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Abstract
This study examined rates of genetic testing in two cohorts of publicly insured individuals who have newly prescribed
medication with FDA pharmacogenomic labeling guidance. Genetic testing was rare (4.4% and 10.5% in Medicaid and
Medicare cohorts, respectively) despite the fact that all participants selected were taking medications that contained
pharmacogenomic labeling information. When testing was conducted it was typically done before the initial use of a target
medication. Factors that emerged as predictors of the likelihood of undergoing genetic testing included White ethnicity (vs.
Black), female gender, and age. Cost analyses indicated higher expenditures in groups receiving genetic testing vs. matched
comparators with no genetic testing, as well as disparities between proactively and reactively tested groups (albeit in
opposite directions across cohorts). Results are discussed in terms of the possible reasons for the low base rate of testing,
mechanisms of increased cost, and barriers to dissemination and implementation of these tests.

Introduction

Genetic testing is becoming increasingly common in
applied healthcare environments, with substantial increases
in use since 2012 and more than 75,000 commercial tests
available by 2018 [1–4]. The purpose of these tests is often
to reduce adverse drug reactions (ADRs), which have long
been known to be problematic across healthcare environ-
ments (particularly as a major cause of death among hos-
pitalized patients) [5–14]. Implementing genetic testing as a
means of avoiding ADRs thus has the potential to both
enhance health outcomes and provide economic savings to
healthcare delivery systems [5, 7, 15]. This initiative also
fits well within the recent movement toward individualized
and/or precision medicine wherein adaptations to

standardized interventions may be facilitated by genetic
analysis [16].

Rapid advances in pharmacogenomics research have also
made testing procedures more viable and turnaround times
faster. For some disease states, the realization of the
potential benefits of genetic testing to healthcare systems
and their patients have contributed to the diffusion of these
techniques, some of which have advanced to the point of
influencing policy. For example, more than 280 prescription
drugs across numerous categories (e.g., psychotropics;
opioids; cancer-treating agents; memory enhancers; diabetes
medications; anti-hypertensives; statins) now contain U.S.
Food and Drug Administration (FDA) genetic labeling
information, which is most frequently deployed in an
attempt to augment clinical strategies by identifying
potential responders vs. non-responders and/or either pre-
venting or curtailing ADRs [17]. This typically references
direct molecular research, particularly findings that facilitate
the prediction of negative drug response on the basis of
polygenic tests or multianalyte assays with algorithmic
analyses [17].

The impact of this actuarial, evidence-based strategy for
generating labeling guidance on actual practice, however,
has not yet been studied in detail. There are some exam-
inations of the overall rate of use of genetic tests that have
indicated significant fiscal expenditures, increasing use over
time, and strong differences in frequency across clinical
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domains [1–4]. These studies provide useful information
about base rates and the general trends in genetic testing in
large healthcare systems but are unfortunately less infor-
mative about how often tests are administered to patients
taking medications where genetic factors have the potential
to be salient in the determination of treatment outcome (i.e.,
those with pharmacogenomic information in the FDA-
approved labeling).

This lack of specificity may be at least partly due to the
obfuscating nature of current procedural terminology (CPT)
codes related to genetic testing, which have made it difficult
to study the use of genetic tests in large healthcare claims
databases [18, 19]. Prior to 2012 the CPTs used for genetic
tests were typically generic and laboratories often submitted
several single-allele codes to cover polygenic or another
proprietary testing [19]. Greater specificity in taxonomy has
arisen in recent years, which has been particularly evident in
contemporary examinations of private healthcare databases,
but ambiguity about the frequency and purposes of genetic
tests remains high [1].

One potential way to address this gap in research is to
use health insurance administrative claims data to identify
individuals taking medications known to have FDA genetic
labeling guidance. In combination with the broadest possi-
ble set of CPTs connoting genetic testing, this would allow
some insight into the frequency of testing in situations
where the utility is most pronounced and empirically
informed. Thus, the current paper endeavored to explore
this topic in healthcare claims submitted to Medicare and
Medicaid in the state of Mississippi. The primary goal of the
study was to determine the base rate of genetic testing in
patients for whom this was potentially pharmacologically
appropriate. Secondary goals were the identification of
demographic variables likely to facilitate reception of
genetic testing when taking a medication with specific
labeling guidance and cost comparisons between groups as
a function of reception and timing of genetic testing.

Method

Procedure

Administrative claims databases containing all provider
claims for Medicare and Medicaid in the state of Mississippi
for the calendar year 2014 were used in the study. These
databases were licensed from the Centers for Medicare &
Medicaid Services (CMS) under a data use agreement
(DUA# RSCH-2017-51606), and all study procedures were
approved by the institutional review board and granted a
waiver of informed consent. Individuals were included in
the study if they were (1) continuously eligible for coverage
throughout the study period; (2) did not receive hospice

services at any point; and (3) began a new prescription of
one (and only one) of the target medications (i.e., from the
FDA list of drugs with genetic testing labeling information)
[17] between July 1, 2014 and December 1, 2014, as
identified using national drug codes (NDCs). This allowed
for the adequate examination of prior history and ensured a
minimum follow-up period of at least 30 days. A pre-
scription for a target medication was operationalized as
being new (and represented the index date) if the individual
had no prescription fills for the same medication in the
previous 6 months [20]. The only exclusion criterion was
dual-eligibility for both Medicare and Medicaid at any point
during the study period.

Once identified as study-eligible, recorded claims for
each qualifying individual were examined to discern whe-
ther or not any genetic testing was conducted. This was
necessarily somewhat imprecise given the issues with CPT
coding noted earlier but represented the highest possible
base rate of genetic testing in association with medications
that had labeling guidance (see Appendix 1 for CPTs used).
Individuals were further categorized into groups receiving
genetic testing prior to or after their index date, which
allowed some inference as to whether testing was proactive
or reactive (or put differently, likely administered in order to
prospectively avoid or retrospectively contend with ADRs).
In addition, rates of testing within the domain of medication
applied usage (i.e., therapeutic area) were also calculated
according to FDA-defined categories (corresponding to
medical specialty).

Within each cohort (i.e., Medicare and Medicaid), indi-
viduals identified as having a genetic test were matched
with an individual comparator without a genetic test who
has prescribed the same target medication and had the same
comorbidity burden during the 6-month lookback period (as
measured by the Elixhauser comorbidity index) [21]. These
comparators were used to compare treatment costs over the
duration of the study and to examine potential predictors of
genetic testing. Within-group costs were calculated as
annualized, all-cause, per member per month (PMPM) costs
in dollars in order to standardize comparisons and provide
output likely to be interpretable in the context of a large
healthcare system administration. Demographic character-
istics of all eligible study participants, including age, race,
and gender were also captured for subsequent analyses.

All analyses were conducted separately in Medicare and
Medicaid to reflect the unique nature of the beneficiaries in
these public insurance programs. All analyses were conducted
using SAS version 9.4 (Cary, NC, USA). Bivariate analyses
were conducted using the Cochran–Mantel–Haenszel test,
paired t test, chi-square test, and independent samples t test
for categorical and continuous variables in the matched and
unmatched samples as appropriate. Conditional logistic
regression models that account for the matched design were
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used to predict receipt of a genetic test. Comparison of eco-
nomic burden was conducted using generalized linear models
using a log link and a gamma distribution after accounting for
age, race, and gender.

Results

Participants—Mississippi Medicaid cohort

A total of 34,420 Mississippi Medicaid beneficiaries met
inclusion criteria, of whom 1525 (4.4%) received some
form of genetic testing. Among these individuals, there was
a relatively small percentage of males (15.8%; n= 241).
The final analytic cohort included 1453 individuals with
genetic testing who were matched 1:1 with a comparator
group based on target medication and comorbidity burden,
drawn from the pool of beneficiaries who were taking a
target medication but did not receive genetic testing.
Complete demographic information for both groups appears
in Table 1.

Patterns within and between groups in Mississippi
Medicaid cohort

The majority of individuals receiving genetic testing did so
prior to the first recorded date of starting medication with
genetic labeling guidance (77.3%; n= 1123). Conditional
logistic regression indicated that the odds of receiving
genetic testing were significantly higher for White vs. Black
beneficiaries (OR= 1.27; 95% CI: 1.09–1.50; p= 0.003),
for women vs. men (OR= 2.15; 95% CI: 1.75–2.64; p <
0.0001), and for older compared to younger individuals
(OR= 1.02; 95% CI: 1.02–1.03; p < 0.0001).

The adjusted, all-cause cost was found to be $927
PMPM (95% CI: $867–992) among individuals receiving
genetic testing versus $788 PMPM (95% CI: $739–840)
among those not receiving genetic testing. Comparing all-
cause expenditures across groups yielded significant dif-
ferences for those receiving genetic testing vs. not, with
higher costs for the genetic testing group (p < 0.0001). This
effect was replicated when repeating the analysis for sub-
groups receiving either proactive or reactive testing in
comparison to their respective matched comparators. A
separate comparison of individuals receiving proactive vs.
reactive testing indicated significantly higher expenditures
for those tested before starting a target medication (p <
0.0001). More detailed information concerning PMPM
costs is depicted in Table 2. In addition, a list of all target
medications and their frequency of prescription in this
cohort appears in Appendix 2.

Details of the rates of genetic testing by therapeutic area
can be seen in Table 3. Although most categories of use

were associated with a testing rate of ~5%, some deviations
were also notable. Oncology drugs, for example, were
associated with testing 36.4% of the time (although few
prescriptions for these medications were notable; n= 44).
Some prescriptions of a more appreciable frequency were
also associated with deviation from this 5% mark with either
a higher (e.g., infectious disease, 7.9%; n= 2622) or lower
(e.g., gastroenterology, 2.9%; n= 14,272) rate of testing,
indicating that some differences in category-specific clinical
decision-making regarding genetic testing were likely.

Participants—Mississippi Medicare cohort

The total group of Mississippi Medicare beneficiaries
meeting inclusion criteria was 37,788, of whom 3960
(10.5%) received genetic testing. The gender distribution
included a higher percentage of males than the Medicaid
cohort, but still many fewer men (27.4%; n= 1085) than
women (72.6%; n= 2875). The matched analytic cohort
was selected using the same strategy described above and

Table 1 Mississippi Medicaid cohort demographics.

Total cohort

Genetic testing No genetic
testing

p-value

n= 1525 n= 33,011

Race, n (%) 0.0044

Black 767 (50.3) 17,540 (53.1)

White 668 (43.8) 13,140 (39.8)

Other 90 (5.9) 2331 (7.1)

Gender, n (%) <0.0001

Male 241 (15.8) 11,299 (34.2)

Female 1284 (84.2) 21,712 (65.8)

Age, mean (SD) 36.3 (14.8) 25.8 (17.9) <0.0001

Elixhauser score,
mean (SD)

2.23 (6.3) 1.34 (4.1) <0.0001

Final cohort with matched comparators

Genetic testing No genetic
testing

p-value

n= 1453 n= 1453

Race, n (%) 0.0098

Black 728 (50.1) 800 (55.1)

White 642 (44.2) 565 (38.9)

Other 83 (5.7) 88 (6.1)

Gender, n (%) <0.0001

Male 224 (15.4) 397 (27.3)

Female 1229 (84.6) 1056 (72.7)

Age, mean (SD) 36.1 (14.6) 31.8 (17.0) <0.0001

Elixhauser score,
mean (SD)

1.72 (5.3) 1.72 (5.3) –
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included 3851 individuals in each study group. Complete
demographic information for this cohort appears in Table 4.

Patterns within and between groups in Mississippi
Medicare cohort

Similar to the Medicaid cohort, the majority of people
receiving genetic testing did so before starting a target
medication (73.1%; n= 2814). Also similar, albeit of a
smaller magnitude, the odds of receiving genetic testing
increased for White in comparison to Black beneficiaries
(OR= 1.19; 95% CI: 1.06–1.34; p= 0.0034) and females
in comparison to males (OR= 1.33; 95% CI= 1.19–1.48;
p < 0.0001). Unlike the Medicaid cohort, the odds of
receiving genetic testing decreased with age in the Medicare
cohort (OR= 0.97; 95% CI: 0.97–0.98; p < 0.0001).

Cost comparisons between genetically tested vs. non-
tested groups also represented a similar pattern of results to
the Medicaid cohort. For example, the average adjusted all-
cause PMPM cost for individuals receiving genetic testing
($1637; 95% CI: $1507–1778) was significantly higher than

for those who did not ($1331; p < 0.0001). Similarly, all
other cost comparisons were significant at the same level,
with the PMPM costs for the proactive genetic testing group
($1582; 95% CI: $1432–1747) exceeding those of their
matched comparators ($1289; 95% CI: $1166–1425) and
the same being true for the reactive testing group ($1746
[95% CI: $1509–2019] vs. $1405 [95% CI: $1218–1620]).
Unlike the Medicaid cohort, however, comparisons between
the proactive and reactive groups indicated significantly
higher monthly expenditures for individuals receiving
reactive genetic testing (p < 0.0001). More detailed infor-
mation about cohort-specific PMPM costs is contained in
Table 5 and a list of all target medications/frequencies
appears in Appendix 3.

Data regarding the rates of genetic testing by therapeutic
area in the Medicare cohort can also be seen in Table 3.
Consistent with the overall results, category-specific genetic
testing occurred approximately twice as often in the Med-
icare cohort in comparison to the Medicaid cohort for most
therapeutic areas. Oncology drugs were an exception to this
general rule with 40.0% of patients receiving genetic

Table 2 Mississippi Medicaid
adjusted all-cause per member
per month (PMPM) costs.

Cohort Genetic testing No genetic testing p-value

PMPM cost 95% CI PMPM cost 95% CI

Total sample 927 (n= 1453) 867–992 788 (n= 1453) 840–739 <0.0001

Proactive testing 941 (n= 1123) 868–1020 796 (n= 1123) 737–859 <0.0001

Reactive testing 883 (n= 330) 786–990 757 (n= 330) 679–843 <0.0001

The difference between proactive and reactive testing subgroups was significant; p < 0.0001.

Table 3 Rates of genetic testing
by FDA-define therapeutic area.

Medicaid Medicare

Therapeutic area Number of
individuals receiving
a prescription

Percentage
receiving genetic
testing

Number of
individuals receiving
a prescription

Percentage
receiving genetic
testing

Anesthesiology 6387 5.2 9295 10.1

Cardiology 1541 5.4 4871 9.9

Dental 0 N/A 5 40.0

Dermatology 20 5.0 18 16.7

Endocrinology 389 6.4 1662 9.1

Gastroenterology 14,272 2.9 7958 10.6

Gynecology 11 9.1 0 N/A

Hematology 155 7.1 593 13.2

Infectious Disease 2622 7.9 3443 11.6

Neurology 2194 3.6 3799 9.1

Oncology 44 36.4 310 40.0

Psychiatry 6479 5.2 3477 10.2

Pulmonary 13 0.0 14 14.3

Rheumatology 69 14.5 712 11.8

Urology 224 5.8 1631 9.1
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testing, as were rheumatology drugs with more frequent
testing in the Medicaid cohort (although from a low number
of prescriptions; n= 69). The level of disparity was also
much wider across the two cohorts for gastroenterology

drugs, with 10.6% of the Medicare cohort receiving genetic
testing for these commonly prescribed medications (com-
pared to 2.9% in the Medicaid cohort).

Discussion

The first broad conclusion of the study is that few people
received genetic testing, despite a nearly 2.5-times difference
between the Medicaid (4.4%) and Medicare (10.5%)
cohorts. This is potentially meaningful in terms of estimating
the degree of permeation of contemporary pharmacoge-
nomic science into clinical practice, in that 100% of the
individuals selected were taking a medication for which
information about genetic testing appeared in the drug’s
FDA-approved labeling. The combination of this inclusion
criterion with the broad set of CPT codes used to depict
genetic testing of any kind cast the widest possible net to
determine what was essentially a ceiling effect of the like-
lihood of receiving genetic testing. Unfortunately, it
appeared that this ceiling was very low and that there were
barriers in translating FDA labeling information into beha-
vioral change for providers and/or consumers of medical
services when and where this was warranted (consistent with
the low testing rates seen in previous examinations) [1–4].

In addition, these results were obtained from the entire
population of enrollees in Medicare and Medicaid, which
together comprised over 39% of all Mississippi residents in
2014 [22–24]. On the basis of this extremely representative
group it was apparent that there were large demographic
differences in testing in both cohorts, with White and female
beneficiaries exhibiting a much higher frequency. In the case
of differences between ethnic groups, this is consistent with
both a lack of ethnic diversity in pharmacogenomic research
[25, 26] and a wider medical literature reflecting similar
disparities and barriers to service accessibility in minority
groups (most recently exemplified and made even more
salient in the COVID-19 pandemic) [27–31]. It was less
clear why this would be the case for gender, particularly
considering that a perusal of the target drugs in Appendixes
2 and 3 did not reveal a differential frequency of medications
designed to treat diseases exclusively or primarily seen in
females (e.g., breast or uterine cancer).

Table 4 Medicare cohort demographics.

Total cohort

Genetic testing No genetic
testing

p-value

n= 3960 n= 33,828

Race, n (%) 0.1396

Black 870 (22.0) 7906 (23.4)

White 3038 (76.7) 25,497 (75.4)

Other 52 (1.3) 425 (1.3)

Gender, n (%) <0.0001

Male 1085 (27.4) 11,293 (33.4)

Female 2875 (72.6) 22,535 (66.6)

Low-income subsidy 0.8894

Yes 1451 (36.6) 12,357 (36.5)

No 2509 (63.4) 21,471 (63.5)

Age, mean (SD) 75.0 (6.8) 75.9 (7.4) <0.0001

Elixhauser score,
mean (SD)

4.19 (2.8) 3.23 (2.6) <0.0001

Final cohort with matched comparators

Genetic testing No genetic
testing

p-value

n= 3851 n= 3851

Race, n (%) 0.0129

Black 840 (21.8) 952 (24.7)

White 2959 (76.8) 2852 (74.1)

Other 52 (1.4) 47 (1.2)

Gender, n (%) <0.0001

Male 1055 (27.4) 1225 (31.8)

Female 2796 (72.6) 2626 (68.2)

Low-income subsidy 0.0477

Yes 1409 (36.59) 1492 (38.74)

No 2442 (63.41) 2359 (61.26)

Age, mean (SD) 75.0 (6.8) 76.3 (7.5) <0.001

Elixhauser score,
mean (SD)

4.11 (2.7) 4.11 (2.7) –

Table 5 Mississippi Medicare
adjusted all-cause per member
per month (PMPM) costs.

Cohort Genetic testing No genetic testing p-value

PMPM cost 95% CI PMPM cost 95% CI

Total sample 1637 (n= 3851) 1507–1778 1331 (n= 3851) 1226–1445 <0.0001

Proactive testing 1582 (n= 2814) 1432–1747 1289 (n= 2814) 1166–1425 <0.0001

Reactive testing 1746 (n= 1037) 1509–2019 1405 (n= 1037) 1218–1620 <0.0001

The difference between proactive and reactive testing subgroups was significant; p < 0.0001.
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The differences in adjusted all-cause PMPM costs
included significantly higher costs for the testing group vs.
matched comparators across both cohorts, as well as dif-
ferences within-cohort comparing those receiving proactive
vs. reactive testing. In the Medicaid cohort, this difference
indicated higher expenditures for the proactive testing
group, whereas the opposite was seen in the Medicare
cohort. The reasons for these collective findings cannot be
directly informed by the current study, although it is pos-
sible that differences in expenditures reflected clinical
decisions related to symptom severity (which could not be
captured in the current study). Serious presentations of a
given condition could have been referred for genetic testing
more frequently due to the perception of greater risk
inherent in certain treatment approaches (and thus the need
for more caution/attention to labeling warnings in ascer-
taining likely ADRs in advance). Although not directly
informed by the current study due to the use of claims data,
the idea that clinicians are recommending testing differen-
tially on the basis of some patient characteristics (e.g., the
severity of presenting conditions) would suggest that pro-
viders were at least aware/becoming aware of the possible
clinical advantages of testing. This is encouraging, given
the notable time lag between the development and imple-
mentation of pharmacogenomic technologies and the
numerous identified barriers to dissemination [32–37]. Time
and further research will be necessary to elucidate a tra-
jectory for how quickly this awareness will spread and
translate into behavioral change, but knowledge of inno-
vation is a necessary first step in eventual adoption for
habitual use [38]. Conducting studies of this nature is
challenging, however, given the diverse, complex, and
sometimes contradictory information available from rele-
vant scientific summaries, FDA labeling information, and
professional organizational policy statements regarding
genetic testing. Thus, tracing the impact of research findings
on individual clinical decisions is likely to be an intricate,
difficult process that will require much more focused, pro-
spective data collection to examine with any degree of
specificity.

Finally, comparisons across drugs from different ther-
apeutic areas indicated general consistency of within-cohort
base rates of genetic testing with the notable exception of
oncology medications. Although these comprised a rela-
tively small percentage of overall medications prescribed in
each cohort, the rate of testing was substantially higher for
these drugs than any other (36.4% in Medicaid and 40.0%
in Medicare). Although it is difficult to infer generalizable
conclusions from the limited subset of prescriptions and the
highly selected nature of participants, this finding is also
encouraging in terms of pharmacogenomic research influ-
encing applied practice. Testing may have been mandated in
many cases (given the nature of modern cancer treatment

agents and policies regarding their prescription) [39], but
regardless, the greatly increased frequency of testing for
these drugs suggested some differential influence on
oncology clinicians’ decision-making processes.

Limitations

The study is not without limitations, particularly in terms of
the low frequency of genetic testing. Any findings of the
group of people receiving these tests are potentially difficult
to extrapolate given that they are based on a small per-
centage of those taking the target medications. This is fur-
ther compounded by the diversity of health conditions
treated by drugs with related FDA labeling information,
which potentially led to a non-homogenous sample in terms
of initial symptoms (although the within-category findings
were fairly similar for most drugs other than oncology).
Given a large enough base rate of any single condition or
medication, it might be possible to extend this work to a
relatively uniform sample with similar presenting concerns,
but the current data set did not afford this possibility. Fur-
ther, even when a CPT for genetic testing was present in a
beneficiary’s record it was not possible to know if it
occurred in relation to the target medication or for other
purposes. In addition, the follow-up period for both cohorts
was fairly short, which did not allow a more nuanced
appraisal of potential economic benefits associated with
testing. If pharmacogenomic testing is functioning within
this system in the way it is meant to function (i.e., to avoid
ADRs and enable individually tailored precision interven-
tions) then costs savings may not be realized until farther
away from the medical issue or episode that provided the
impetus for testing.

Future directions

Future studies of more direct inquiry into physician and
patient decision-making about the need for pharmacoge-
nomic testing may elucidate the rationale for such low
frequencies among groups with direct, salient indicators that
testing could contribute positively to clinical prediction.
This might entail the review of medical records, interviews
with physicians and patients, assessment of follow-through
on medical advice, and/or studies to understand more about
how people react to pharmacogenomic feedback. This latter
point may be particularly fruitful if test manufacturers
design decision support tools [40–45] to convey results in
terms that both providers and patients can quickly under-
stand, as the lack of comprehensibility could be a barrier to
further dissemination.

In addition, studies focused on costs (particularly long-
term costs) and health outcomes associated with genetic
testing may be particularly useful in convincing large
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healthcare organizations to develop policies and specific
mandates for their use. Taking a system focus for these
future inquiries it may also be possible to develop simple,
automated, administrative feedback tools to encourage
implementation of testing and aggregated use of results.
Knowing who should be tested, why, how to make clinical
use of the results, and the relative costs (or savings) to the
system in terms of all decision points may allow a more
specific, pragmatic interpretation of the value of phar-
macogenomic testing in practice. In so doing, cost dif-
ferentials might be clarified and ADRs, rehospitalizations,
deaths, and/or other non-optimal outcomes may be
reduced.

Conclusion

This study demonstrated that pharmacogenomic testing is
relatively uncommon in public payer healthcare systems,
even in the context of beneficiaries taking medications with
labeling information denoting the potential benefits of such
testing. Despite the emergence of some predictive variables
in terms of enhancing the likelihood of undergoing testing,
the base rate of usage and pattern of results was not suffi-
cient to allow attribution of differences to specific causes.
Additional research focused on more direct measurement
of testing practice, patient follow-through, and interpreta-
tion/use of results may provide greater insights about the
nature of barriers to implementing genetic testing in applied
practice.
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