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Abstract

Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological

properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action

on platelet aggregation has not yet been reported. Therefore, in this study we investigated

the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane

A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreat-

ment with licochalcones A, C and D in concentration-dependent manners. Among these

compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced

platelet aggregation. However, the licochalcones showed marginal inhibitory effects on

thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A

attenuated collagen-induced aggregation in human platelets. Because licochalcone A also

inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2

induced by collagen in intact platelets, we further examined the direct interaction of licochal-

cone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory

effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1

enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prosta-

glandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in

the presence or absence of licochalcone A were comparable, suggesting that it competes

with arachidonic acid at the same binding site on COX-1. These results suggest that lico-

chalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1

activity.

Introduction

Platelets play critical roles in homeostatic functions through their adhesion and aggregation

characteristics. When vessel walls are injured, platelets activate immediately to form a plug,
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and consequently blood coagulation and thrombi occlude the site of injury. A series of such

responses is important for preventing vital blood loss, but it is possible that excessive enhance-

ment of platelet function can lead to ischemia and destruction in vital organs.

Collagen is the most thrombogenic component of the subendothelium. Collagen binds to

two receptors on platelets: integrin α2β1 promotes adhesion of platelets to collagen and permits

them to interact with glycoprotein VI (GP VI) [1–3]. Then, stimulation of GP VI with collagen

causes splicing of arachidonic acid at the inner plasma membranes of platelets by activating

phospholipase A2 (PLA2) [4]. The released arachidonic acid is metabolized to thromboxane A2

(TXA2) by cyclooxygenase (COX)-1 and thromboxane synthase (TXS), whose chemical half-

time is approximately 30 s. TXA2 released from activated platelets binds to TXA2 receptors to

cause platelet morphological changes and aggregation as a positive feedback mediator [5, 6].

Representative anti-platelet agents presently used in the clinic are aspirin and ozagrel, which

inhibit TXA2 generation [6], and sarpogrelate and clopidogrel, which are receptor antagonists

of 5-hydroxy tryptophan and ADP, respectively [7, 8].

Licochalcones are purified from the licorice species Glycyrrhiza inflata, a well-known herb,

and are usually contained in Chinese medicines. They have been shown to have a variety of

biological properties, such as anti-inflammatory, anti-bacterial, anti-tumor, anti-diabetic activ-

ities [9–13]. In addition, it has been reported that glycyrrhizin, which is also a major compo-

nent of Glycyrrhiza inflata, binds to thrombin and inhibits platelet aggregation induced by

thrombin with an IC50 of approximately 150 μM [14]. In the present study, we examined the

effects of licochalcones on rabbit platelets and human platelets, and demonstrated that lico-

chalcones inhibited platelet aggregation induced by collagen at lower concentrations com-

pared with that by U46619, and was accompanied by an interaction with COX-1.

Materials and methods

Materials

Licochalcones were provided by Research Laboratory of Minophagen Pharmaceutical Co. Ltd.

(Zama, Japan). Prostaglandin (PG) E2, d4-PGE2, U46619, COX-1, COX-2 and TXB2 EIA Kit

were purchased from Cayman Chemical Company (Ann Arbor, MI). Collagen (Collagenrea-

gent Horm) was purchased from Nycomed Pharma GMBH (Marburg, Germany). Thrombin

was purchased from Wako Pure Chemicals (Osaka, Japan). Arachidonic acid and ADP were

purchased from Sigma-Aldrich (St. Louis, MO) or Cayman Chemical Company. All other

chemicals used were of reagent grade or the highest quality available.

Preparation of washed platelets

Washed platelets were prepared from healthy male rabbits (Japanese white rabbits weighing

approximately 2.5–3.5 kg), and were collected in plastic tubes containing acid citrate dextrose

solution (1/6 volume of blood) composed of citric acid (65 mM), trisodium citrate (85 mM),

and D-glucose (2%). Then, the blood was centrifuged at 250 × g for 12 min to obtain platelet-

rich plasma. The platelet-rich plasma was centrifuged at 90 × g to remove contaminated eryth-

rocytes and leukocytes, and then centrifuged at 450 × g for 15 min at room temperature (20–

25˚C). The pellet was washed twice with Tyrode/HEPES solution (NaCl 138.3 mM, KCl 2.68

mM, MgCl2�6H2O 1.0 mM, NaHCO3 4.0 mM, HEPES 10 mM, glucose 0.1%, and bovine

serum albumin 0.35% at pH 6.35). The resultant pellet was suspended in the second Tyrode/

HEPES solution (pH 7.35) with a final density of 3–5×108 platelets/ml [15]. Human washed

platelets collected from volunteers were prepared similarly. The present study using human

platelets was performed in accordance with a protocol approved by the Ethics Committee of

Graduate School of Pharmaceutical Sciences, Tohoku University (approval No.12-04).
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Informed consent was obtained in written forms with volunteers’ signatures. The present

study using rabbit platelets was performed in accordance with a protocol approved by the

Institutional Animal Care and Use Committee of the Tohoku University Environmental and

Safety Committee (approval No. 22Yaku-Do-29).

Determination of platelet aggregation

Platelet aggregation was determined by a standard turbidimetric method using an aggreg-

ometer (PAM-6C, Merbanix, Tokyo, Japan), as described previously [15, 16]. Platelet aggrega-

tion was expressed as an increase in light transmission. The levels of light transmission were

calibrated as 0% for a platelet suspension and 100% for the Tyrode/HEPES solution (pH 7.35).

Platelet suspension (3×108 platelets/ml in 0.3 ml) in a cuvette was preincubated at 37˚C for

2–3 min under continuous stirring at 1000 rpm. CaCl2 was then added at a final concentration

of 1 mM for 3 min. After the pre-incubation of licochalcones for 5 min, platelet aggregation

was initiated by the addition of U46619, collagen, thrombin, ADP or arachidonic acid and

monitored for 10 min. Maximal platelet aggregation was achieved at the applied concentration

of these stimulators.

Observation of platelets by scanning electron microscopy

Samples for observation by scanning electron microscopy were prepared as described previ-

ously [16]. Briefly, washed platelet aggregation was initiated by collagen stimulation for 3 min

in the presence or absence of licochalcones, and then fixed overnight with 1% glutaraldehyde.

Samples were washed twice with phosphate-buffered saline (PBS) for 5 min. The fixed platelets

were dehydrated with increasing concentrations of ethanol (50, 70, 80, 90, and 100%) and t-

butyl alcohol. The samples were then freeze-dried (ES-2030, Hitachi, Tokyo, Japan) and sput-

ter-coated with Au/Pd with an ion sputter (E-1010, Hitachi, Tokyo, Japan). These samples

were observed with a scanning electron microscope (S-3200, Hitachi, Tokyo, Japan).

Measurement of TXB2

Quantification of TXB2 derived from platelets was performed using a TXB2 EIA kit. Washed

platelets were preincubated at 37˚C for 3 min under continuous stirring at 1000 rpm. CaCl2 (1

mM) was then added for 3 min. After the pre-incubation with licochalcone A for 5 min, plate-

let aggregation was initiated by addition of collagen (3 μg/ml) and the reactions were stopped

by indomethacin/EDTA (25 μM/25 mM) at 4˚C. Samples were centrifuged at 2500 × g for 3

min, and then the supernatant was measured by EIA. EIA procedures were performed as indi-

cated in the assay kit instructions.

Determination of COX-1 and COX-2 activity by LC-MS/MS

COX inhibition assays were carried out following with modifications of previous report [17].

A 100 mM Tris-HCl buffer (pH 8.0, 222 μL) containing 2 μM hematin and 5 mM L-trypto-

phan was added to a 2 mL tube. Then, two units of COX-1 or COX-2 (2.5 μL) in Tris-HCl

buffer (pH 8.0) and each concentration of the licochalcone A (0–100 μM, 1.25 μL) in DMSO

were added to the assay for determining IC50 value, and the sample was incubated at 37˚C for

10 min. The reaction was initiated by adding 0.5 μM arachidonic acid (25 μL) in Tris-HCl

buffer (pH 8.0). After 2 min, the reaction was terminated by adding 1.0 M HCl (12.5 μL).

Then, methanol (5 μL) which included internal standard (IS) (d4-PGE2, 50 ng/mL) to calculate

the area ratio (peak area of PGE2/d4-PGE2) of compounds for calibration, was added to the

sample. After 30 min, PGE2 and IS were extracted by hexane/ethyl acetate (800 μL, 50/50, v/v
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%). The sample was mixed and centrifuged at 11,042 × g for 5 min at 4˚C, and the organic

supernatant was transferred to another tube. Then, the sample was dried under vacuum.

Finally, the sample was dissolved in acetonitrile/water (50 μL, 50/50, v/v%) containing 0.1%

formic acid, and filtered (0.2 μm pore size, acetyl cellulose, YMC). Five microliters of sample

was subjected to LC-MS/MS.

Enzyme kinetics analysis of COX-1

A 100 mM Tris-HCl buffer (pH 8.0, 222 μL) containing 2 μM hematin and 5 mM L-trypto-

phan was added to a 2 mL tube. Then, two units of COX-1 (2.5 μL) in Tris-HCl buffer (pH

8.0) and 2.5 μM licochalcone A (1.25 μL) in DMSO were added, and the sample was incubated

at 37˚C for 10 min. The reaction was initiated by adding each concentration of arachidonic

acid (0.1–10 μM in 25 μL) in Tris-HCl buffer (pH 8.0). After 2 min, the reaction was termi-

nated by adding 12.5 μL of 1.0 M HCl, and the samples for LC-MS/MS were prepared as

described in above section.

LC-MS/MS analysis

The HPLC separations were performed on a Nanospace SI-2 HPLC system (Shiseido, Tokyo)

using an XBridge (Waters Corp., Milford, MA) C18 analytical column (50 mm × 2.1 mm i.d.,

3.5 μm particle size) with an isocratic elution with a mobile phase consisting of acetonitrile/

water (32/68, v/v %) containing 0.1% formic acid. The column oven was maintained at 40˚C,

and the flow rate was 200 μL/min. The HPLC system was coupled with a Fourier transform

mass spectrometer (FTMS, QExactive, Thermo Fisher Scientific, San Jose, CA) equipped with

a heated ESI (HESI) source. The ion source parameters were as follows: spray voltage, 3,000 V

(negative ion mode); capillary and heater temperature, 250˚C and 250˚C; sheath gas pressure

(nitrogen), 40 psi; auxiliary gas pressure (nitrogen), 5 psi; S-lens RF level, 50%. Samples were

analyzed in the targeted-MS2 (t-MS2) mode. The t-MS2 settings were as follows: resolution,

17,500; auto gain control target, 2E5; isolation width, 2.0 m/z; collision energy, 25% for PGE2

and d4-PGE2. The inclusion list was m/z = 351.21725 for PGE2, and 355.24226 for d4-PGE2.

The product ion was m/z = 271.20691 for PGE2, and 275.23206 for d4-PGE2.

Data analysis

Data are expressed as mean±S.E.M. Significant differences were analyzed using Student’s t-test

or Tukey–Kramer’s and Dunnett’s methods for multiple comparison.

Results

Licochalcones inhibit platelet aggregation

We first examined the effects of licochalcones on platelet aggregation. There are several molec-

ular species of licochalcones (Fig 1); we used licochalcone A, licochalcone C, and licochalcone

D at a concentration of 100 μM. All licochalcones significantly inhibited U46619 (3 μM)- and

collagen (3 μg/ml)-induced platelet aggregation in concentration-dependent manners, and

collagen-induced platelet aggregation was particularly impaired compared with that induced

by U46619 (Fig 2). However, the inhibition of thrombin (0.03 U/ml) or ADP (10 μM)-induced

aggregation by licochalcones (100 μM) was marginal (Fig 2A and S1 Fig). Additionally, lico-

chalcone A was more effective in inhibiting platelet aggregation than the other licochalcones.

Licochalcone A inhibited the collagen-induced platelet aggregation with an IC50 value of

approximately 6.33 μM, whereas licochalcone C was 17.6 μM and licochalcone D was 7.58 μM

(Fig 2). We observed the morphology of platelets that aggregated by collagen in the presence

Licochalcones inhibit COX activity and platelet aggregation
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of licochalcones with scanning electron microscopy. Platelets underwent morphological

changes when they were stimulated by collagen; however, the platelets did not show any

change following pretreatment with licochalcones (Fig 3). We further examined the inhibitory

Fig 1. Chemical structures of licochalcones A, C and D.

doi:10.1371/journal.pone.0173628.g001

Fig 2. Concentration-dependent inhibition of U46619- and collagen-induced platelet aggregation by licochalcones. (A) Licochalcone A (Lico A,

100 μM), licochalcone C (Lico C, 100 μM), licochalcone D (Lico D, 100 μM) or DMSO (-) was preincubated for 5 min before addition of U46619 (3 μM),

collagen (3 μg/ml) or thrombin (0.03 U/ml) in the presence of 1 mM CaCl2. Results are shown as mean±S.E.M. (*P<0.05 compared with control, n = 3,

Tukey–Kramer’s method). (B) Licochalcones (2–100 μM) or DMSO (control) were preincubated for 5 min before addition of U46619 (3 μM) or collagen (3 μg/

ml) in the presence of 1 mM CaCl2. Results are shown as mean±S.E.M. (*P<0.05 compared with control, n = 3–8, Dunnett’s method). (C) Licochalcone A

(10 or 100 μM) or DMSO (control) were preincubated for 5 min before addition of collagen (3 μg/ml) in the presence of 1 mM CaCl2. Representative traces of

the collagen-induced platelet aggregation with or without licochalcone A are shown.

doi:10.1371/journal.pone.0173628.g002
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effect of licochalcone A on human platelet aggregation; licochalcone A also inhibited collagen-

induced human platelet aggregation in a concentration-dependent manner (Fig 4).

Licochalcone A attenuates collagen-induced platelet aggregation

accompanied by inhibition of COX-1 activity

It is well known that collagen causes platelet aggregation mediated through arachidonic acid

release by PLA2 at the inner plasma membrane of platelets, and COX inhibitors such as aspirin

can block the platelet aggregation induced by collagen [16]. Therefore, we examined whether

licochalcone A, which inhibited collagen-induced platelet aggregation at a lower concentration

compared with the other licochalcones, also inhibits extrinsic arachidonic acid-induced plate-

let aggregation. Extrinsic arachidonic acid behaves like internal arachidonic acid because of its

lipophilicity. Licochalcone A (>20 μM) completely inhibited platelet aggregation induced by

arachidonic acid (30 μM) (Fig 5A). These results suggest that licochalcone A affects molecules

downstream of arachidonic acid, possibly COX-1 or TXS, for example.

Arachidonic acid released from the inner membrane interacts with COX-1 and is converted

to PGH2, then is sequentially metabolized to prostaglandins including TXA2 and PGE2. There-

fore, we examined the amount of TXB2, a metabolite of TXA2, released from platelets by collagen

Fig 3. Scanning electron microscopy images of platelets stimulated by collagen in the presence of

licochalcones. Platelets were incubated with collagen (3 μg/ml) for 3 min in the presence or absence of

licochalcones (100 μM), then fixed overnight with 1% glutaraldehyde. The samples were washed twice for 5

min with PBS. The fixed platelets were dehydrated with ethanol and t-butyl alcohol, and after the samples

were freeze-dried and coated with Au/Pd, they were observed under a scanning electron microscope. (A)

Unstimulated platelets, (B) collagen (3 μg/ml), (C) licochalcone A (100 μM) +collagen, (D) licochalcone C

(100 μM) +collagen and (E) licochalcone D (100 μM) +collagen. (Magnification: 7000×, bar = 5 μm).

doi:10.1371/journal.pone.0173628.g003

Licochalcones inhibit COX activity and platelet aggregation
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Fig 4. Concentration-dependent inhibition of collagen-induced human platelet aggregation by

licochalcone A. Licochalcone A (10–100 μM) or DMSO (control) were preincubated for 5 min before addition

of collagen (5 μg/ml) in the presence of 1 mM CaCl2. Results are shown as mean±S.E.M. (*P<0.05 compared

with control, n = 3, Dunnett’s method).

doi:10.1371/journal.pone.0173628.g004

Fig 5. Concentration-dependent inhibition of arachidonic acid metabolism by licochalcone A. (A) Licochalcone A (2–50 μM) or DMSO (−) was

preincubated for 5 min before addition of arachidonic acid (30 μM) in the presence of 1 mM CaCl2. Results are shown as mean±S.E.M. (*P<0.05

compared with control, n = 3, Dunnett’s method). (B) Licochalcone A (5–50 μM) or DMSO (−) was preincubated for 5 min before addition of collagen

(3 μg/ml) in the presence of 1 mM CaCl2, and terminated by EDTA/indomethacin after incubating for 5 min. Samples were diluted 1/1000 and TXB2

amount was measured by EIA. Results are shown as mean±S.E.M. (*P<0.05 compared with control, n = 3, Dunnett’s method).

doi:10.1371/journal.pone.0173628.g005

Licochalcones inhibit COX activity and platelet aggregation

PLOS ONE | DOI:10.1371/journal.pone.0173628 March 10, 2017 7 / 13



(3 μg/ml). As observed in Fig 5B, licochalcone A reduced the production of TXB2 in a concentra-

tion-dependent manner with an IC50 value of approximately 2.04 μM, suggesting licochalcone A

inhibits COX-1 activity. Hence, we determined whether licochalcone A directly inhibited COX-

1 and COX-2 in vitro. After COX-1 or COX-2 was preincubated in the presence of licochalcone

A (0.5–100 μM), the enzyme reaction was initiated by the addition of arachidonic acid (0.5 μM),

and newly synthesized PGE2 was measured by LC-MS/MS, as described in the Materials and

Methods (Fig 6A). Licochalcone A reduced PGE2 production in a concentration-dependent

manner with IC50 values of 0.94 and 1.93 μM for COX-1 and COX-2, respectively, indicating

licochalcone A directly inhibited COX-1 and COX-2. Finally, to assess the inhibitory effect of

licochalcone A on COX-1 activity, we also investigated the enzyme reaction kinetics. COX-1 (2

units) was preincubated in the presence or absence of licochalcone A (2.5 μM), then the reaction

was started by the addition of arachidonic acid (0.1–10 μM). Newly synthesized PGE2 was mea-

sured by LC-MS/MS, as shown in Fig 6A (Fig 6B). In the case of the control (without licochal-

cone A), the values followed the Michaelis–Menten equation (Km 0.6236 μM, Vmax 3.213 pmol/

min). However, in the presence of licochalcone A, PGE2 production resulting from lower concen-

trations of arachidonic acid was largely suppressed and showed a sigmoid curve. Hence, kinetics

parameters were obtained by fitting the values to the sigmoid curve rather than the Michaelis–

Menten equation. In this case, Vmax values for vehicle (-) and licochalcone A were 2.791 pmol/

min and 2.109 pmol/min, respectively, and Kprime values (concentration corresponding to 1/2

Fig 6. Competitive inhibition of COX-1 and COX-2 activity by licochalcone A in vitro. (A) Hematin (2 μM) and L-tryptophan (5 mM) were added to 100

mM Tris-HCl buffer (pH 8.0), then two units of COX-1 or COX-2 and each concentration of licochalcone A (0.5–100 μM) were added and incubated at 37˚C

for 10 min. The reaction was initiated by adding arachidonic acid (0.5 μM). After 2 min, the reaction was terminated by adding 1.0 M HCl, and then the

amount of PGE2 was measured by LC-MS/MS. Results are shown as mean±S.E.M. (*P<0.05 compared with control, n = 3, Dunnett’s method). (B) Two

units of COX-1 and licochalcone A (2.5 μM) were incubated at 37˚C for 10 min as described above. The reaction was initiated by adding each concentration

of arachidonic acid (0.1–10 μM). After 2 min, the reaction was terminated by adding 1.0 M HCl, and then the amount of PGE2 was measured by LC-MS/MS.

Results are shown as mean±S.E.M. (*P<0.05 compared with control, n = 3, Student’s t-test).

doi:10.1371/journal.pone.0173628.g006
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Vmax) were 0.1097 μM and 2.017 μM. Vmax values were not significant and comparable

regardless of licochalcone A, and Kprime values were significantly distinct following the

addition of licochalcone A, suggesting that licochalcone A competitively inhibits COX-1

activity with arachidonic acid.

Discussion

In the present study, we investigated the effects of licochalcones, which are contained in lico-

rice and are frequently used in Chinese medicine, on human and rabbit platelet aggregation.

The species of licorice used in the present study are more abundant in licochalcones than

other species. First, we examined the effects of licochalcones on rabbit washed platelet aggrega-

tion. All licochalcones largely inhibited platelet aggregation induced by both U46619 and col-

lagen, but their inhibitory effects on collagen-induced platelet aggregation were 10-fold more

effective than that induced by U46619 with regards to IC50 (Fig 2). Therefore, we supposed

that licochalcones acted more specifically on the aggregation induced by collagen, and lico-

chalcone A was the most effective. Importantly, licochalcone A suppressed human platelet

aggregation in addition to rabbit platelets (Fig 4). Furthermore, licochalcone A suppressed ara-

chidonic acid-induced aggregation in a concentration-dependent manner, as in the case of col-

lagen-induced aggregation (Fig 5A); therefore, we postulated that licochalcone A acted on

COX-1 or TXS, but not on release of arachidonic acid from plasma membranes. Actually, we

observed that licochalcone A had a direct inhibitory action on COX-1 in vitro (Fig 6) and

inhibited production of TXA2 in intact platelets in a similar concentration range (Fig 5B). In

addition, this range of concentration-dependency (IC50 2.04 μM) (Fig 5B) is also almost com-

parable with that of platelet aggregation induced by collagen (3 μg/ml) (IC50 6.33 μM) (Fig

2B). Although there is a slight difference about these IC50 values, we consider this results from

the different methodology of these assays, i.e. we measured the accumulation of TXB2 for 5

min, whereas the platelet aggregation reflected the unstable TXA2 levels induced by collagen

present at each time points.

These results strongly suggest that licochalcone A inhibits platelet aggregation by suppress-

ing COX-1 activity. However, licochalcone A also inhibited the platelet aggregation induced

by U46619 at higher concentrations (Fig 2). COX inhibitors generally do not suppress platelet

aggregation induced by U46619 [18, 19], so this result suggests the possibility that licochal-

cones also act on molecules other than COX-1, with lower affinity in platelets. For example,

licochalcones at higher concentration may act on TP directly as TP antagonists. As it has been

reported that licochalcone A interacts with inhibitor-κB kinase (IKK) [20], it is necessary to

identify the other molecules interacting with licochalcone A.

It has been demonstrated that the thrombin-induced platelet aggregation does not require

TXA2 production through COX. Thus, COX inhibitors do not show inhibitory effects on the

aggregation by thrombin as in case of U46119 [21, 22]. In case of thrombin, intracellular Ca2+

increase via protease-activated receptors (thrombin receptors)/Gq/PLC-β pathway is essential.

Hence, we assume that licochalcones did not inhibit the thrombin-induced aggregation efficiently

(Fig 2). In addition, licochalcone A did not block the ADP-induced platelet aggregation (S1 Fig) as

it has been shown that the ADP-induced platelet aggregation does not require COX activity [23,

24]. On the other hand, platelet aggregation by collagen requires COX activity, we and another

group showed that NSAIDs such as aspirin and indomethacin completely blocked the platelet

aggregation by collagen [16, 22]. In this study, we clarified that licochalcones were COX inhibitors,

this is the reason to explain the different results between collagen and thrombin or ADP.

It has been shown that COX-1 isoforms predominantly localize at intracellular membranes

including the endoplasmic reticulum, nuclear envelope, and Golgi apparatus [25, 26]; that is,

Licochalcones inhibit COX activity and platelet aggregation
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COX-1 isoform subcellular localization is not mainly cytosolic, and COX-1 is embedded in

these membranes. Licochalcone A could inhibit collagen-aggregation after a brief period of

incubation such as 15 s. Even though precise COX-1 localization in platelets has not been clari-

fied, we can suppose from this result that licochalcones are not completely incorporated into

platelets, but approach COX-1 that is located in neighboring platelet plasma membranes and

does not allow arachidonic acid to reach the active site of COX-1. Otherwise, the composition

of the lipid bilayers of platelet plasma membranes may differ from that of other cells, and lico-

chalcones are easily incorporated into intracellular regions.

Using LC-MS/MS system for PG quantitation, we determined the IC50 values of licochal-

cone A in vitro for COX-1 and COX-2 to be 0.94 μM and 1.93 μM, respectively (Fig 6A), and

the ratio of IC50 of COX-1/COX-2 as being 0.49. Hence, licochalcone A is not a selective inhib-

itor for these COX isoforms compared with a COX-2-selective inhibitor such as celecoxib, the

ratio of which is approximately 9.49 for ovine COX-1/ovine COX-2 and 600 for ovine COX-1/

human COX-2 [17]. However, Song et al. showed that licochalcone A did not cause inhibition

of COX-2 activity in human keratinocytes [27], whereas we demonstrated that licochalcone A

clearly blocked both COX isoforms in a concentration-dependent manner. The discrepancy

between these results cannot be explained so far.

In addition, we determined the reaction rate of COX-1 and analyzed the inhibitory mecha-

nism of licochalcone A by enzyme kinetics. The previously reported Km value of COX-1 was

in the range of 0.75–4.67 μM [17, 28, 29], which is comparable with our value of 0.6236 μM

(Fig 6B). In addition, the Vmax values were comparable regardless of licochalcone A, suggest-

ing licochalcone A causes competitive inhibition of the COX-1 reaction with arachidonic acid.

However, in the presence of licochalcone A, COX-1 activity was strongly attenuated when the

concentration of arachidonic acid was low (Fig 6B), which was not applied to the Michaelis–

Menten equation but rather fitted to a sigmoid curve. It is not easy to interpret this result, but

we assume that COX-1 conformation was changed and it lost affinity to arachidonic acid by

binding to licochalcone A. However, higher concentrations of arachidonic acid could compete

with licochalcone A and recover the affinity to COX-1, resulting in a concentration-dependent

sigmoid curve with equivalent Vmax values.

Licochalcones contain an α,β-unsaturated ketone structure, and nucleophiles such as the

thiol group of cysteine can bind to licochalcones easily in physiological conditions by the

Michael addition reaction. In fact, we could observe covalent binding between licochalcone A

and cysteine, and it has been shown that Cys179 in IKKβ is an important amino acid residue

for inhibition of IKKβ-mediated nuclear factor-κB activation by licochalcone A [20]. Further-

more, a reduced licochalcone A that lacks a double bond failed to inhibit IKK-mediated

nuclear factor-κB activation [30]. These reports suggest the possibility that licochalcone A

binds to the cysteine residues of various proteins by the Michael addition reaction. Because

COX-1 has a free cysteine residue (Cys512) near the active site [31], we speculated that lico-

chalcones bound to COX-1 at this Cys512, and thus attempted detection of licochalcone-

bound COX-1 by mass spectrometry. However, we failed to prove our hypothesis. The interac-

tion between licochalcones and COX-1 may be unstable and reversible as high concentrations

of arachidonic acid can replace it (Fig 6B). Further study is necessary to identify the binding

site of licochalcones on COX-1 and COX-2.

Conclusions

In conclusion, we found that licochalcone A isolated from licorice species Glycyrrhiza inflata
suppressed collagen-induced platelet aggregation by inhibiting COX-1 isoforms. Further study

is necessary to clarify the detailed mechanism of COX inhibition by licochalcone A and
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another potential mechanism of inhibition by other platelet activators including thromboxane

A2.

Supporting information

S1 Fig. Effect of licochalcone A on ADP-induced platelet aggregation. Licochalcone A

(Lico. A, 10 or 100 μM) or DMSO (-) was preincubated for 5 min before addition of ADP

(10 μM) in the presence of 1 mM CaCl2. Results are shown as mean±S.E.M. (�P<0.05 com-

pared with control, n = 4–7, Dunnett’s method).

(TIF)
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