic Curve Analysis
We calculated the area under the receiver operating characteristic curve (AUC) for common genes by using the pROC
package in R16 in the six datasets, and visualized the results by using ggplot2. We selected genes with an AUC greater
than 0.8 in all six datasets as the key genes for subsequent analyses.
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Expression of Key Genes
We used R software and the ComplexHeatmap package to calculate the expression difference of key genes between
septic patients and controls in 6 datasets. Further, we used Spearman analysis and Circlize package in R to calculate the
correlation between key genes and then visualized the results.

Correlation Analysis of Key Genes and Immune Infiltrating Cells
We performed Spearman correlation analysis of key genes and immune infiltrating cells using R software and the
ggstatsplot package, and visualised the results using the ggplot2 package.

TF-miRNA-mRNA Interaction Analysis
We obtained miRNA-key gene interactions from TarBase17 and mirtarbase18 to identify regulatory miRNAs that affect
key genes at the post-transcriptional level. Meanwhile, in order to determine the regulatory TF controlling miRNA, TF-
miRNA interaction was obtained using Jaspar database.19 All of the above use NetworkAnalyst to analyze topology
parameters (ie, degree and medium centrality).20 We further used Cytoscape software21 to integrate the miRNA-target
gene network and the TF-miRNA network to construct a TF-miRNA-target network to discover major regulatory genes.

Associations Between Key Genes and Diseases
The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public database describing gene–disease
interactions and providing information on gene–disease interactions.22 Ten key genes are input into the gene search box
of CTD database one by one, and the diseases associated with each key gene can be obtained respectively. We therefore
use these data to identify and analyse associations between key genes and diseases, and to understand the diseases in
which key genes primarily act.

Functional Enrichment in Key Gene
The AmiGO database (v2.0; http://AmiGO.geneontology.org/AmiGO/) is a web application that is primarily used to
query, browse, visualize and download gene ontologies and annotations.23 We used this database to confirm the
enrichment of key sepsis-related genes that have been identified in this study.

Predictive Value of Key Genes in Sepsis Death
Using the data of the dataset GSE54514, the selected 10 key genes, gender, age, Acute Physiology and Chronic Health
Evaluation II (APACHE II) score, and neutral percentage were used to perform multivariate and univariate regression
analysis on the prognosis of death. APACHE II is one of the ICU scoring systems, higher scores suggest an increased severity.

Patient Enrollment and Sample Collection
From March 23, 2022 to March 30, 2022, patients diagnosed with sepsis in the Department of critical medicine of the First
Affiliated Hospital of Chongqing Medical University were included in the study. We collected samples at the first time of
admission (generally within 1 hour after admission) of patients with sepsis before the use of antibiotics. The follow-up
treatment was carried out according to the routine treatment scheme. This part of the study was approved by the ethics
committee of the First Affiliated Hospital of Chongqing Medical University (ethic reference number: 2022-02). Written
informed consent was obtained from all donors in accordance with the Declaration of Helsinki and under Institutional
Review Board–approved protocols. The inclusion criteria were: (1) the patient met the diagnostic criteria of sepsis 3.0,24 (2)
the patient was aged between 18 and 90 years, and (3) the patient was hospitalized for more than 24 hours. The following
patients were excluded: (1) using drugs that affect immunity, (2) having malignant tumors, and (3) pregnancy or lactation.

Real-Time PCR Analysis
Total RNAwas extracted from whole blood using trlzogen reagent (Tiangen biochemical technology (Beijing) Co., Ltd).
We use high-capacity cDNA reverse transcription kit (TaKaRa TB Green Premix Ex Taq II, RR820A) and first-strand
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cDNA synthesis kit (TaKaRa PrimeScript RT reagent Kit, RR0474) for RNA reverse transcription and first-strand DNA
synthesis. Specific PCR primer pairs are listed in Table 1. GAPDH was used for internal control, and 2–ΔΔCT method
was used to calculate relative mRNA expression level.

Statistical Analysis
Cox regression analysis was conducted at both univariate and multivariate levels to analyze independent factors affecting
prognosis by using R software and Survival package. Statistical analysis and visualisation were performed using R3.6.3
and ggplot2. Statistical significance was calculated by Student’s t-test, Mann–Whitney U-test, chi-square test or Fisher’s
exact test (as appropriate). Statistical tests were bilateral tests, and P values less than 0.05 were considered statistically
significant.

Results
Identification of DEGs
The flow chart of this study is shown in Figure 1. In the dataset GSE69528, 1572 DEGs were screened between sepsis
patients and controls in total, of which 755 were up-regulated genes and 807 were down-regulated genes (Figure 2A).
There are 164 overlapping genes (IRDEGs) between IRGs and DEGs. The Venn diagram is shown in Figure 2B.

GO and KEGG Pathway Enrichment Analyses of IRDEGs
IRDEGs obtained in the previous step are used for GO and KEGG analysis. BP associated with GO terms were mainly
enriched in T cell activation, neutrophil degranulation, neutrophil activation, lymphocyte differentiation. CC were
primarily associated with vesicle lumen, external side of plasma membrane, cytoplasmic vesicle lumen, secretory granule
lumen. MF were mainly involved in receptor-ligand activity, cytokine receptor activity, MHC protein complex binding
(Figure 2C).

Table 1 Specific PCR Primer Pairs

PCR Primer Primer Sequence Product Length (bp)

h-IL1R2-F GCGGGAGTTCAGGCTGGAAG 184
h-IL1R2-R TGGCAGAAGCCACAGAGCAC

h-LTB4R-F GCCCAAGGCACCTGGAGTTT 162
h-LTB4R-R CGCCTTGGTGCGTAGCTTCT

h-S100A11-F GACTGAGCGGTGCATCGAGT 162

h-S100A11-R ATGCGGTCAAGGACACCAGG
h-S100A12-F CGGAAGGGGCATTTTGACACC 187

h-S100A12-R TCAGCGCAATGGCTACCAGG

h-SORT1-F GGCTCCTGCAAAGCTGACCT 200
h-SORT1-R TGGGCCATGCTCCATGTGTC

h-RASGRP1-F GGCCTGGGCTTTCCTCACAA 188

h-RASGRP1-R ACTGGGTTCTTGGCTCGCTT
h-CD3G-F GGAGTTCGCCAGTCGAGAGC 185

h-CD3G-R AGGAGGAGAACACCTGGACTAC

h-CD40LG-F GCAACCAGGTGCTTCGGTGT 168
h-CD40LG-R GTGGGCTTAACCGCTGTGCT

h-CD8A-F GGAGGCACCCATGCCATCTC 190

h-CD8A-R TGAGACAGGGGCCTCGGAAA
h-PPP3CC-F ACACTGTCCGAGGGTGCTCT 144

h-PPP3CC-R AGCCTGTGGCTTGGCTCTTC

h-GAPDH-F GACCTGACCTGCCGTCTA 83
h-GAPDH-R AGGAGTGGGTGTCGCTGT

Abbreviation: PCR, polymerase chain reaction.
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KEGG pathway enrichment analysis of IRDEGs was mainly enriched in T cell receptor signaling pathway, cytokine–
cytokine receptor interaction, Th17 cell differentiation, natural killer cell mediated cytotoxicity, Th1 and Th2 cell
differentiation and Primary immunodeficiency (Figure 2D).

Immune Infiltration Analysis
To estimate 22 immune cell types, we used the Cibersort R software package to reveal the infiltration of 22 immune cell
subsets in sepsis by analyzing the GSE69528 dataset. The box plot of the immune cell difference showed that, compared
with the control sample, innate immune cells (such as mast cells, macrophages and neutrophils) infiltrated more, while
T cells (CD4, CD8), NK cells infiltrated less, as shown in Figure 3A. Figure 3B shows the patterns of 22 subpopulations
of immune cells’ proportion in sepsis and control group. The heat map of immune cell infiltration between the septic
group and the control group is shown in Figure 3C.

To screen the most relevant genes of immune cells in sepsis group, the Pearson algorithm of R software was used to
calculate the correlation between the content of immune cells and gene expression in the sepsis group samples. A total of
441 genes with a correlation coefficient greater than 0.7 were obtained, and a total of 27 common genes were obtained by
further intersecting with IRGs and DEGs (Figure 4A).

Screening Key Genes According to the Diagnostic Value
To further screen the key genes with high diagnostic efficiency, we calculated the AUC values of 27 common genes in six
datasets (GSE13904, GSE26440, GSE28750, GSE25504, GSE69528 and GSE145227). Finally, we identified ten genes
with AUC values greater than 0.8 in six datasets and defined them as key genes (Figure 4B). Figure 4C–H shows the
ROC curve of up-regulated genes (IL1R2, LTB4R, S100A11, S100A12 and SORT1); Figure 4I–N shows the ROC curve
of down-regulated genes (RASGRP1, CD3G, CD40LG, CD8A and PPP3CC).

Figure 1 Flow chart of this study.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S368782

DovePress
6059

Dovepress Huang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Subsequent Analysis of Key Genes: Expression, Regulation and Correlation with
Immune Cells
In order to explore the expression in other data sets, upstream regulation mechanism and correlation with immune cells of
these key genes, we made further analysis with R software. Among key genes, IL1R2, LTB4R, S100A11, S100A12 and
SORT1 were up-regulated in sepsis, while RASGRP1, CD3G, CD40LG, CD8A and PPP3CC were down-regulated.
Importantly, the differential expression patterns of these key genes were consistent in the above 6 datasets (Figure 5A).
We studied TF-miRNA-mRNA interactions (Figure 5B) and detected central regulatory biomolecules (TFs and miRNAs)
using topological parameters. Correlation analysis results show that there is a positive correlation between genes that are
regulated in the same direction, and there is a significant negative correlation between up-regulated genes and down-
regulated genes (Figure 5C). Correlation between key genes and immune infiltrating cells showed that the up-regulated
genes were significantly positively correlated with macrophages, neutrophils and memory B cells, and negatively
correlated with T cells (CD4/CD8) and NK cells, the results of down-regulated genes are just opposite to those of up-
regulated genes (Figure 5D).

Functional Enrichment in Key Genes
We used AmiGO database to confirm GO term enrichment for identified key genes involved in sepsis (Table 2). To
analyze the association between key genes and disease and GO term enrichment for key genes, we used CTD and amigo

Figure 2 Identification and functional analysis of differentially expressed genes (A) volcano map, (B) Venn of GSE69528 and IMMPORT database, (C) BP, CC, MF analysis,
(D) KEGG analysis).

https://doi.org/10.2147/IJGM.S368782

DovePress

International Journal of General Medicine 2022:156060

Huang et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


database for further research. The CTD databases show that key genes are mainly targeted in inflammatory and immune-
related diseases, including sepsis, acute kidney injury, acute lung injury and multiple organ dysfunction (Table 3).

Predictive Value of Key Genes in Sepsis Survival
To determine the predictive value of key genes for sepsis survival, we performed univariate and multivariate logistic
regression analysis. Among key genes, univariate regression analysis showed that 6 genes (LTB4R, S100A11, SORT1,
RASGRP1, CD3G and CD8A) expression were significantly associated with sepsis survival. Multivariate regression
analysis showed that S100A11 was an independent prognostic factor for sepsis survival (Table 4).

In the comparison of survival and non-survival groups of sepsis, the expression of down-regulated genes (RASGRP1,
CD3G and CD8A) were significantly decreased in the survival group; the expression of up-regulated genes (LTB4R,
S100A11, SORT1) increased significantly in the survival group (Figure 6).

Our results revealed that the 6 key genes expression levels are significantly associated with survival in sepsis. Most
importantly, multivariate analysis showed that the S100A11 was an independent and favorable marker of prognosis in
patients with sepsis. Therefore, the expression of S100A11 has the potential to predict the prognosis of patients with
sepsis.

PCR Validation of Key Gene Expression Profiles
The expression of 10 key genes in sepsis patients (n = 6) and healthy controls (n = 6) was compared by real-time
quantitative PCR. The results showed that compared with the control group, the expression of genes (RASGRP1, CD3G,

Figure 3 Immune infiltration analysis. (A) Proportional box plot of 22 kinds of infiltrating immune cells in the sample. (B) The proportion and distribution of infiltrating
immune cells in different samples. (C) Proportional heat map of 22 kinds of infiltrating immune cells in the sample.
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CD40LG, CD8A and PPP3CC) was significantly down-regulated and genes (IL1R2, S100A12) was significantly up-
regulated in patients with sepsis (P < 0.05; Figure 7). The expression results of these 7 key genes were consistent with the
trend observed in microarray analysis.

Discussion
Sepsis accounts for one-fifth of deaths worldwide, and the number of deaths from sepsis has doubled compared with
estimates in previous years. Early diagnosis, prognostic evaluation and timely treatment of sepsis play an important role
in reducing mortality. In essence, sepsis is a disorder of immune response caused by severe infection, but the specific
mechanism is still not very clear. Despite years of research, the diagnosis and prediction of sepsis and septic shock still
mainly rely on clinical criteria. Many biomarkers have been studied, none of which have the accuracy required for
clinical practice.25 In this study, bioinformatic analysis of sepsis-related gene expression data was performed to explore
the function of immune cell infiltration in sepsis and to identify molecules involved in causing immune dysregulation in
sepsis to assist in the early diagnosis of sepsis and to predict sepsis prognosis. We found that in patients with sepsis, there
was an increased infiltration of intrinsic immune cells and a significant decrease in adaptive immune cell infiltration. We
identified 10 key genes with high diagnostic efficacy associated with the immune infiltration characteristics of sepsis, and
six of these may be key genes affecting the prognosis of sepsis.

By intersecting immune-related and differentially expressed genes, we identified immune-related differential genes
associated with sepsis. Enrichment analysis revealed that these immune-associated differential genes are mainly involved
in inflammatory and immunometabolic responses. In our analysis, immune cell infiltration in septic patients showed
significantly higher levels of infiltration of certain intrinsic immune cells (eg, macrophages, neutrophils, mast cells) and
reduced levels of infiltration of T cells (CD4, CD8) and NK cells. This is similar to the results of previous studies.25 In
the sepsis host, macrophages generate pro-inflammatory cytokines and chemokines which upregulate the inflammatory
response and fight pathogens by generating a systemic inflammatory response in innate immune cells.26 Neutrophils can
migrate rapidly from the bone marrow in early sepsis, and within a few hours, the number of neutrophils can be 10 times
higher than normal.27 The number of circulating NK cells is significantly reduced in patients with sepsis, possibly due to

Figure 4 Identification of potential diagnostic genes for sepsis. (A) Venn diagram of GSE69528, IMMPORT database and immune infiltrating cell related genes. (B) AUC
value histogram of 10 key genes in 6 datasets. (C–H) ROC values of up-regulated genes (IL1R2, LTB4R, S100A11, S100A12, SORT1). (I–N) ROC values of down regulated
genes (RASGRP1, CD3G, CD40LG, CD8A, PPP3CC).
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increased apoptosis, and the results are associated with increased mortality.28 It has been found that reduced and
dysfunctional NK cells are closely associated with sepsis-induced immunosuppression, leading to a greater susceptibility
to infection and a poorer prognosis for patients.29,30 It is evident that these intrinsic immune cells play an important role
in the regulation of inflammation in sepsis. On the other hand, sepsis increases apoptosis, which may lead to a decrease in
the number of CD4 T cells,31 and significantly reduces the proliferative capacity of CD4 T cells.32 Also, sepsis-induced
apoptosis reduces the number of naive and memory CD8 T cells.33,34 Condotta et al observed increased expression of co-
suppressor molecules (eg, PD-1, LAG-3 and 2B4) and reduced release of effector cytokines (eg, IFN-γ, TNF-α and IL-2),
suggesting that CD8 T cells are depleted in mice and sepsis patients.35–37 Overall, our findings are largely consistent with

Figure 5 Expression and correlation analysis of 10 key genes. (A) Expression of 10 key genes in 6 datasets. (B) TF-miRNA-mRNA network construction (triangle: TF,
square: miRNA, circle: mRNA). (C) Correlation analysis of 10 key genes. (D) Correlation between key genes and immune infiltrating cells, based on Pearson correlation
analysis. Red nodes represent positive correlations, blue nodes represent negative correlations. *P < 0.05, **P < 0.01.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S368782

DovePress
6063

Dovepress Huang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 2 Use the Amigo Database to Analyze the GO Terms of Keygenes

Gene GO Class (Direct) Evidence Reference

IL1R2 Interleukin-1 receptor activity IBA PMID:21873635
LTB4R2 Neuropeptide signaling pathway IBA PMID:21873635

Leukotriene B4 receptor activity IBA PMID:21873635

G protein-coupled peptide receptor activity IBA PMID:21873635
Integral component of plasma membrane IBA PMID:21873635

Inflammatory response IBA PMID:21873635

S100A11 Calcium-dependent protein binding IBA PMID:21873635
Extracellular space IBA PMID:21873635

S100 protein binding IBA PMID:21873635
Calcium ion binding IBA PMID:21873635

Cytoplasm IBA PMID:21873635

Calcium ion binding IBA ZFIN:ZDB-PUB-020724-1
Transition metal ion binding IBA ZFIN:ZDB-PUB-020724-1

Extracellular space IBA PMID:21873635

Calcium-dependent protein binding IBA PMID:21873635
Perinuclear region of cytoplasm IBA PMID:21873635

S100A12 Calcium ion binding IEA GO_REF:0000002

RAGE receptor binding IEA GO_REF:0000107
Xenobiotic metabolic process IEA GO_REF:0000107

Killing of cells of other organism IEA GO_REF:0000107

Positive regulation of I-kappaB kinase/NF-kappaB signaling IEA GO_REF:0000107
Defense response to fungus IEA GO_REF:0000107

Antimicrobial humoral immune response mediated by

antimicrobial peptide

IEA GO_REF:0000107

Nucleus IEA GO_REF:0000107

Cytoplasm IEA GO_REF:0000107

Protein binding IPI PMID:10399917
SORT1 Golgi apparatus IBA PMID:21873635

Post-Golgi vesicle-mediated transport IBA PMID:21873635

Integral component of membrane IBA PMID:21873635
Vesicle organization IBA PMID:21873635

Endocytosis IBA PMID:21873635

Golgi to endosome transport IBA PMID:21873635
Golgi to endosome transport IBA PMID:21873635

Integral component of membrane IBA PMID:21873635

Post-Golgi vesicle-mediated transport IBA PMID:21873635
Vesicle organization IBA PMID:21873635

RASGRP1 Guanyl-nucleotide exchange factor activity IMP PMID:23908768

Calcium ion binding IMP PMID:23908768
Zinc ion binding IMP PMID:23908768

Lipid binding TAS PMID:9582122

Diacylglycerol binding IMP PMID:23908768
Phosphatidylcholine binding IMP PMID:23908768

Identical protein binding IPI PMID:23908768

CD3G Alpha-beta T cell receptor complex IBA PMID:21873635
Positive thymic T cell selection IBA PMID:21873635

Cell surface receptor signaling pathway IBA PMID:21873635

External side of plasma membrane IBA PMID:21873635
Transmembrane signaling receptor activity IBA PMID:21873635

Positive thymic T cell selection IBA PMID:21873635

Alpha-beta T cell receptor complex IBA PMID:21873635

(Continued)
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previous reports that sepsis leads to a significant reduction in CD4 and CD8 T cells, which is a major driver of impaired
immune responses and reduced host antimicrobial capacity.38–40

We further identified 10 key genes (IL1R2, LTB4R, S100A11, S100A12, SORT1, RASGRP1, CD3G, CD40LG,
CD8A and PPP3CC) with high diagnostic efficacy by AUC analysis, all of which had AUC values greater than 0.8 for
the diagnosis of sepsis in six datasets, and therefore they may be early diagnostic markers for sepsis. Analysis of the
correlation between these 10 key genes and immune infiltrating cells revealed that their differential expression was
mainly associated with high levels of infiltration of macrophages and neutrophils and low levels of infiltration of T cells
(CD4, CD8) and NK cells significantly. We speculate that upregulation of the key genes IL1R2, LTB4R, S100A11,
S100A12, SORT1 and downregulation of the key genes RASGRP1, CD3G, CD40LG, CD8A and PPP3CC may play an
important role in the enhancement of intrinsic immunity and suppression of adaptive immunity during the development
of sepsis. Specifically, our PCR results showed that the expression levels of 7 key genes (IL1R2, S100A12, RASGRP1,
CD3G, CD40LG, CD8A and PPP3CC) were consistent with the results of microarray analysis, while other three genes
(LTB4R, S100A11, SORT1) were not significantly different. This inconsistency may be related to different assay

Table 2 (Continued).

Gene GO Class (Direct) Evidence Reference

Transmembrane signaling receptor activity IBA PMID:21873635

External side of plasma membrane IBA PMID:21873635

Cell surface receptor signaling pathway IBA PMID:21873635
CD40LG Membrane IEA ZFIN:ZDB-PUB-020724-1

Cytokine activity IEA ZFIN:ZDB-PUB-020723-1

Tumor necrosis factor receptor binding IEA ZFIN:ZDB-PUB-020724-1
Immune response IEA ZFIN:ZDB-PUB-020724-1

Integral component of membrane IEA ZFIN:ZDB-PUB-020723-1

Membrane IEA ZFIN:ZDB-PUB-020723-1
Extracellular space IEA ZFIN:ZDB-PUB-020723-1

Positive regulation of immunoglobulin production IDA PMID:19494299

CD40 receptor binding IDA PMID:19494299
External side of plasma membrane IDA PMID:19494299

CD8A Plasma membrane IEA ZFIN:ZDB-PUB-120306-4

Integral component of membrane IEA ZFIN:ZDB-PUB-020723-1
Membrane IEA ZFIN:ZDB-PUB-020723-1

Molecular function ND ZFIN:ZDB-PUB-031118-1

MHC class I protein complex binding IEA GO_REF:0000107
External side of plasma membrane IEA GO_REF:0000107

Integral component of membrane IEA GO_REF:0000043

Plasma membrane raft IEA GO_REF:0000107
Integral component of membrane IEA GO_REF:0000043

MHC class I protein complex binding IEA GO_REF:0000107

PPP3CC Cytoplasm IBA PMID:21873635
Calcineurin-mediated signaling IBA PMID:21873635

Calmodulin binding IBA PMID:21873635

Calmodulin-dependent protein phosphatase activity IBA PMID:21873635
Calcineurin complex IBA PMID:21873635

Calmodulin binding IEA ZFIN:ZDB-PUB-020723-1

Phosphoprotein phosphatase activity IEA ZFIN:ZDB-PUB-020723-1
Hydrolase activity IEA ZFIN:ZDB-PUB-020723-1

Calmodulin-dependent protein phosphatase activity IEA ZFIN:ZDB-PUB-020723-1
Hydrolase activity IEA ZFIN:ZDB-PUB-020723-1

Abbreviation: GO, Gene Ontology.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S368782

DovePress
6065

Dovepress Huang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 3 Diseases Related to Key Gene Regulation

Gene Disease Name Disease ID Inference
Score

Reference
Count

IL1R2 Inflammation MESH:D007249 143.71 259

Immune System Diseases MESH:D007154 57.41 23

Sepsis MESH:D018805 14.49 18
Immunologic Deficiency Syndromes MESH:D007153 36.92 6

Autoimmune Diseases MESH:D001327 32.27 12

RASGRP1 Acute Kidney Injury MESH:D058186 97.07 391

Acute Lung Injury MESH:D055371 52.73 68
Sepsis MESH:D018805 27.87 30

Immune System Diseases MESH:D007154 41.24 17

Anti-Neutrophil Cytoplasmic Antibody-Associated
Vasculitis

MESH:D056648 12.88 51

CD3G Inflammation MESH:D007249 127.93 209
Acute Kidney Injury MESH:D058186 63.38 183

Lung Injury MESH:D055370 74.6 77

Sepsis MESH:D018805 15.26 17
Autoimmune Diseases MESH:D001327 26.01 8

CD8A Acute Kidney Injury MESH:D058186 60.12 269
Inflammation MESH:D007249 122.47 265

Acute Lung Injury MESH:D055371 55.32 39

Sepsis MESH:D018805 33.58 21
Immune System Diseases MESH:D007154 37.71 15

CD40LG Inflammation MESH:D007249 176.78 321
Acute Kidney Injury MESH:D058186 101.01 193

Acute Lung Injury MESH:D055371 55.62 70

Sepsis MESH:D018805 43.35 37
Immune System Diseases MESH:D007154 40.23 13

LTB4R Inflammation MESH:D007249 66.35 105
Acute Kidney Injury MESH:D058186 27.17 120

Liver Failure, Acute MESH:D017114 19.26 160

Acute Lung Injury MESH:D055371 16.25 8
Sepsis MESH:D018805 2.6 2

PPP3CC Acute Kidney Injury MESH:D058186 44.08 235
Liver Failure, Acute MESH:D017114 29.48 167

Inflammation MESH:D007249 91.18 136

Immune System Diseases MESH:D007154 29.59 15
Sepsis MESH:D018805 15.16 9

S100A11 Acute Kidney Injury MESH:D058186 150.56 420
Inflammation MESH:D007249 237.55 337

Acute Lung Injury MESH:D055371 55.04 101

Sepsis MESH:D018805 39.53 38
Immune System Diseases MESH:D007154 46.9 20

S100A12 Inflammation MESH:D007249 58.08 173
Acute Kidney Injury MESH:D058186 20.05 106

Acute Lung Injury MESH:D055371 20.15 44
Shock, Septic MESH:D012772 3.32 15

Sepsis MESH:D018805 6.66 13

(Continued)
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methods, sample size, patient heterogeneity and disease duration. Later experiments with larger sample sizes are needed
for validation.

The high mortality rate of sepsis has long plagued the world. Immunosuppression is now largely recognised as
a major cause of sepsis-related death, with T-cell depletion being one of the most serious factors.5,41 Significant
reductions in NK-cell numbers have also been associated with increased mortality.28 However, the exact mechanisms
are not well understood. To further understand the association between key genes and the survival prognosis of sepsis, we
used logistic regression analysis to identify 10 key genes, and the results suggested that six key genes (LTB4R, S100A11,
SORT1, RASGRP1, CD3G and CD8A) might affect the survival prognosis of sepsis, among which S100A11 might be an
independent prognostic factor for survival. These six key genes were significantly differentially expressed in the survival
group compared to the non-survival group of sepsis, further suggesting that they may be prognostic markers of sepsis.

SA10012 is mainly expressed and secreted by neutrophils and is an important pro-inflammatory factor that plays
an important role in microbial resistance, regulation of apoptosis and involvement in inflammatory and immune
responses.42 It has been shown that S100A12 expression levels are significantly upregulated in neonatal septic rats
and that it has a positive pro-inflammatory role in the inflammatory response, a role that is important in the
development and progression of sepsis.42 Whereas S100A11 was mainly involved in the process of tumor develop-
ment in previous studies, it is not clear whether it is associated with disease regulation in sepsis. We found that
S100A11 expression was upregulated in septic patients and independently affected the prognosis of septic patients,
the mechanism of which needs further investigation. RASGRP1 is a key signaling molecule essential for lymphocyte

Table 4 Univariate and Multiple Regressive Analysis of Death for Sepsis

Characteristics Total (N) Univariate Analysis Multivariate Analysis

Hazard Ratio (95% CI) P value Hazard Ratio (95% CI) P value

Sex 127

Female 75 Reference
Male 52 2.376 (1.092–5.167) 0.029 3.766 (1.473–9.625) 0.006
APACHE II score 127 1.121 (1.047–1.201) 0.001 1.098 (1.023–1.179) 0.009
Neutrophil proportion 126 1.350 (0.055–33.301) 0.854
IL1R2 127 0.704 (0.208–2.389) 0.574

LTB4R 127 0.376 (0.187–0.759) 0.006 1.639 (0.460–5.830) 0.446

S100A11 127 0.384 (0.217–0.678) <0.001 0.329 (0.120–0.898) 0.030
S100A12 127 0.723 (0.473–1.105) 0.134

SORT1 127 0.408 (0.223–0.749) 0.004 0.668 (0.300–1.489) 0.324

RASGRP1 127 3.361 (1.107–10.199) 0.032 1.114 (0.117–10.569) 0.925
CD3G 127 6.421 (2.150–19.180) <0.001 2.487 (0.521–11.876) 0.254

CD40LG 127 0.410 (0.035–4.817) 0.478

CD8A 127 1.606 (1.076–2.397) 0.020 0.982 (0.444–2.175) 0.965
PPP3CC 127 2.186 (0.476–10.035) 0.315

Notes: APACHE II score: Acute Physiology and Chronic Health Evaluation II score. All P values less than 0.05 are shown in bold font.

Table 3 (Continued).

Gene Disease Name Disease ID Inference
Score

Reference
Count

SORT1 Inflammation MESH:D007249 173.13 229

Acute Kidney Injury MESH:D058186 91.31 214
Acute Lung Injury MESH:D055371 46.1 70

Sepsis MESH:D018805 26.53 17

Multiple Organ Failure MESH:D009102 33.14 8
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Figure 6 (A-F) Expression of RASGRP1, CD8A, CD3G, SORT1, LTB4R, S100A11, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 7 (A-G) Expression of CD40LG, PPP3CC, RASGRP1, CD8A, CD3G, S100A12 and IL1R2, respectively.
Notes: *P < 0.05, **P < 0.01, ***P < 0.001.

https://doi.org/10.2147/IJGM.S368782

DovePress

International Journal of General Medicine 2022:156068

Huang et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


function. Immunologically, RASGRP1 deficiency is characterized by reduced CD4 and CD8 T-cell lymphocytes and
impaired proliferation, as well as impaired B-cell development and proliferation, and abnormal NK cytotoxic
function.43,44 RASGRP1-deficient mice have shown significant T-cell lymphopenia and immunodeficiency45 and
are more susceptible than wild-type mice to sepsis infections caused by cecum ligation and puncture.46 Similarly,
we found reduced levels of RASGRP1 expression in sepsis patients, suggesting that impaired immunity in sepsis
patients may be associated with low RASGRP1 expression. Therefore, we speculate that RASGRP1 may play a very
critical role in the development of sepsis. LTB4R is the receptor for LTB 4, which induces the recruitment of CD4
and CD8 effector T cells as well as helper T cells to inflammatory tissues,47,48 and the recruited immune cells will
promote inflammation by secreting cytokines and chemokines. Sort1 may participate in innate immunity by regulating
inflammation and phagocytosis, as well as participating in adaptive immunity by controlling the maturation of
immune cells and regulating the activation of T cells and NK cells.49 CD3G is involved in the formation of T cell
receptor CD3 complex and is an important regulator of T cell development and differentiation.50 Its defects are
related to T cell immunodeficiency.51 CD8A is primarily involved in cell-mediated immune defence and T cell
development.52,53 The role of these key genes in sepsis is rarely studied, but the results of our analysis suggest that
they may contribute to the early diagnosis and prognostic assessment of sepsis.

Our research also has some limitations. First of all, because our research is based on multiple public datasets, the
course of sepsis may be inconsistent. Secondly, due to the small sample size and short study time, there is a lack of
patient data, such as blood culture results and mortality. We will increase sample size, extend research time, and add
more patient data in subsequent research.

Conclusions
In conclusion, we identified ten key genes (IL1R2, LTB4R, S100A11, S100A12, SORT1, RASGRP1, CD3G, CD40LG,
CD8A and PPP3CC) as potential diagnostic biomarkers of sepsis. Six key genes (LTB4R, S100A11, SORT1, RASGRP1,
CD3G and CD8A) might affect the survival prognosis of sepsis, among which S100A11 might be an independent
prognostic biomarker for survival. These genes may aid in the early diagnosis and assessment of sepsis, and could serve
as interesting targets for further in-depth research.
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