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Abstract
Background: Allelic-loss studies record data on the loss of genetic material in tumor tissue
relative to normal tissue at various loci along the genome. As the deletion of a tumor suppressor
gene can lead to tumor development, one objective of these studies is to determine which, if any,
chromosome arms harbor tumor suppressor genes.

Results: We propose a large class of mixture models for describing the data, and we suggest using
Bayes factors to select a reasonable model from the class in order to classify the chromosome
arms. Bayes factors are especially useful in the case of testing that the number of components in a
mixture model is n0 versus n1. In these cases, frequentist test statistics based on the likelihood ratio
statistic have unknown distributions and are therefore not applicable. Our simulation study shows
that Bayes factors favor the right model most of the time when tumor suppressor genes are
present. When no tumor suppressor genes are present and background allelic-loss varies, the
Bayes factors are often inconclusive, although this results in a markedly reduced false-positive rate
compared to that of standard frequentist approaches. Application of our methods to three data
sets of esophageal adenocarcinomas yields interesting differences from those results previously
published.

Conclusions: Our results indicate that Bayes factors are useful for analyzing allelic-loss data.

Background
Allelic-loss data
The goal of studies of allelic loss is to determine those loci
in tumor tissue where genetic material has been lost. A
tumor suppressor gene (TSG) is much more likely to lie
on a chromosome arm where there has been significant
allelic loss than elsewhere [1,2]. The statistical challenge
lies in distinguishing between "random" allelic loss that is
expected in a tumor cell population and "nonrandom"
loss that may be biologically meaningful. This corre-
sponds to determining whether there is one group of arms

with background allelic loss versus two groups of arms,
one with background loss rates and one with elevated loss
rates.

Three allelic-loss data sets on esophageal 
adenocarcinomas
Esophageal adenocarcinoma is a form of cancer involving
the cells along the lining of the esophagus. The cause of
esophageal adenocarcinoma is not well understood. The
incidence of this cancer has been increasing rapidly. In
fact, it is one of the fastest growing cancers in the United
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States over the past 20 years [1,3,4]. A strong association
has been established between the pre-malignant condi-
tion known as Barretts esophagus and the development of
adenocarcinomas of the esophagus. Barretts esophagus is
a condition that develops in 10–20% of patients with
chronic gastroesophageal reflux disease. The condition is
characterized by the metaplastic change from normal
squamous to columnar epithelium in the esophagus [1,4].
Approximately 1% of patients with Barretts esophagus
progress to esophageal cancer [3]. Of those who develop
the cancer about 90% will die as a result of the disease [1].

We examine three data sets of allelic-loss on esophageal
adenocarcinomas that attempt to identify the tumor sup-
pressor genes (TSGs) involved in the development of this
disease. These data sets have been previously analyzed
and published. We refer to each data set by the last name
of the first author of the publication. Some of the data sets
record allelic loss on multiple loci per chromosome arm
for some of the arms. However, because the number of
loci evaluated per chromosome arm is not random (i.e.,
chromosome arms suspected of harboring a TSG will be
assessed at more loci than others), we consider only one
locus per chromosome arm. In these cases, we choose data
from the most informative locus for that chromosome
arm.

Our approach
Our general approach to analyzing allelic-loss data can be
described in two main steps. The first step is to choose an
appropriate model for the data using Bayes factors. The
second step is to classify the chromosome arms as harbor-
ing TSGs or not according to the selected model. The
details involved in these two steps are described below.

Results and Discussion
Proposed class of models
A natural way to model allelic-loss data is in terms of a
mixture of two distributions: one distribution corre-
sponds to chromosome arms that harbor TSGs and the
other corresponds to arms that do not. It is reasonable to
expect considerable variability in the loss rates of arms
that harbor TSGs due to the existence of multiple path-
ways leading to the same tumor type [5]. For example,
deletion of a particular TSG may be in the causal pathway
for 60% of tumors of a particular type while another TSG
(or other TSGs) may account for the remaining 40% of the
cases. In addition, it is conceivable that various factors
play a role in background loss rates. For example, factors
such as cell viability, fragility of the chromosome arm,
and the length of telomeres are believed to influence back-
ground loss rates [6]. It is plausible that the non-TSG loci
that contribute to the background loss rate are in fact com-
posed of two biologically different groups of loci. This
group includes loci that are essential for cell viability and

those that are not essential. The essential loci would be
expected to exhibit loss rates considerably lower than that
of the non-essential loci as their function controls the
cell's survival.

We propose a class of mixture models that account for the
variation inherent in this type of data. Specifically, the
class of models we propose is a mixture of two beta-bino-
mial distributions. Let Xi be the number of tumors with
allelic-loss for the ith chromosome arm, and let ni be the
number of informative tumors for the ith chromosome
arm, for i = 1, 2,...,N, where N is the number of chromo-
some arms in the study. The density function for Xi is writ-
ten as follows:

where θ ≡ (η, π1, ω1, π0, ω0) is a vector of unknown param-
eters, η is the mixing probability, πj is the average loss rate,
and ωj is the dispersion parameter for j = 0,1.

The distribution converges to a mixture of two binomial
distributions as both dispersion parameters go to 0 (ω0 →
0 and ω1 → 0). If only one of the dispersion parameters
goes to 0 (ω0 → 0 or ω1 → 0), the distribution reduces to
a mixture of a beta-binomial and a binomial distribution.
Note that the model has only one component when the
mixing parameter is zero (η = 0).

Model selection using Bayes factors
Bayes factors are measures used to compare the fit of two
competing models. We suggest using Bayes factors to
select an appropriate model for the data from the pro-
posed class of mixture models. Let H0 and H1 represent the
models under the null and alternative hypotheses, respec-
tively. When comparing two models, it is of interest to
examine the posterior odds of one model to another. It is
easy to show that the posterior odds of one model to
another is

Equation (1) shows that the posterior odds is calculated as
the product of a term known as the Bayes factor and the
prior odds. The Bayes factor is the marginal likelihood of
the data under H1 divided by the marginal likelihood of
the data under H0, or B10 ≡ Pr(X |H1)/Pr(X|H0). Thus, as
Bayes factors are proportional to the posterior odds of one
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model to another, they are desirable measures to use for
model selection. Note that if the prior odds are assumed
to be 1, then the Bayes factor is equivalent to the posterior
odds.

One can think of the Bayes factor as a Bayesian likelihood
ratio statistic. Like the likelihood ratio statistic, the Bayes
factor is a ratio of likelihoods under two models being
considered. However, while the likelihood ratio statistic is
the ratio of two maximized likelihoods for two compet-
ing, nested models, the Bayes factor is the ratio of two like-
lihoods integrated or averaged over the entire parameter
space and the models need not be nested. An important
consideration with a Bayesian approach is that a prior dis-
tribution is assumed for all of the parameters in the
model. The advantage to this is that one can incorporate
prior information into determining which model is more
appropriate. This is a disadvantage, however, if the Bayes
factor is sensitive to the prior and if the prior has been
chosen incorrectly.

Large Bayes factors are evidence in favor of the alternative
hypothesis. Kass and Raftery (1995) discuss guidelines for
interpreting the measure [7]. Following the authors' sug-
gestion, we transform the Bayes factor to the same scale as
that of the likelihood ratio statistic and use the criterion
that 2lnB10 > 2 implies positive evidence in favor of the
alternative model.

Comparing a uni-component model to a two-component
model would address the question of whether there is one
versus two groups of chromosome arms. Further, compar-
ing a two-component beta-binomial model to a two-com-
ponent binomial model would address whether there is
overdispersion in either group. The advantage of this is
that it provides insight into the number of chromosome
arm groups, whereas standard applicable frequentist tests
will only indicate whether there is one or more groups
[8,9].

Classification
Provided there is sufficient evidence to indicate that there
are two groups of chromosome arms, it is desirable to
identify which chromosome arms belong in which group.
Classification of the chromosome arms can be done by
calculating the conditional probability of group member-
ship of each arm under a given model. If Xi ~ ηf1(xi, ni, θ1)
+ (1 - η)f0(xi, ni, θ0), then it can be shown using Bayes' rule
that

where  is the maximum likelihood estimate (MLE) of θ,
Zi is the group membership of the ith chromosome arm
and Zi = 1 implies that the ith chromosome arm is in the
TSG group. For the analyses here, chromosome arms with
conditional probabilities exceeding 0.5 are classified in
the TSG group. Also note that MLEs are computed using
the nlminb function in S-Plus.

Performance of the Bayes factors
Table 1 presents a description of simulated data sets used
to evaluate the performance of the Bayes factors. One
hundred data sets are generated under each scenario. All
parameters chosen to generate the data are based on the
Barrett esophageal cancer data set discussed later [1].
Under the first scenario, data are generated from a two-
component binomial mixture model, where each group
has a constant loss rate. The two groups are fairly well-sep-
arated with the TSG group's loss rate considerably higher
than the background loss rate. We specify only five chro-
mosome arms to harbor TSGs, which is believed to be typ-
ical. The second scenario is one where there are no TSGs
and the background loss rate follows a beta distribution.
The distributional parameters are chosen by examining
the Barrett data set after removal of the five chromosome
arms with the highest rates of allelic loss (these arms are
implicated by Barrett et al. (1996) [1] as potentially har-
boring TSGs). This gives an expected loss rate of 0.26 and
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Table 1: Description of scenarios used in simulation study

Loss Rates
Scenario Model* Non-TSG** group TSG group

1 Two-component binomial mixture
 = 0.22 (33 arms)

α1 = 0.66 (5 arms)

2 Uni-component beta-binomial α0 ~ β(0.26, 0.07) (38 arms) -
3 Two-component multi-binomial/binomial mixture α0 = 0.22 (33 arms) α1 = (1, 0.80, 0.64, 0.43, 0.43) (5 arms)
4 Two-component multi-binomial/beta-binomial α0 ~ β(0.26, 0.07) (33 arms) α1 = (1, 0.80, 0.64, 0.43, 0.43) (5 arms)

* Model from which data were generated
** TSG: Tumor suppressor gene
† α0: loss rate for non-TSG group. α1: loss rate for TSG group

α0
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a dispersion parameter of 0.07. Under the third scenario
there are two groups of chromosome arms with one group
exhibiting a constant background loss rate of 0.22 and the
second group of five chromosome arms exhibiting varying
and higher rates of allelic loss. In the last scenario, both
groups of chromosome arms have varying loss rates. The
TSG loss rate distribution follows that of Scenario 3 and
the non-TSG loss rate distribution follows that of Scenario
2.

Table 2 presents the percentage of time one model is
favored over the other based on 2ln(Bayes factor) for data
generated under each of the scenarios described in Table
1. For each scenario, a 5 × 5 matrix of pairwise compari-
sons is presented. The rows of the matrix correspond to
models considered under H1 (models appearing in the
numerator of the Bayes factor). The columns of the matrix
correspond to models considered under H0 (models
appearing in the denominator of the Bayes factor).

Table 2: Percentage of time model under H1 is favored over model under H0 for different scenarios For a given scenario, the rows 
indicate the model under H1 while the columns indicate the model under H0. The (i, j)th element in the matrix represents the 
percentage of time the model in the ith row is favored over that in the jth column.

Scenario 1 (α0 = 0.22, α1 = 0.66)
H1/H0 2 bin* 2 bb/bin 2 bb 1 bb 1 bin

2 bin 0 21 75 81 100
2 bb/bin 10 0 80 80 100

2 bb 5 0 0 50 98
1 bb 5 0 0 0 100
1 bin 0 0 0 0 0

Scenario 2 (α 0 ~ β (0.26,0.07))

H1/H0 1 bb 2 bin 2 bb/bin 2 bb 1 bin
1 bb 0 22 21 49 75
2 bin 16 0 24 44 72

2 bb/bin 7 14 0 26 74
2 bb 0 12 0 0 68
1 bin 7 0 7 18 0

Scenario 3 (α0 = 0.22, α1 = (1, 0.80, 0.64, 0.43, 0.43))

H1/H0 2 bb/bin 2 bb 2 bin 1 bb 1 bin
2 bb/bin 0 78 79 98 100

2 bb 1 0 31 100 100
2 bin 0 28 0 87 100
1 bb 0 0 5 0 100
1 bin 0 0 0 0 0

Scenario 4 (α0 ~ β (0.26, 0.07), α1 = (1, 0.80, 0.64, 0.43, 0.43))

H1/H0 2 bb 2 bb/bin 1 bb 2 bin 1 bin
2 bb 0 35 75 97 100

2 bb/bin 9 0 54 99 100
1 bb 0 5 0 72 100
2 bin 0 0 9 0 100
1 bin 0 0 0 0 0

*2 bb: Two-component beta-binomial.
2 bb/bin: Two-component beta-binomial/binomial.
2 bin: Two-component binomial.
1 bb: One-component beta-binomial.
1 bin: One-component binomial.
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For data generated from a two-component binomial
model (Scenario 1), the true model is mostly favored over
the uni-component models. In fact, when comparing the
true model to a uni-component beta-binomial model, the
latter model is only favored 5% of the time. This can be
viewed as a false-negative rate. Note that the Bayes factors
never provide evidence in favor of a uni-component
model in comparisons with either of the other two-com-
ponent models for data from this scenario. Furthermore,
the true model is selected 75% of the time over the two-
component beta-binomial model. The Bayes factors are
ambiguous, however, when comparing the true model to
a two-component beta-binomial/binomial model, where
neither is favored 69% of the time.

For data that follow a uni-component beta-binomial dis-
tribution (Scenario 2), the results are inconclusive 62% of
the time when comparing the true model to the two-com-
ponent binomial model. For twenty-two percent of the
data sets the right model is favored, but 16% of the time,
the two-component model is selected. Thus, this compar-
ison results in a 16% false-positive rate. Similar results are
found when comparing the true model to a two-compo-
nent beta-binomial/binomial model. The Bayes factors
favor the correct model over the two-component beta-
binomial model roughly half the time and favor neither
model the other half. Comparisons between the two-com-
ponent models and the one-component binomial model
not surprisingly show a strong preference for the two-
component models, as they better accommodate the vari-
ability of the data.

The third quarter of Table 2 presents results for data gen-
erated under Scenario 3. The two-component beta-bino-
mial/binomial model is favored in the majority of the
cases over the other models within the class, which makes
sense as this model is most similar to the data-generated
model. Only once is an alternative hypothesis favored
when compared to this model and this is the two-compo-
nent beta-binomial model. When comparing the two-
component beta-binomial/binomial model to the other
two-component models, the Bayes factors do not favor
either of the models being compared about 20 percent of
the time. In general, the two-component models were
mostly favored over the one-component models.

For data generated under Scenario 4, we expect the two-
component beta-binomial model to be chosen over the
other models in the class as this model is closest to the
truth. The results show that when this model is compared
to the two-component binomial or the one-component
beta-binomial, it is mostly favored, and these models are
never selected. As the two-component beta-binomial
model is fairly similar to the two-component beta-bino-
mial/binomial model, however, most of the time neither

model is chosen over the other. The two-component beta-
binomial is favored only 35% of the time, while the two-
component beta-binomial/binomial is favored 9% of the
time. Interestingly, when comparing the one-component
beta-binomial to the two-component binomial, the one-
component model is chosen 72% of the time and the two-
component binomial model is chosen only 5% of the
time. This suggests that the measure is fairly sensitive to
the overdispersion in the two groups. Another example of
this is a comparison between the two-component beta-
binomial/binomial model and the one-component beta-
binomial model. In this case, the two-component model
is only favored 54% of the time, where the uni-compo-
nent model is a better fit to 5% of the data sets, and both
models are equally good fits to the data 41% of the time.

This simulation study demonstrates that the Bayes factors
are an appropriate method of model selection. They per-
form particularly well for data generated from the two-
component models. In particular, most of the time, the
correct model is chosen, and furthermore, reasonable
false-negative rates are observed for comparisons made on
data generated from the two-component binomial model
as well as the two-component beta-binomial/binomial
model. Data generated from a one-component beta-bino-
mial model produces interesting results. Although the
false-positive rates are reasonable when comparing the
one-component beta-binomial model to the other two-
component models (16%, 7% and 0% for the two-com-
ponent binomial, two-component beta-binomial/bino-
mial, and two-component beta-binomial, respectively),
there is a large percentage of time, when neither model is
favored (62%, 69% and 50%). Since both models are
often good fits to the data, it would be difficult to decide
with confidence whether or not there is a second group of
arms in these cases.

Application of methods to data sets
In this section, we apply the methods discussed to three
allelic-loss data sets. Specifically, we use Bayes factors to
choose a reasonable model or set of models for the data
in order to address whether TSGs exist on any of the chro-
mosome arms, and we classify the chromosome arms as
harboring TSGs or not based on the selected model(s).

Table 3 presents a summary of the results for the three
data sets. The set of models chosen by the Bayes factors is
provided along with the individual chromosome arms
that were identified as having TSGs based on these mod-
els. The set of chosen models was comprised of those with
2ln(Bayes factors) exceeding 2 when compared to models
outside the set and with 2ln(Bayes factors) less than 2
when compared to models within the set. Details of the
analysis for each data set are described below, with
slightly more emphasis placed on the first data set.
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The Barrett data set
The Barrett data set records allelic loss on 20 esophageal
adenocarcinomas and two high-grade dysplasias. Figure 1
presents a histogram of the proportion of tumors with
allelic loss for each of the forty chromosome arms studied
(markers were not placed on the short arms of chromo-
somes 13, 14, 15 and 22 as these are too small to study).
Two of the chromosome arms examined do not exhibit
allelic loss (arms 20q and 21p) for any of the tumors
observed. The mean allelic-loss rate for all arms exhibiting
loss is 0.27 and the median allelic-loss rate is 0.24. From
the figure, three chromosome arms appear to stand apart
from the others in exhibiting considerably higher allelic-
loss rates: 9p, 5q, and 17p.

Table 4 presents 2ln(Bayes factors) for the pairwise com-
parisons of the models for each of the three data sets. In
addition, the posterior probability of each model is pre-
sented assuming a prior probability for the models such
that

P(2 Component Model) = P(1 Component Model) = 1/2

This gives

P(2 bb) = P(2 bb/bin) = P(2 bin) = 1/6

P(1 bb) = P(1 bin) = 1/4.

For the Barrett data set, the two-component models are
strongly favored over the one-component models, clearly
indicating a group of arms that exhibit higher than back-
ground loss rates. In particular, the Bayes factors demon-
strate that the two-component beta-binomial/binomial

Table 3: Summary of results after applying methods to three data sets For each data set, the selected model(s) with the chromosome 
arms classified in the tumor suppressor gene group and corresponding conditional probabilities of harboring a tumor suppressor gene 
are provided. A set of models was chosen such that models in the set had 2ln(Bayes factors) exceeding 2 when compared to models 
outside the set and 2ln(Bayes factors) less than 2 when compared to models within the set. A chromosome arm is in bold print if it has 
been identified in more than one data set.

Data Set Model Chosen Chromosome Arms Classified in TSG* Group (conditional probability)

Barrett 2 bb/bin 5q (1), 9p(0.962), 17p(1)
Gleeson 2 bb/bin 4q(0.982), 9p(0.916), 9q (0.813), 12q (0.859), 17p (0.998), 18q (0.954)

2 bin 4q(0.982), 9p(0.916), 9q (0.813), 12q (0.859), 17p (0.998), 18q (0.954)
1 bb none

Hammoud 2 bb/bin 4q (0.968), 17p (0.994)
2 bin 4q (0.989), 17p (0.998)

* TSG: tumor suppressor gene
2 bb: Two-component beta-binomial
2 bb/bin: Two-component beta-binomial/binomial
2 bin: Two-component binomial
1 bb: One-component beta-binomial
1 bin: One-component binomial

Histogram of allelic loss for the Barrett data setFigure 1
Histogram of allelic loss for the Barrett data set
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model provides the best fit. Note that the posterior prob-
ability of this model is considerably higher than that of
the others, providing further evidence of its superiority.

Table 5 presents the MLEs of the parameters for the two-
component models listed in order of posterior probability

(largest to smallest). First note that  = 0, reducing the
two-component beta-binomial model to a two-compo-
nent beta-binomial/binomial model. The parameter esti-
mates for these two models are identical and imply that
the beta-binomial distribution corresponds to the TSG
loss and the binomial distribution corresponds to the
background loss. The estimate of the probability that a
chromosome arm is in the TSG group is 0.097. The esti-
mated background loss rate is 0.228, and the expected
background loss rate for arms with TSGs is estimated at
0.708 with a loss rate variance of 0.07. The fit from the

two-component binomial model gives a slightly lower
mixing parameter estimate and a slightly higher estimate
of the TSG loss rate.

The conditional probabilities of group membership based
on the two-component beta-binomial/binomial model
yield the same classification rule as that based on the
other two-component models. Chromosome arms 5q, 9p,
and 17p are classified in the TSG group. The conditional
probabilities of group membership for these chromo-
some arms are quite similar across the three models.

The Gleeson data set
The Gleeson data set consists of 38 esophageal adenocar-
cinomas. Allelic-loss data were recorded on 39 chromo-
some arms (as in the Barrett data set, the short arms of
chromosomes 13, 14, 15, 21, and 22 were not included in

Table 4: 2ln(Bayes Factors) and posterior probabilities of each model considered for the three data sets For a given data set, the first 
five rows of data correspond to the model under H1 while the first five columns correspond to the model under H0. The (i, j)th element 
in the matrix represents the value of 2ln(Bayes Factors) for the model corresponding to the ith row versus the model corresponding to 
the jth column. Values of 2ln(Bayes Factors) are in bold print if they exceed 2. The last column provides values of the posterior 
probability of the model in the ith row. Those values corresponding to selected models are in bold print.

Barrett data set

H1/H0 2 bb* 2 bb/bin 2 bin 1 bb 1 bin Post.Prob**

2 bb 0 -4.398 -0.114 12.144 45.281 0.090
2 bb/bin 4.398 0 4.284 16.542 49.679 0.814

2 bin 0.114 -4.284 0 12.258 45.395 0.096
1 bb -12.144 -16.542 -12.258 0 33.137 < 0.001
1 bin -45.281 -49.679 -45.395 -33.137 0 < 0.001

Gleeson data set

H1/H0 2 bb 2 bb/bin 2 bin 1 bb 1 bin Post.Prob.
2 bb 0 -2.173 -3.390 -2.065 6.705 0.066

2 bb/bin 2.173 0 -1.724 0.108 8.878 0.194
2 bin 3.390 1.724 0 1.832 10.601 0.460
1 bb 2.065 -0.108 -1.832 0 8.770 0.276
1 bin -6.705 -8.878 -10.601 -8.770 0 0.003

Hammoud data set

H1/H0 2 bb 2 bb/bin 2 bin 1 bb 1 bin Post.Prob.
2 bb 0 -3.514 -3.513 -1.114 5.951 0.070

2 bb/bin 3.514 0 0.020 2.400 9.465 0.404
2 bin 3.513 -0.020 0 2.380 9.444 0.400
1 bb 1.114 -2.400 -2.380 0 7.064 0.122
1 bin -5.951 -9.465 -7.064 -7.064 0 0.004

*2 bb: Two-component beta-binomial
2 bb/bin: Two-component beta-binomial/binomial
2 bin: Two-component binomial
1 bb: One-component beta-binomial
1 bin: One-component binomial
** Post.Prob.:Posterior probability

ω̂0
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the study). A histogram of the proportion of tumors with
allelic loss is presented in Figure 2. The mean allelic-loss
rate is 0.36 and the median allelic-loss rate is 0.32. By sim-
ply viewing the histogram, four of the chromosome arms
have been identified as having suspiciously high allelic-
loss rates. These are chromosome arms 4q, 9p, 18q, and
17p.

For the Gleeson data set, the two-component beta-bino-
mial/binomial model, the two-component binomial
model and the uni-component beta-binomial model are
all favored over the two-component beta-binomial model
and the uni-component binomial model (See Table 4).
Because two of the two-component models as well as the
uni-component beta-binomial model are comparable fits
to the data, this may imply there is not strong enough evi-
dence of more than one group of chromosome arms.
However, while the uni-component beta-binomial model
and the two-component beta-binomial/binomial model
appear to fit similarly, the two-component binomial
model appears to be a slightly better fit than these two as
shown by the corresponding posterior probabilities.

Maximum likelihood estimates obtained from fitting
both the two-component beta-binomial and the beta-
binomial/binomial model imply both components fol-
low a binomial distribution as the dispersion parameter
estimates are 0. Fits of all three two-component models
yield identical parameter estimates, and therefore the rule
obtained from the two-component binomial model
which has the highest posterior probability is equivalent
to that obtained from the other two-component models.
Classification using this model places six chromosome
arms in the TSG group. These are identified as chromo-
some arms 4q, 9p, 9q, 12q, 17p, and 18q. Note that three
of these chromosome arms (4q, 9q and 12q) exhibit
lower than the average background loss rate in the Barrett
data set. However, 9p and 17p are categorized along with
5q in the TSG group. Furthermore, although not classified
in the TSG group, chromosome arm 18q exhibits the
fourth highest allelic-loss rate in the Barrett data set.

The Hammoud data set
The Hammoud data set consists of 30 esophageal adeno-
carcinomas on 39 chromosome arms (the same arms
included in the Gleeson data set). A histogram of the
Hammoud data set is presented in Figure 3. Chromosome
arms 4q and 17p have been identified on the plot as they

Table 5: Results from fitting two-component models to the Barrett data set Maximum likelihood estimates along with selected 
chromosome arms and corresponding conditional probabilities of harboring a tumor suppressor gene for the two-component models 
for the Barrett data set.

Model Arms classified in TSG† group 
(conditional probability)

2 bb/bin* 0.097 0.708 0.487 0.228 - 5q (1); 9p(0.962); 17p(1)
2 bin 0.073 0.827 - 0.230 - 5q (1); 9p(0.93); 17p(1)
2 bb 0.097 0.708 0.487 0.228 0.000 5q (1); 9p(0.962); 17p(1)

†TSG: tumor suppressor gene
*2 bb; Two-component beta-binomial
2 bb/bin: Two-component beta-binomial/binomial
2 bin: Two-component binomial

η̂ π̂1 ω̂1 π̂0 ω̂0

Histogram of allelic loss for the Gleeson data setFigure 2
Histogram of allelic loss for the Gleeson data set
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appear to stand out from the others as having relatively
high allelic-loss rates. The mean allelic-loss rate is 0.20
and the median allelic-loss rate is 0.18.

The pairwise comparisons using the Bayes factors for the
Hammoud data set (See Table 4) demonstrate that both
the two-component beta-binomial/binomial model and
the two-component binomial model give the best fits to
the data. Note that the posterior probabilities of these
models are practically the same indicating these models
are equally good fits to the data. As only two-component
models are selected from the class, there is strong evidence
to suggest that a second group of chromosome arms with
TSGs exists. Classification using both the two-component
beta-binomial/binomlal model and the two-component
binomial model places chromosome arms 4q and 17p in
the TSG group. Both models yield similar conditional
probabilities of group membership for the arms, and as in
the other data sets, both models yield the same
classification rule. Note that chromosome arm 4q is

implicated by our analysis of the Gleeson data set and 17p
is implicated by our analyses of all three previous data
sets.

Conclusions
Testing of one versus two components in a mixture model
is problematic as the likelihood ratio test is not applica-
ble. Bayes factors provide a natural solution to this prob-
lem. Although we make only crude comparisons using the
Bayes factors, the results favor the right model most of the
time for data arising from a two-component model. More
importantly, when comparing a two-component model
versus a one-component model for these data, the two-
component model is generally chosen.

For data that arise from a one-component beta-binomial
model, the Bayes factors were not able to choose as well
between the true model and a two-component model.
Specifically, when comparing the true model to the two-
component binomial, the false-positive rate was 16%. On
the other hand, the Bayes factors are inconclusive for 62%
of the data sets when making this comparison. This is
actually encouraging when considering some frequentist
options. Standard applicable frequentist methods such as
an exact Monte Carlo test and the dispersion score test are
limited to testing for one versus more than one group of
chromosome arms [8,9]. Simulation studies examining
these methods for these data reject the hypothesis of one
group 93 and 89 percent of the time, respectively [10].
Based on this, one might conclude that a model with two
(or more) groups would be appropriate. The results pre-
sented here would not support such a conclusion, at least
most of the time. However, it is important to note that if
such variability exists in the data as is expected and is
ignored, the false-positive rate can be quite high. For
example, if comparing a two-component binomial model
and a one-component binomial model when there is only
one group of chromosome arms exhibiting background
loss, the two-component model would likely be favored.
Thus, in practice it is recommended that several
comparisons are made before selecting a model. In addi-
tion, it may be desirable to consider the posterior proba-
bilities of all models jointly. When examining the
posterior probabilities of each of the models for the four
scenarios considered here, we found that the true model
had the highest median posterior probability.

Table 3 summarizes the results of applying our approach
to three esophageal adenocarcinoma data sets. It is impor-
tant to note that a common locus on a chromosome arm
was rarely chosen across the three studies. In fact, there
were only a handful of loci that were investigated by at
least two of the three data sets. Not surprisingly, chromo-
some arm 17p is chosen by the two-component models
for all data sets as being in the TSG group. Chromosome

Histogram of allelic loss for the Hammoud data setFigure 3
Histogram of allelic loss for the Hammoud data set
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arm 17p harbors a well known TSG called p53, which has
been implicated in several cancers, including colon can-
cer, breast cancer and non-small cell lung cancer to name
a few [1]. Also note that chromosome arm 9p is placed in
the TSG group for the Barrett data set as well as the Glee-
son data set. Similarly, chromosome arm 4q has been
identified in both the Gleeson and Hammoud data sets.
The Barrett data set also characterizes chromosome arm
5q as harboring a TSG, which has been previously identi-
fied in other studies as having a high frequency of allelic
loss in colon cancer, non-small cell lung cancer, as well as
renal cancer [1]. Similarly, 18q, identified in the Gleeson
data set, is suspected of playing a causal role in colon can-
cer and osteosarcoma based on high allelic-loss frequen-
cies there [1]. Also, chromosome arm 3p has been
identified as having high loss in renal and non-small cell
lung cancer [1]. The results from applying our methods to
the three data sets differ somewhat from those of the pre-
viously published analyses. First a potential bias exists in
the design of current allelic-loss studies, and is seen in the
design of the Barrett and Gleeson studies. Chromosome
arms suspected of harboring TSGs are evaluated at more
loci than other arms. The proportion of tumors with
allelic loss on an arm is then defined as the number of
tumors with allelic loss at at least one of the informative
loci divided by the number of tumors informative at at
least one of the loci. For example in the Barrett study, one
locus is investigated for most chromosome arms, but two
loci are assessed for loss on arms 13q, 17p, and 18q. This
increases the probability that allelic loss will be observed
at those arms examined at two loci than at those
examined at only one. To address this issue, our analysis
considers only one locus (the most informative) per chro-
mosome arm.

In the analysis presented by Barrett et al. (1996), the
authors consider a uni-component binomial distribution
for the background loss [1]. Frequencies falling far out in
the tails of the binomial distribution, assuming a back-
ground loss rate of 0.23, correspond to chromosome arms
with potential TSGs. However, it should be noted that the
model upon which we base our results (two-component
beta-binomial/binomial model) is selected over that
assumed by Barrett et al. (1996), where our model has a
corresponding posterior probability of 0.814 and the uni-
component binomial has a posterior probability < 0.001
[1]. The results from Barrett et al. (1996) indicate that
chromosome arms with significantly high loss rates are
5q, 9p, 13q, and 17p (with corresponding p-values <
0.05) [1]. Our approach also yields classification of 5q,
9p, and 17p in the TSG group. Although the fourth high-
est conditional probability corresponds to arm 13q,
assuming a two-component beta-binomial/binomial
model, the probability that it is in the TSG group is esti-
mated to be quite low (0.084) with our approach. Barrett

et al. (1996) also implicate chromosome arms 1p and 18q
as potentially harboring TSGs (p-values < 0.10 and >
0.05) [1]. Our analysis demonstrates that these arms are
not likely to be classified in the TSG group with condi-
tional probabilities of 0.077 and 0.123, respectively.

The analytic approach employed by Gleeson et al. (1997)
is to select a chromosome arm with a corresponding
allelic-loss rate above an arbitrarily chosen cut-off of 50%
as criterion for potentially harboring a TSG [11]. With this
approach, Gleeson et al. (1997) implicate the following
10 chromosome arms; 3p, 4q, 5q, 8p, 9p, 9q, 12q, 13q,
17p, and 18q [11]. Our method gives the following con-
ditional probabilities of harboring a TSG for these arms
respectively: 0.003, 0.982, 0.327, 0.012, 0.916, 0.813,
0.859, 0.121, and 0.998. While our method also selects six
of these arms, the conditional probability of the
unselected four are estimated to be fairly low. Interest-
ingly our conclusions regarding the Hammoud analysis
correspond well to those of the authors. The criterion the
authors used for selection of a chromosome arm into the
TSG group was that the chromosome arm's allelic-loss
rate should exceed two standard deviations above the
observed mean allelic-loss rate. This approach is similar to
that of Barrett et al. (1996) and more sound than that
employed by Gleeson et al. (1997) as it assumes a reason-
able model for the allelic-loss rate (in this case a normal
distribution) and selects those outliers to the right of the
distribution as suspicious [1,11]. Our approach, however,
is more flexible in that multiple models consistent with
the biological nature of the data are considered and com-
pared and further, conditional probabilities of harboring
a TSG are provided for each chromosome arm. For the
arms selected by both us and Hammoud et al. (1996), the
two arms selected, 4q and 17p, have conditional probabil-
ities of 0.968 and 0.994 for harboring TSGs, respectively
[4].

Results from the Bayes factors for the Gleeson data set are
not completely clear. They cast doubt on whether the true
underlying distribution really has two components or
whether the two-component models chosen also provide
a reasonable fit (relative to all the models considered) to
overdispersed data exhibiting only background loss.
Recall the simulation study where we demonstrate that for
data arising from a uni-component beta-binomial model,
the Bayes factors indicate that both the true model and the
two-component binomial model are often both reasona-
ble fits to the data. This motivates incorporating Bayesian
model averaging (BMA) into the inference process [12].
An alternative would be to compute the posterior odds of
a second component. First, the posterior probability of a
two-component model could be obtained by averaging
over the three two-component models. Second, the poste-
rior probability of a uni-component model could be com-
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puted by averaging over the relevant uni-component
models. The averaged Bayes factor would then be a ratio
of the posterior probability of a two-component model to
the posterior probability of a one-component model.

Furthermore, one could use Bayesian model averaging
when estimating the conditional probability of group
membership for each of the chromosome arms. Maxi-
mum likelihood estimates from different high probability
models could lead to different inferences about parame-
ters. Thus, this approach of averaging the conditional
probability over the various models to classify the arms or
weighting the parameter estimates by the posterior prob-
ability of a given model may be more desirable than
choosing a single best model from which to make infer-
ence. Specifically, one could weight estimates by P(Hj|X).
For example, suppose chromosome arm 13q is suspected
of harboring a TSG from past experiments and we desire a
probability that Z13q = 1 based on these data. Because of
model uncertainty we may be hesitant to compute the
probability based solely on one model. Instead, we could
estimate this probability as:

where j indexes over all of the models considered. This is
a potential alternative to classifying the chromosome
arms using the classical maximum likelihood approach
that needs to be further explored. It is interesting to note
that the two-component beta-binomial mixture model
was never chosen for any of the data sets. Although it was
certainly favored over the one-component binomial
model in all data sets and over the uni-component beta-
binomial model in the Barrett data set, it was never
chosen to be in the set of candidate models. The class of
models considered here is based on our beliefs of the biol-
ogy of the data. However, the ability to screen the tumor
cell genome for chromosome arms which harbor TSGs
lies in a better understanding of the background distribu-
tion. Characterizing the background distribution would
allow a more definitive identification of arms exhibiting
abnormal loss.

Methods
Data
The three data sets to which we apply our methods were
previously published and analyzed using other tech-
niques [1,4,11].

Computing Bayes factors for the proposed class of mixture 
models
Computing Bayes factors can be challenging as non-trivial
integration is often required to estimate the marginal
probabilities under each model considered. Specifically,

calculating Bayes factors involves integrating the likeli-
hood over the entire parameter space for each model
considered. Thus, the integrals tend to be high-dimen-
sional. In general, we need to compute

I = ∫ Pr(X|λ, H)π(λ|H)dλ.

This can be quite computationally intensive. When the
integral is of high dimension (> 6), quadrature methods
can be unreliable [13]. In addition, and more relevant to
our situation, for moderate to large sample sizes (> 35),
numerical methods can be both inefficient and unreliable
[7,14]. An alternative approach is to use Gibbs sampling
techniques. However, for mixture models, these methods
often miss important mass as the chain tends to get stuck
near one mode resulting in an underestimate of the inte-
gral [14]. Furthermore, because the sampling is not inde-
pendent, there is no simple way of self-monitoring
convergence.

Another method of estimating integrals is simple Monte
Carlo, that involves sampling from the prior distribution,
π(λ). The simple Monte Carlo estimate of the integral is
the averaged likelihood at the sampled parameter values
or

This has been shown to be a good estimate for likelihoods
that are relatively flat. However, if the posterior is concen-
trated relative to the prior, the variance of the estimate will
be large, and convergence to a Gaussian will be slow [7].
Thus, sampling from the prior distribution is often not
very efficient. A potential solution to this problem is to do
importance sampling that involves sampling from π*(λ),
the importance sampling function [7,14]. The estimate
then becomes

where  is known as the importance sampling

ratio. The simple Monte Carlo estimate is a special case of
importance sampling where π*(·) is chosen to be the
prior distribution. However, the importance sampling
estimate can be an improvement over the simple Monte
Carlo estimate if π*(·) is chosen such that the sampling is
more efficient, e.g., if π*(·) is centered around the mass.
There has been some success with importance sampling in
a non-mixture model setting [14].
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Our solution is to first write the likelihood in its com-
plete-data form. The likelihood for the mixture of two
beta-binomial distributions is written as follows:

where z = (z1, z2,...,zN)T and the zis are unobserved group
membership indicators such that zi = 0 if xi is from the
background component and zi = 1 if xi is from the TSG
component. Then the marginal probability of X becomes

where I denotes the marginal probability of the data (or
integrated likelihood) and where g is the prior distribu-
tion of θ.

We then estimate this integral using a method we devel-
oped called the Uniform Distance Method (UDM). This
method is a variant on importance sampling and involves
a combination of either quadrature or exact integration
and sampling of the membership vectors, Z. The idea

behind the method is to use P(Z|θ = , x) where  is the
MLE of θ to provide information on the important group-
ings, i.e., which chromosome arms are likely to be clus-
tered together. While the membership vectors are sampled
independently, the membership values within a group are
sampled dependently, making these groupings more
likely to be maintained than if the values were sampled
independently.

The development and assessment of UDM is discussed in
detail in Desai (2000) and demonstrates solid perform-
ance in estimating these integrals [10]. Software for imple-
menting the method is available by contacting the first
author. Note that for all analyses presented in this paper,
uniform priors are assumed for the unknown parameters.
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