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1  |  INTRODUC TION

The last universal common ancestor of life, or LUCA, represents an 
organism or population of organisms that is inferred to have existed 
prior to 3.5 billion years ago (Betts et al., 2018; David et al., 2018; 
Wolfe & Fournier, 2018). Even before the genomic era, a universal 
ancestry of all organisms was apparent through the discovery that all 
life shares a common biochemistry composed of nucleic acids, pro-
teins, carbohydrates, lipids, and a small handful of other compounds 

(Kluyver & Donker, 1926; Weiss & Thauer, 1993). The LUCA as a 
common ancestor to all life was further supported by the discovery 
of a common canonical genetic code among all known organisms 
(Crick, 1968; Woese, 1965), with only small variations present in a 
handful of lineages (Knight et al., 2001). The observation that certain 
gene families are present in the genomes of every organism made it 
possible to demonstrate this common ancestry (Woese & Fox, 1977) 
through phylogenetic trees (Ciccarelli et al., 2006; Hug et al., 2016; 
Pace, 1997; Theobald, 2010). Paralogous gene families resulting 
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Abstract
The availability of genomic and proteomic data from across the tree of life has made it 
possible to infer features of the genome and proteome of the last universal common 
ancestor (LUCA). A number of studies have done so, all using a unique set of meth-
ods and bioinformatics databases. Here, we compare predictions across eight such 
studies and measure both their agreement with one another and with the consensus 
predictions among them. We find that some LUCA genome studies show a strong 
agreement with the consensus predictions of the others, but that no individual study 
shares a high or even moderate degree of similarity with any other individual study. 
From these observations, we conclude that the consensus among studies provides a 
more accurate depiction of the core proteome of the LUCA and its functional reper-
toire. The set of consensus LUCA protein family predictions between all of these stud-
ies portrays a LUCA genome that, at minimum, encoded functions related to protein 
synthesis, amino acid metabolism, nucleotide metabolism, and the use of common, 
nucleotide-derived organic cofactors.
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from pre-LUCA gene duplications allowed for a rooting of the uni-
versal tree between the bacterial clade and the archaeal/eukaryotic 
clade (Gogarten & Taiz, 1992; Gribaldo & Cammarano, 1998).

The unity of biochemistry, the shared genetic code, and the 
molecular functions of known universal genes, depict a LUCA that 
looked much more like a modern organism than the kind of simple 
replicator usually imagined in origin of life scenarios. The universal-
ity of the genetic code suggests that the LUCA had a recognizable 
translation system that encoded the 20 proteinogenic amino acids in 
codons composed of RNA. The unity of biochemistry, too, suggests 
that the LUCA had at least a somewhat elaborate set of metabolic 
and physiological processes. Some universal genes include compo-
nents of the ATP synthase motor, the signal recognition particle sys-
tem, and the Sec translocation channel, which together suggests that 
the LUCA had a fluid mosaic membrane composed primarily of lipids, 
but that also contained membrane-bound proteins (Gogarten & Taiz, 
1992; Gribaldo & Cammarano, 1998; Harris & Goldman, 2021).

Given that the LUCA appears to have been a relatively complex 
cellular organism rather than a simple replicator, a significant amount 
of evolutionary change must have occurred between the origin of 
life and the time of the LUCA. Two explanations that are not mu-
tually exclusive could account for a relatively complex LUCA. One 
explanation is that random horizontal gene transfer was so rampant 
in the very earliest stages of evolutionary history, that it caused any 
diverging lineages to merge, thereby disrupting vertical inheritance. 
Under this view, the LUCA represents an evolutionary stage in which 
vertical inheritance was strong enough that divergence between the 
ancestors of bacteria and archaea could have taken place (Woese, 
2002). A second explanation is that the organisms representing 
the LUCA lived alongside many other organisms, but over the sub-
sequent 3.5–4 billion years of evolution, the descendent lineages 
of the other populations went extinct (Zhaxybayeva & Gogarten, 
2004). Recent evidence suggests that both of these explanations are 
correct; the LUCA did indeed result from horizontal gene transfer 
between heterogeneous lineages, but the LUCA lineage was also 
the sole survivor of multiple contemporaneous lineages (Fournier 
& Alm, 2015).

The availability of genomic sequences from organisms across the 
tree of life has made it possible to infer detailed characteristics of 
the LUCA’s genome (Becerra et al., 2007). To do so, these studies 
first survey genomes or proteomes from a representative set of or-
ganisms across the tree of life and then apply evolutionary models 
or assumptions in order to infer whether the distribution of certain 
genomic or proteomic features in extant organisms is best explained 
by inheritance from the genome of the LUCA. These studies vary in 
what type of genomic or proteomic features are examined for an-
cestry in the LUCA. Several studies have focused on gene families 
(Harris et al., 2003; Mirkin et al., 2003; Weiss et al., 2016), while oth-
ers examined protein domains and motifs (Delaye et al., 2005), pro-
tein structural architectures (Ranea et al., 2006; Wang et al., 2007), 
or the molecular functions of proteins (Srinvasan & Morowitz, 2009).

Inferring features of the LUCA genome or proteome is inher-
ently challenging given the billions of years that have passed since 

the organism or community of organisms representing the LUCA 
existed on Earth. During that time, gene families may have been lost 
in one or another lineage. If this gene loss was extensive enough, it 
could have erased evidence that the gene family was present in the 
LUCA. In other words, such gene loss would mean that descent from 
the LUCA would not be the most parsimonious inference from the 
phylogeny of the gene family. In some cases, a gene family may be 
replaced by another unrelated gene family encoding proteins that 
perform a similar function (Koonin et al., 1996). Proteins related 
to the cell membrane and the DNA genome provide two likely ex-
amples of this phenomenon. Phospholipid bilayer membranes and 
DNA-based genomes are both universal features of all extant life. 
However, many of the proteins involved in synthesizing and main-
taining these foundational components of organisms are not univer-
sally distributed across the tree of life, likely due to gene loss and 
displacement that occurred soon after the divergence of the LUCA 
into the ancestors of archaea and bacteria (Goldman & Landweber, 
2012; Peretó et al., 2004). Despite convergence on common func-
tions, like, for example, the synthesis of deoxyribonucleotides 
(Reichard, 1993) or the replication of DNA (Forterre, 2002), the lack 
of a single universal gene family encoding those functions makes it 
difficult to ascribe them to the genome of the LUCA.

Given these limitations, studies that use extant genomes and 
proteomes to infer characteristics of the LUCA are, at best, inferring 
a minimal genome or proteome that cannot include those gene and 
protein families that may have been present in the LUCA but lost 
during subsequent evolution. In addition, each of the studies listed 
above is also constrained by the data available at the time that it was 
performed. Furthermore, without a broadly agreed upon set of best 
practices, the methodological approaches adopted by each study is 
unique from the others. However, even if individual studies have in-
herent methodological biases or otherwise produce some erroneous 
predictions, they should agree with one another if they are indeed 
accurately inferring the genome or proteome of the LUCA. As such, 
consensus among them should provide a more accurate portrayal of 
the LUCA genome (Goldman et al., 2012).

Consensus predictions have recently been used in several 
studies as a proxy for the minimal LUCA proteome. For example, 
Goldford et al. (2017) used the consensus predictions of LUCA ge-
nome or proteome studies as evidence that a metabolic network 
established from prebiotically available compounds was evolu-
tionarily related to the early metabolism of the LUCA. Blanco et al. 
(2018) investigated nonbiological protein-nucleic acid complexes to 
understand which amino acids may have played an important role 
during an RNA world, comparing their resulting amino acids to those 
of proteins from a consensus of LUCA genome and proteome stud-
ies. While these consensus predictions have been a useful proxy for 
the LUCA genome used by these and other studies (Goldman et al., 
2012, 2016), this consensus, itself, has yet to be evaluated on its 
own. Here, we investigate the agreement between eight previously 
published studies of the LUCA genome or proteome and, based on 
our results, apply the consensus to infer several broad properties 
of the LUCA.
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2  |  METHODS

2.1  |  Last universal common ancestor genome 
prediction mapping

The results of eight previously published LUCA genome studies were 
mapped onto the clusters of proteins from the eggNOG database. The 
results of six of these studies were previously mapped onto UniProt 
accessions as part of the original LUCApedia database (Delaye et al., 
2005; Goldman et al., 2013; Harris et al., 2003; Mirkin et al., 2003;  
Srinivasan & Morowitz, 2009; Wang et al., 2007; Yang et al., 2005). 
The results of two additional studies were subsequently mapped onto 
UniProt accessions: Ranea et al. (2006) and Weiss et al. (2016). Results 
from the Ranea et al. study were mapped onto UniProt accessions using 
seed Protein Data Bank IDs corresponding to predicted LUCA CATH 
superfamilies, which were made available through supplementary data 
files published along with the study. Results from the Weiss et al. study 
were similarly mapped onto UniProt accessions using the COG IDs cor-
responding to predicted LUCA protein families made available through 
supplementary data files published along with the study.

UniProt accessions corresponding to all eight studies were 
mapped onto eggNOG clusters through the mapping file <uniprot-15-
May-2015.LUCA.tsv>, downloaded from the eggNOG FTP site. Only 
eggNOG clusters with at least one manually annotated accession, that 
is, from the Swiss-Prot database (Boutet et al., 2016), were included 
in the subsequent analyses. Additionally, only eggNOG clusters cate-
gorized as OGs_LUCA were considered in the analyses because these 
clusters contain proteins from more than one domain of life.

2.2  |  Determining agreement between last 
universal common ancestor genome study predictions

Agreement between the predictions of LUCA genome studies was 
assessed using both inter-rater tests and pairwise comparisons. 
Calculation of expected disagreement for the Krippendorff's α sta-
tistic was determined by replacing the actual eggNOG clusters asso-
ciated with the individual study under consideration with randomly 
selected eggNOG clusters, performing an inter-rater test on this 
new dataset, repeating this process 100 times, and taking the aver-
age over these iterations. For each pairwise comparison, Jaccard's 
similarity index was calculated by dividing the number of shared egg-
NOG clusters associated with both studies by the total number of 
eggNOG clusters associated with either study.

2.3  |  Functional analysis of consensus predictions  
of the last universal common ancestor proteome

Consensus predictions of the LUCA proteome were defined as any 
eggNOG cluster that four or more individual studies predicted to 
be present in the LUCA proteome. Gene Ontology (GO) terms as-
sociated with each eggNOG cluster were identified as any GO term 

linked to any UniProt accession in the SwissProt database that was 
a member of the particular eggNOG cluster. GO term assignments 
for the consensus predictions of the LUCA genome were performed 
by first adding the parent terms of GO terms associated with the 
consensus predictions of the LUCA genome to the list via the go.obo 
database available from the Gene Ontology webserver and then 
making the list nonredundant for each eggNOG cluster.

In order to determine which GO terms were significantly en-
riched in the consensus LUCA genome, random clusters were picked 
from the Swiss-Prot database using the random python library, and 
the same process of gathering GO terms was then run on these clus-
ters. This random selection was repeated 106 times and the average 
and standard deviation was calculated for the expected frequency 
of each GO term. This average expected frequency and the asso-
ciated standard deviation for each GO term was used to calculate a 
p-value for each of the actual consensus LUCA GO terms. Averages, 
standard deviations, and p-values were calculated using the statistics 
python library.

Ancestral enzyme functions were inferred from the consensus 
LUCA eggNOG clusters by first identifying enzyme commission 
numbers associated with specific proteins within each cluster as 
described in Gagler et al. (2022). Only annotations from reviewed 
UniProt accessions within the eggNOG clusters were included in 
this analysis. Out of the 366 consensus LUCA eggNOG clusters, 310 
included at least one reviewed UniProt accession with an Enzyme 
Commission (EC) codes annotation. In order to roughly determine 
which enzyme functions were ancestral in each eggNOG cluster, as 
opposed to a more recent neofunctionalization, NCBI Taxonomic 
IDs were identified for each reviewed UniProt accession with an 
associated EC code. If an eggNOG cluster contained only one en-
zyme function, that enzyme function was only included if it was 
found in proteins spanning at least two taxonomic domains (from 
among Bacteria, Archaea, and Eukarya). If a single eggNOG cluster 
contained more than one enzyme function, only enzyme functions 
with the broadest taxonomic domain representation were included. 
This analysis resulted in 200 EC codes from 199 eggNOG clusters. 
The list of ancestral enzyme functions was then made nonredundant 
and all incomplete EC codes (i.e., those containing at least one dash 
in place of a digit) were removed. This further culling resulted in a 
list of 169 nonredundant EC codes. We then performed metabolic 
network and pathway analyses using the mapping tool on the KEGG 
database web server (Kanehisa & Sato, 2020; Kanehisa et al., 2021).

3  |  RESULTS

3.1  |  Mapping last universal common ancestor 
study predictions onto protein database accessions

We mapped genome or proteome predictions for the LUCA from eight 
different studies onto a common database framework in order to 
compare them directly to one another (Appendix S1). Specifically, we 
first mapped individual proteins to Uniprot accessions (The UniProt 
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Consortium, 2019, 2021), which we subsequently aggregated into 
clusters of homologous proteins in the eggNOG database (Huerta-
Cepas et al., 2019). We consider these clusters of proteins in the egg-
NOG database to be an approximation of biological protein families. 
The protein cluster mapping provided by the eggNOG database is 
more informative for our purposes than the individual protein map-
ping to Uniprot accessions. If one study predicts a protein to have 
been present in the LUCA and another study predicts a different, 
but related, protein to have been present in the LUCA, both stud-
ies would actually be predicting that the same protein family was 
present in the LUCA, but their predictions would not match at the 
level of individual proteins. For example, a study that uses the SCOP 
database (Andreeva et al., 2007; Murzin et al., 1995) as its source 
database will have a different set of individual proteins available to 
it than one that uses the COG database (Tatusov et al., 2000) as its 
source database. Therefore, the specific proteins predicted by each 
study may not match one another, but they may belong to the same 
protein family and thereby belong to the same eggNOG cluster.

General information about the eight studies and their predictions 
for the genome or proteome of the LUCA is shown in Table 1. One 
noteworthy feature of this table is the large variation in the number 
of eggNOG clusters associated with the predictions for each study, 
ranging from 110 to 2078 clusters. Part of this variation could be due 
to the fact that some studies focus on broadly defined components 
of proteins or genes (like domains, motifs, or structural folds) rather 
than families of complete genes or proteins. In some cases, this will 
lead to a greater number of predictions when these components of 
proteins are mapped onto databases of complete proteins or protein 
families (in this case Uniprot and eggNOG). Specifically, Delaye et al. 
(2005) examined protein domains and motifs stored in the Pfam da-
tabase (El-Gebali et al., 2019; Punta et al., 2012). Yang et al. (2005) 
and Wang et al. (2007) examined protein structural folds and super-
families stored in the SCOP database (Andreeva et al., 2007; Murzin 
et al., 1995; Ranea et al., 2006) examined protein structural topologies 
stored in the CATH database (Orengo et al., 2002; Sillitoe et al., 2015).

Many proteins contain multiple motifs, domains, and structural 
folds, and these features of proteins evolve semi-independently 
from the protein coding genes within which they reside (Chothia 
et al., 2003). As such, even a small set of predicted protein motifs, 
domains, and structural folds may be represented across a large 
number of eggNOG clusters. For example, the P-loop containing 
NTP hydrolase domain predicted by Delaye et al. (2005), Yang et al. 
(2005), Ranea et al. (2006), and Wang et al. (2007) to have been 
present in the LUCA, is represented in 325 different eggNOG clus-
ters that contain at least one member from the reviewed Swiss-Prot 
database (O’Donovan et al., 2002).

The results presented by Ranea et al. (2006) include both the 
individual CATH superfamilies and the corresponding seed pro-
tein structures (as Protein Data Bank IDs) that were used to search 
across proteomes for those superfamilies. To avoid the kind of over-
prediction described above, we perform subsequent analysis using 
only the seed protein structures from the Ranea et al. prediction set. 
Since three other studies focus on protein domains or motifs rather 

than whole proteins, if we did include any protein with a predicted 
CATH superfamily from the Ranea et al. study, consensus between 
the eight studies could be reached simply through a shared protein 
domain rather than membership in an ostensibly ancient protein 
family.

3.2  |  Agreement between last universal common 
ancestor proteome predictions

After mapping predictions from the eight previously published LUCA 
genome or proteome studies described above, we sought to identify 
the level of overall agreement and the areas of consensus among 
them. In order to gauge the level of agreement between studies, we 
used a series of inter-rater tests (Cohen, 1960; Posner et al., 1990). 
Here, each inter-rater test measured the level of agreement between 
the predictions of an individual study and the consensus among 
the other seven studies. This overall agreement between a single 
study and the consensus of the remaining studies can be measured 
directly as a percentage of matching predictions, or by more spe-
cialized statistical measures, such as Krippendorff's α (Equation 1) 
(Krippendorff, 1970) and Scott's π (Equation 2) (Scott, 1955). In this 
case, Krippendorf's α and Scott's π are mathematically equivalent 
and are both normalized to an expected value so that a score of one 
represents perfect agreement and a score of zero indicates a random 
level of agreement.

where Do is the observed disagreement between studies and De is the 
expected disagreement between studies.

where Pr(a) is the observed frequency of agreement between studies 
and Pr(e) is the expected frequency of agreement between studies.

The results of multiple inter-rater tests are shown in Table 2. Each 
individual study was subjected to eight total inter-rater test variants, 
where the score was calculated using either percent agreement or 
Krippendorff's α/Scott's π and where consensus was defined as 
agreement between two, three, four, or five of the remaining seven 
studies. Only positive predictions, that is, that a gene family was pres-
ent in the genome of the LUCA, were considered. This was neces-
sary because the majority of eggNOG clusters were not predicted by 
any of the eight studies to have been present in the LUCA. Including 
these negative predictions in the inter-rater tests would, therefore, 
have led to uninformatively high scores for every study.

Taken together, the results of these inter-rater tests show strong 
agreement for some studies and weak agreement for others (some-
times equivalent to random chance). The inter-rater scores differ 
from test to test, but the rank of individual studies is very stable, 

(1)� = 1 −

Do

De

,

(2)� =

Pr (a) − Pr (e)

1 − Pr(e)
,
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with Harris et al. (2003) and Ranea et al. (2006) having the high-
est and second highest inter-rater scores, respectively, across all 
versions of the test. The highest scoring studies also have the least 
number of eggNOG clusters associated with their genome or pro-
teome predictions and the overall negative correlation between 
prediction set size (Table 1) and inter-rater score (Table 2) is strong. 
For example, the correlation (Pearson's r) between the number of 
eggNOG clusters associated with a study and the study's α/π score 
using a consensus level of four is −0.72.

We further investigated this effect of prediction set size on 
inter-rater score by performing inter-rater tests comparing both 
positive and negative predictions across all eight studies so that the 
total number of predictions made by each study would be identical 
(Appendix S5). While the actual scores of these inter-rater tests are 
uninformatively high due to the majority of predictions across all 
studies being negative predictions, the rank order of scores across all 
forms of inter-rater tests is mostly identical to the rank order of the 
inter-rater tests using only positive predictions (average Spearman's 

TA B L E  1 Individual LUCA genome studies and their correspondence with eggNOG clusters of homologous proteins

LUCA genome study
Number of predictions and 
source database

Taxonomic genera 
surveyeda

Number of eggNOG 
clusters corresponding to 
LUCA predictions

Number of eggNOG 
clusters corresponding 
to the consensus LUCA 
predictionsb

Harris et al. (2003) 80 COGs 31 110 81

Mirkin et al. (2003) 571 COGsc 26 848 304

Delaye et al. (2005) 114 Pfam domains 20 1259 302

Yang et al. (2005) 66 SCOP folds superfamilies 122 609 230

Ranea et al. (2006) 140 protein structures 
representing CATH 
superfamilies

71 119 76

Wang et al. (2007) 165 SCOP folds 91–153d 2078 345

Srinivasan and Morowitz 
(2009)

206 Enzyme Commission codes 
(via KEGG)

4 794 209

Weiss et al. (2016) 336 COGs (via GenBank)e 612 328 117

aGenera were determined based on reconciling species reportedly sampled in each paper with the NCBI Taxonomy Database (Federhen, 2012).
bConsensus LUCA predictions refers to eggNOG clusters associated with the predictions of four or more LUCA genome studies.
cThe article offers a range of possible predictions. We used the dataset derived from the authors’ gain penalty of 1 (i.e., equal weights assigned to a 
gain and a loss), which is the focus of their own analysis.
dThis range is based on a discrepancy between the article reporting that 185 genomes were sampled for the study and the specific genomes that 
could be ascertained based on the figures in the article that provided information on specific taxonomic sampling made available by the authors. 
The figures showed 123 unique species, which we determined belonged to 91 unique genera based on taxonomic reconciliation. If the remaining, 
missing 62 genomes belonged entirely to unique genera, the total number of genera would be 153. In contrast, if the missing genomes represented 
no additional, unique genera then the number of unique genera would be 91.
eProtein families within this study were determined by sequence searches and were not provided in the article's supporting information. However, 
COGs were associated with 336 out of the 355 protein families predicted by the authors to have been present in the LUCA.

TA B L E  2 Inter-rater test scores for the predictions of individual LUCA genome studies (referred to by the last name of the primary 
author)

Statistic
Consensus 
threshold Harris Mirkin Delaye Yang Ranea Wang Srinivasan Weiss

Percent agree-ment 2 0.86 0.57 0.39 0.61 0.81 0.30 0.46 0.54

3 0.73 0.36 0.24 0.38 0.63 0.17 0.26 0.35

4 0.56 0.16 0.10 0.17 0.45 0.06 0.10 0.19

5 0.29 0.05 0.03 0.06 0.21 0.02 0.02 0.07

Krippen-dorff’s α / Scott’s π 2 0.68 0.15 ‒0.08 0.19 0.55 ‒0.05 ‒0.09 ‒0.03

3 0.65 0.24 0.13 0.24 0.52 0.09 0.12 0.18

4 0.54 0.14 0.09 0.15 0.41 0.05 0.08 0.15

5 0.29 0.05 0.03 0.06 0.20 0.02 0.02 0.07

Note: Heatmap index: Heatmap index:
1.0          0.75          0.5 0.25    ≤0.0 
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correlation = 0.93, median Spearman's correlation = 0.94). We also 
performed similar inter-rater tests excluding the smallest two pre-
diction sets, Harris et al. (2003) and Ranea et al. (2006) (Appendix 
S6). Here, the inter-rater scores for individual studies are worse than 
scores from the original set of inter-rater tests, with no study yield-
ing an α/π score above 0.02. These results suggest that studies with 
smaller prediction sets are not yielding higher inter-rater scores be-
cause they are smaller per se, but because the predictions are more 
conservative and thus shared to a greater degree with the other 
studies.

In addition to the inter-rater test, we also assessed the similar-
ity between every pair of studies calculated as the Jaccard's sim-
ilarity index between the eggNOG clusters associated with their 
LUCA genome or proteome predictions (Table 3). Jaccard's similarity 
is defined as the intersection (in this case, the number of matching 
eggNOG clusters between the two studies) divided by the union (in 
this case, the total number of unique eggNOG clusters predicted by 
both studies). Surprisingly, no study shows any notable level of simi-
larity with any other. These pairwise similarity comparisons demon-
strate that there is very little overall agreement between individual 
LUCA genome or proteome studies.

3.3  |  Consensus predictions of the last universal 
common ancestor proteome

The moderate to good performance of several studies on the inter-
rater tests compared to the broad lack of similarity between any pair 
of studies suggests that consensus among LUCA proteome studies 
may lead to a more accurate representation of the LUCA proteome 
than any individual study on its own. As such, we sought to generate 
a consensus of eggNOG clusters that are predicted by four or more 
studies to represent LUCA protein families and characterize the 
functional repertoire of the LUCA proteome based on these consen-
sus predictions. We identified 366 eggNOG clusters that were pre-
dicted by four or more studies to have been present in the genome 

of the LUCA (Appendix S2). Not surprisingly, the studies with the 
largest prediction sets contributed the most predictions to this con-
sensus set of eggNOG clusters (Table 1).

Notably, 3431 eggNOG clusters were predicted by at least one 
study to have been present in the genome of the LUCA while only 
one eggNOG cluster (COG0541) is predicted by all eight studies to 
have been present in the LUCA. This eggNOG cluster corresponds 
to the protein component of the signal recognition particle (Ffh in 
bacteria, SRP54 in archaea and eukaryotes). The Ffh/SRP54 protein 
is part of an ancient and highly conserved system responsible for the 
translocation of proteins across membranes in all three domains of 
life (Gribaldo & Cammarano, 1998; Harris & Goldman, 2021). This 
result is also in agreement with a study of universal, vertically inher-
ited functional RNAs (Hoeppner et al., 2012), which finds that the 
SRP RNA is the only universal functional RNA not associated with 
the translation system.

3.4  |  Functional characterization of 
consensus last universal common ancestor proteome 
predictions

We next identified Gene Ontology (GO) terms (Ashburner et al., 
2000; The Gene Ontology Consortium, 2019) associated with the 
consensus LUCA eggNOG clusters (Figure 1). The statistical sig-
nificance of each GO term associated with the consensus LUCA 
eggNOG clusters was determined using permutation tests of all 
eggNOG clusters chosen at random. This resulted in 111 Molecular 
Function GO terms with Bonferroni-corrected p-values ≤ 4.6 × 10−6 
(Figure 1, Appendix S3). Taken together, GO terms associated with 
the consensus LUCA eggNOG clusters most often relate to transla-
tion (e.g., mRNA binding, rRNA binding, and aminoacyl tRNA ligase 
activity), nucleic acids (e.g., DNA binding and exonuclease activity), 
and the use of nucleotide derived cofactors (e.g., NAD binding, fla-
vin adenine dinucleotide binding, ATPase activity, and nucleoside 
monophosphate kinase activity).

TA B L E  3 Jaccard's similarity index between pairs of individual LUCA genome studies (referred to by the last name of the primary author)

Harris Mirkin Delaye Yang Ranea Wang Srinivasan Weiss

Harris 1 0.13 0.05 0.08 0.24 0.03 0.02 0.08

Mirkin 1 0.22 0.17 0.09 0.19 0.20 0.12

Delaye 1 0.15 0.06 0.19 0.17 0.09

Yang 1 0.06 0.27 0.11 0.09

Ranea 1 0.04 0.03 0.05

Wang 1 0.16 0.08

Srinivasan 1 0.08

Weiss 1

Note: Heatmap index: Heatmap index:
1.0          0.75          0.5        0.25      0.0 
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We also sought to characterize a core LUCA metabolism based 
on enzyme functions associated with the consensus LUCA egg-
NOG clusters. Consensus ancestral enzyme functions were de-
fined as any Enzyme Commission (EC) code that was associated 
with proteins in a consensus LUCA eggNOG cluster wherein the 
same EC code was found in representative proteins across multiple 
taxonomic domains (Appendix S4). The resulting 169 unique en-
zyme functions (4-term EC codes) were mapped onto the global 
metabolic pathways as defined by the KEGG database (Figure 2) 
(Kanehisa et al., 2017; Ogata et al., 1999). Mapping these enzyme 
functions onto the KEGG database allowed us to determine the 
functional overlap between modern metabolic pathways or net-
works and enzyme functions associated with the LUCA (which we 
refer to as “coverage,” below). From this perspective, the enzyme 
functions associated with the consensus LUCA proteome appear to 
converge on the broad metabolic categories of sugar, amino acid, 
and nucleotide metabolism with some coverage in the categories 
of energy and cofactor metabolism. Consensus ancestral enzyme 
functions show almost no coverage of lipid metabolism, starch me-
tabolism, or the metabolism of other large biomolecules (e.g., ter-
penoids and polyketides).

At the level of individual pathways (Table 4), the pathway most 
closely associated with enzyme functions in the consensus LUCA 
proteome is the aminoacyl-tRNA biosynthesis pathway (KEGG 
map00970), in which 58% of all pathway enzymes are associated with 
the consensus LUCA proteome. The other most prominent pathways 
pertain to amino acid metabolism and nucleotide metabolism with 

glycolysis/gluconeogenesis also showing a high degree of coverage. 
Curiously, the Drug Metabolism pathway (map00983) shows the 
third highest percent coverage by consensus LUCA enzyme func-
tions, a result similar to one observed by Goldman et al. (2012). The 
enzyme functions of the consensus LUCA proteome found in the 
Drug Metabolism pathway are exclusively involved in nucleobase 
chemistry associated with two drugs that both contain nucleobases, 
6-thioguanosine monophosphate synthesis, and fluorouracil. These 
same enzyme functions are found in nucleotide metabolism path-
ways, and this is likely the cause of their inclusion in the set of con-
sensus LUCA enzyme functions.

4  |  DISCUSSION

We undertook this study with the hypothesis that the specific pre-
dictions of the various studies on the LUCA genome or proteome 
performed over the last two decades would largely agree with one 
another. We expected that each study should have some unknow-
able level of error because it is inherently difficult to infer spe-
cific details about life forms that existed at least 3.5 billion years 
ago. However, if the previously published LUCA genome or pro-
teome studies are at all accurate, they should agree with one an-
other and, because these studies have used largely independent 
approaches to infer features of the LUCA genome and proteome, 
agreement between them could be taken as support for this sort of 
approach.

F I G U R E  1 Statistically overrepresented Gene Ontology (GO) terms in the Molecular Function category associated with consensus 
LUCA eggNOG clusters. Arrows indicate parent-child GO term relationships. All GO terms shown in the figure have an associated p-value 
< 4 × 10−6, which is below the Bonferroni-corrected threshold of p ≤ 4.6 × 10−6. Note that the term “Molecular Function,” itself, is not 
statistically significant. The terminal GO terms in each branch of the parent-child network (i.e., the most specific GO terms) have been 
removed for clarity, but all statistically significant GO terms are available as Appendix S3
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Surprisingly, we found that studies of the genome or proteome 
of the LUCA do not uniformly agree with one another. Inter-rater 
tests show that the fewer predictions a study makes, the higher the 
inter-rater scores. One possible explanation for this trend is that it is 
an artifact of only comparing positive predictions between studies. 
However, a similar inter-rater test that compared both negative and 
positive predictions between studies (Appendix S5) yielded inter-
rater scores with similar rank orders of study scores to the original 
inter-rater tests that compared only positive predictions. That is, the 
average Spearman's rank correlation (ρ) between the results of the 
original set of inter-rater tests and these similar inter-rater tests that 
include negative predictions was 0.93 (median = 0.94) with a range 
between 0.83–0.98 across all eight versions of the inter-rater test.

The specific scores from this inter-rater test that compared both 
negative and positive predictions are not as informative as those 
from the original inter-rater tests that only compare positive predic-
tions because a large majority of eggNOG clusters were not included 

in any of the LUCA datasets. But the similarity in the rank order of 
these scores with those of the original inter-rater tests suggests 
that our observation that higher scores are associated with smaller 
studies is not simply an artifact of only comparing positive predic-
tions. An alternative explanation, which we prefer, is that smaller 
prediction sets represent more conservative studies and thus have a 
higher likelihood of matching the consensus predictions of the other 
studies. This observation should not be taken to mean that more 
conservative studies are de facto better representations of the LUCA 
proteome. Despite having better agreement with the consensus of 
the other studies, these smaller studies contribute fewer predictions 
to that consensus (Table 1).

It is also informative that while some studies performed well 
on the inter-rater tests, which compared their predictions to the 
consensus predictions from the other eight studies, none of them 
showed a high or even moderate level of similarity with any other 
individual study. Even the studies with fewest predictions, which 

F I G U R E  2 Ancestral enzyme functions determined from consensus LUCA eggNOG clusters mapped onto a universal metabolic network. 
The consensus LUCA enzyme functions are represented by 169 Enzyme Commission codes. The universal metabolic network and color-
coding of metabolic categories are from the global Metabolic Pathways network (map 01100) from the KEGG database (Kanehisa et al., 
2017; Ogata et al., 1999). “Metabolism of Other Amino Acids” is terminology that the KEGG database uses to indicate amino acids that are 
not included in proteins, such as D-amino acids
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we consider to be the most conservative, were not in strong agree-
ment with each other. We take this as evidence that the consensus 
of studies may provide a more accurate account of the genome and 
proteome of the LUCA than any individual study.

To this end, we assembled a consensus set of eggNOG clusters 
that are each predicted by four or more studies to be associated with 
the core LUCA proteome. The core LUCA proteome derived from 
this consensus is composed of 366 eggNOG clusters. This is more 
than the number of eggNOG clusters associated with the two LUCA 
genome studies with the smallest prediction sets, but less than the 
average, 768, or the median, 702, number of eggNOG clusters across 
all eight LUCA genome studies. The molecular functions associated 
with the consensus minimal LUCA proteome generally revolve 
around sugar, amino acid, and nucleotide metabolism, the translation 
process, and the use of organic, nucleotide derived cofactors. We 
observe a lack of consensus LUCA enzyme functions associated with 
phospholipid metabolism, which would have been critical for cell 
membrane biosynthesis. However, we note that the only eggNOG 
cluster associated with all eight LUCA genome or proteome studies 

belongs to the Ffh/SRP54 family of proteins, which are involved in 
the process of protein translocation across membranes.

Several cell membrane-related Gene Ontology terms from 
the categories of Cellular Component and Biological Function are 
also inferred from the consensus minimal LUCA proteome such as 
“Plasma Membrane” (GO:0005886) and “SRP-dependent cotrans-
lational protein targeting to membrane” (GO:0006614) (Appendix 
S3). However, the Gene Ontology categories of Biological 
Function and Cellular Component are less informative here than 
the Molecular Function category because potentially ancient pro-
teins that performed functions relevant to ancient life will also be 
included in Biological Function and Cellular Component catego-
ries that are clearly not ancient. The categories of “SRP-dependent 
Cotranslational Protein Targeting to Membrane” (GO:0006614) 
and “Plasma Membrane” (GO:0005886) share protein eggNOG 
clusters with “Mitochondrial Inner Membrane” (GO:0005743) and 
“Nuclear Membrane” (GO:0031965), which are clearly eukaryotic 
and therefore not relevant to the LUCA, but which are also statis-
tically significant Gene Ontology terms in our analysis. As such, 

KEGG pathway
Number of EC 
code matches

Percentage of total 
pathway EC codes (%)

Aminoacyl-tRNA biosynthesis (map00970) 18 58

Valine, leucine, and isoleucine biosynthesis 
(map00290)

5 36

Drug metabolism—other enzymes (map00983) 7 28

Alanine, aspartate, and glutamate metabolism 
(map00250)

13 26

Pyrimidine metabolism (map00240) 15 24

Lysine biosynthesis (map00300) 8 24

Carbon fixation in photosynthetic organisms 
(map00710)

6 24

Phenylalanine, tyrosine and tryptophan 
biosynthesis (map00400)

9 24

Arginine biosynthesis (map00220) 7 23

Glycolysis/Gluconeogenesis (map00010) 11 22

Purine metabolism (map00230) 18 17

Histidine metabolism (map00340) 6 15

Glycine, serine, and threonine metabolism 
(map00260)

10 14

Nitrogen metabolism (map00910) 5 13

Cysteine and methionine metabolism 
(map00270)

9 11

Carbon fixation pathways in prokaryotes 
(map00720)

5 10

Pentose phosphate pathway (map00030) 5 9

Methane metabolism (map00680) 8 9

Pyruvate metabolism (map00620) 6 8

Arginine and proline metabolism (map00330) 6 7

Amino sugar, and nucleotide sugar metabolism 
(map00520)

6 5

TA B L E  4 Metabolic pathway coverage 
of enzyme functions associated with 
consensus LUCA eggNOG clusters
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we report the Biological Function and Cellular Component Gene 
Ontology terms along with Molecular Function Gene Ontology 
terms in Appendix S3, but also suggest that the former two are 
not particularly informative.

The Molecular Function Gene Ontology terms associated with 
the LUCA largely confirm what previous analyses have proposed 
or determined about the LUCA and, more broadly, early life forms. 
For example, the translation process is well known to be ancient 
(Freeland et al., 1999; Goldman et al., 2010) and many of the pro-
teins involved in translation machinery appear to predate the LUCA 
(Fournier & Alm, 2015; Fournier et al., 2012; Harris & Goldman, 
2018). A corollary to the influential RNA world hypothesis (Gilbert, 
1986; Visser, 1984) is that the translation system evolved within 
the context of an RNA-based genetic system (Freeland et al., 1999). 
This idea has been supported by previous LUCA studies. Harris et al. 
(2003), for example, found that most universal COGs encode pro-
teins that physically associate with the ribosome and those that do 
not are often involved with the translation process in some other 
way. Similarly, Hoeppner et al. (2012) found that nearly all univer-
sal, vertically inherited functional RNAs (save the SRP RNA) are 
involved in the translation system. Translation-related genes or pro-
teins are prevalent in the predictions of seven of the eight previ-
ously published LUCA genome or proteome studies analyzed here. 
The exception is the study of Srinivasan and Morowitz (2009) which 
compared metabolic enzymes across organisms and thereby may 
have failed to recover nonmetabolic processes in their predictions. 
Another corollary to the RNA world hypothesis is that nucleotide 
cofactors acted as a bridge between a ribozyme-based metabolism 
and a protein enzyme-based metabolism that used nucleotides or 
nucleotide derivatives to catalyze the same reactions (Goldman & 
Kacar, 2021; Huang et al., 2000; Kirschning, 2021; White, 1976). 
This potential residual of an RNA world is reflected in our finding 
that consensus LUCA eggNOG clusters show a significantly greater 
use of nucleotide-derived cofactors.

Though our results are broadly consistent with previous work 
on the minimal LUCA genome or proteome, we believe this consen-
sus view of the LUCA and its functional repertoire is more accurate 
than any one of the eight single studies that we analyzed. Our re-
sults do not preclude the possibility that one of the previously pub-
lished LUCA genome or proteome studies is highly accurate, while 
the other seven are not. However, it is more likely that all of the 
previously published approaches have been constrained by the lack 
of availability of analytical resources, including abundant genomes 
from across the tree of life, to generate a robust evolutionary frame-
work. This evolutionary framework, in the form of a taxonomically 
well-sampled phylogenetic tree, facilitates studying individual pro-
tein families for their presence in the LUCA (Berkemer & McGlynn, 
2020), by determining if their topologies match the species tree of 
life. This match between the gene tree and species tree, along with 
broad taxonomic sampling, should be considered both necessary 
and sufficient to accurately claim that the protein family was pres-
ent in the LUCA. This more rigorous approach is sometimes, but not 
always, used when predicting the minimal genome or proteome of 

the LUCA. In some cases even when phylogenetic tree topologies 
were used to confirm the presence of a protein family in the LUCA, 
an insufficient number of genomes were available at the time to con-
stitute a truly broad taxonomic sampling, for example, Harris et al. 
(2003) and Mirkin et al. (2003).

Despite these methodological constraints, reconstruction of the 
LUCA genome has been a useful exercise insofar as it has demon-
strated that there is a conserved genomic core, mutually inherited by 
organisms across the tree of life. It was from these earliest studies 
that we first learned that the LUCA represented a complex stage of 
early evolution far beyond the simple replicators that followed the 
origin of life (Becerra et al., 2007). Future progress toward a more 
detailed understanding of the LUCA can be made by focusing on 
especially informative protein families or physiological processes 
that can be confidently attributed to the genome of the LUCA by 
methods that combine robust taxonomic sampling and careful analy-
sis of gene tree topologies. Automating this more rigorous approach 
has yet to be accomplished, but has the potential to considerably 
advance our understanding of the minimal LUCA genome and pro-
teome. Whether through advanced automated pipelines or careful 
and methodical work by a community of researchers, species tree-
aware phylogenetic analyses of shared protein families (e.g., via 
GeneRax (Morel et al., 2020) or other tools) are likely to yield an even 
more accurate and detailed characterization of the LUCA.
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