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Abstract

Purpose—We previously reported the efficacy of intraarticular (IA) rimabotulinumtoxinB 

(BoNT/B) in a murine model of chronic degenerative arthritis pain. This study aimed to 

measure the analgesic effects of onabotulinumtoxinA (BoNT/A) on collagenase induced chronic 

degenerative arthritis joint pain.

Methods—Chronic degenerative arthritis was produced by IA injection of 10 μl collagenase 

(Col) (10 IU) into the left knee of C57BL/6J female mice 4 weeks prior to pain assessment. IA 

BoNT/A was injected 3 days before testing. Arthritis pain was measured as evoked pain scores 

(EPS) and spontaneous pain behaviors with an advanced dynamic weight bearing (ADWB) device. 

EPS was a tally of fights and vocalizations exhibited in one minute with knee palpation. Percent 

body weight and percent time spent on each limb was quantified. All mice were 12 weeks old at 

the time of examination.

Results—IA Col increased EPS and reduced ADWB measures of percent weight bearing on the 

left hind limb compared to naïve mice. BoNT/A treatment reduced EPS and increased weight 

bearing on the left hind limb. The improvements were not significant compared to the Col group. 
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There was no significant difference in time spent on the left hind limb between any treatment 

groups. Forelimb ADWB measures of percent weight and time in arthritic mice significantly 

increased compared to nonarthritic animals. Treatment with BoNT/A in the arthritic limb 

decreased this offloading; however, statistical analysis only showed significance in weightbearing.

Conclusion—IA Col monoarthritis increased evoked and spontaneous pain behaviors in female 

mice after four weeks. Treatment with IA BoNT/A decreased pain behaviors but only forelimb 

weight bearing showed a significant improvement. This led us to conclude that treatment with 

BoNT/A is not an effective analgesic for the treatment of chronic degenerative knee arthritis in 

murine models.
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1. Introduction

Osteoarthritis (OA) is the most commonly diagnosed chronic disease, affecting 

approximately 27 million adults in the United States (Hootman et al., 2016; Lawrence et 

al., 2008). By the year 2030 this number is expected to surpass 67 million (Hootman and 

Helmick, 2006). The most debilitating OA symptom affecting patients is pain (Malfait and 

Schnitzer, 2013; Neogi, 2013). Living with chronic pain poses negative personal and societal 

ramifications. Patients may experience difficulties completing daily activities, routine needs 

and personal care (Centers for Disease Control and Prevention, 2010). Among working age 

adults, 30.6% reported serious work limitations (Theis et al., 2007). In a 2010 Medical 

Expenditures Panel Survey, the estimated cost from absenteeism due to OA pain was $11.6 

billion annually (Kotlarz et al., 2010). Further cost analyses for the United States showed 

$162 billion in combined direct (medical expenditures) and indirect costs (lost wages). This 

accounts for 2% of the annual gross domestic product (Kotlarz et al., 2010; Yelin et al., 

2007).

There is no cure for osteoarthritis, thus treatment goals are focused on pain management. A 

combination of pharmacological and non-pharmacological practices is commonly utilized. 

Pharmacological options include oral (systemic), intraarticular, and surgical therapies. Non

pharmacological options include: education, exercise, weight reduction, acupuncture, and 

joint protection (Wenham and Conaghan, 2013). An examination of these practices found 

insufficient joint pain relief, intolerable drug side effects and interactions, and minimal 

compliance with integrative therapies (Conaghan, 2012; Doherty et al., 2011; Zhang et al., 

2010). In the most degenerative cases surgical treatment may be used. Several analyses 

concluded alleviation of pain from surgical therapies were no greater than those obtained 

from placebo (Kirkley et al., 2008; Mosely et al., 2002; Zhang et al., 2010). Total joint 

replacement has significant risk and is inappropriate for individuals with comorbidities but 

can alleviate pain. Therefore, there is an important unmet need for safe, effective pain 

treatment.

Generation and maintenance of chronic arthritis pain is complex. Nociceptive articular pain 

originates at the site of disease or injury. The nociceptive input is a response to noxious 
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mechanical, thermal, or chemical stimuli. Local inflammatory mediators (H+, Glutamates, 

Bradykinin, cytokines, and chemokines) and neuropeptides released in the periphery by 

efferent neurogenic signals amplify and maintain arthritis pain by lowering the threshold 

for nociceptor activation (Miller et al., 2014; Schaible et al., 2006). Local release of 

neuropeptides such as substance P and calcitonin gene-related peptide from articular sensory 

nerve endings causes vasodilatation, extravasation of plasma, chemotaxis of macrophages, 

and mast cell degranulation (Schaible et al., 2006). Given this peripheral sensitization, we 

hypothesize arthritis pain may be treated effectively by intraarticular neurotoxins.

Botulinum neurotoxins (BoNT) are comprised of seven different serotypes that 

mechanistically inhibit the release of neuronal signal chemicals from sensory nerves which 

contribute to peripheral sensitization. All serotypes act by hindering SNARE-associated 

exocytosis of acetylcholine and other neuropeptides into the synaptic cleft (Dolly and 

Aoki, 2006; Oh and Chung, 2015). This mechanism begins with the endocytosis of 

BoNT, comprised of a heavy and light chain, into the presynaptic terminal via presynaptic 

membrane vesicle (Zanetti et al., 2015). The light chain is then translocated into the cytosol 

and acts as a protease, cleaving different SNARE proteins (Fischer and Montal, 2007). 

Without SNARE proteins, facilitated transportation of neuronal signal chemicals across the 

presynaptic membrane into the synaptic cleft does not occur (Pirazzini et al., 2017). Several 

recent studies have shown that BoNT may not stay localized in the axon terminal but also 

undergoes axonal transport (Favre-Guilmard et al., 2017; Marinelli et al., 2012; Restani et 

al., 2011). The main differences between the seven BoNT serotypes are based on affinities 

and which SNARE protein (s) they cleave (Aoki and Guyer, 2001; Mense, 2004; Pellizzari et 

al., 1999).

In our earlier studies, we examined the analgesic effects of rimabotulinumtoxinB (BoNT/B) 

in an OA murine model. Anderson et al. used joint palpation to measure evoked pain 

behaviors and visual gait analysis to measure spontaneous pain behaviors. Both significantly 

improved with IA BoNT/B treatment (Anderson et al., 2010). Our group concluded that 

further analysis of Botulinum neurotoxins was necessary.

OnabotulinumtoxinA (BoNT/A) differs from BoNT/B in several ways. The serotypes 

cleave different SNARE proteins; BoNT/A cleaves SNAP-25 and BoNT/B cleaves 

VAMP/synaptobrevin (Pellizzari et al., 1999; Verderio et al., 2007). There have been 

several preclinical studies showing that BoNT/A inhibits the release of local nociceptive 

neuropeptides (Aoki, 2005, 2008; Cui et al., 2004). And BoNT/A is the only serotype with 

FDA approval for peripheral applications to treat pain (Burstein et al., 2014).

We hypothesized that IA BoNT/A could reduce pain behavior measures and produce 

analgesia in a collagenase induced OA murine model. The purpose of this study was 

to measure the analgesic response produced by BoNT/A in female mice with chronic 

degenerative monoarthritis pain using evoked and spontaneous pain behaviors. This animal 

model of OA was chosen because it is a well-established model and has been used 

previously to study IA BoNT/B.
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2. Material and methods

2.1. Animals

Studies were performed on 12-week-old female C57BL/6J mice (Jackson Laboratories, 

Bar Harbor, ME). Healthy specific pathogen free (SPF) mice were delivered at 6–7 weeks 

and acclimated to their housing for one week prior to experiments. Mice were housed in 

SPF conditions in standard polycarbonate cages with water and standard rodent diet ad 

libitum. Environmental conditions were held constant at: 21 ± 3 °C, 33 ± 1% humidity, 

and 12-h light/dark cycle. All animal procedures and protocols were approved by the 

Minneapolis Veterans Affairs Health Care System (VAHCS) Institutional Animal Care and 

Use Committee and conformed to the “Guide for the Care and use of Laboratory Animals” 

(The National Academic Press, USA). Mice were maintained in the Animal Research 

Facility at the Minneapolis VAHCS, an Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC) approved facility. Female mice were used with the 

future goal of sex studies in mind. Estrous cycles were not evaluated based on the work 

of Meziane et al. showing pain behaviors are not affected by estrous phases in female 

C57BL/6J mice.

2.2. Study design

A total of seventy-six animals were studied. Mice were randomly allocated to the various 

experimental groups. Collagenase was used to induce monoarthritis in 46 mice. Of these, 

fifteen arthritic mice received IA BoNT/A treatment, 16 arthritic mice were given a sham 

injection (puncture control) and 15 were untreated (arthritis control). Thirty nonarthritic 

mice served as controls: 14 mice did not receive IA injection (naïve) and 16 received IA 

BoNT/A (treatment control) (Fig. 1). Group numbers were determined by power calculation 

to detect a 25% difference with a power of 80% and a significance level of 0.05.

2.3. Injections

Animals that received IA injections were chosen in random order and anesthetized with 

isoflurane in oxygen (induction and maintenance 3%, 1 L/minute) for 3 ± 1 min. This 

anesthesia has been determined to be safe, provides rapid induction and recovery with 

minimal adverse effects. IA injections were performed on the left knee. The injection site 

was shaved and prepared with 0.75% povidone-iodine scrub prior to injection. A 30-gauge 

needle was fitted with a customized sheath that limited the depth of needle penetration 

to 2.5 mm. The injection was performed through the midline of the patellar tendon just 

inferior to the patella to ensure accurate entry into the articular space. Chronic arthritis was 

produced in the left knee of 8-week-old female mice by IA injection of 10 IU of Type IV 

collagenase (Worthington Biomedical Corporation, Lakeville, NJ Cat#LS004210) in 10 μl 

of normal saline (van der Kraan et al., 1990). Pain behavior testing was performed four 

weeks’ post injection. The uninjected right knee served as the internal nonarthritic control. 

IA onabotulinumtoxinA (BOTOX™, Allergan, Plc, Dublin, Ireland) (0.02 U/knee in 5 μl 

of sterile saline) was injected three days prior to pain behavior testing in arthritic and 

nonarthritic animals. The dose and timepoint were determined based on previous ranging 

studies (data not shown). The dose was significantly below the LD50 for mice for this 

compound. Sham injections were performed as described above on the left hind arthritic 
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limb. Animals were observed during recovery until they were ambulatory at which time they 

were returned to the home cage.

2.4. Measurement of evoked joint pain

Evoked joint pain is the experimental correlate of palpable joint tenderness. This was 

quantified by counting the number of fights and vocalizations elicited by the animal during 

one minute of repeated palpation of the knee. Fights were defined as noticeable flinches or 

escape attempts. Vocalizations were defined as audible sounds emitted by the animal. Prior 

to these studies a single blinded examiner was trained using a “Palpometer” (Palpometer 

Systems, Inc. Victoria, B.C.) to reproducibly exert the same force (1100 gf/cm2 = 15.6 PSI) 

to the medial and lateral sides of the knee (palpation). In this experiment the Palpometer 

was not used on the mice. Testing was performed during the morning hours for each group. 

The blinded examiner removed an animal at random order from the home cage and held it 

in one hand while palpating the knee with their opposite hand. Intermittent pressure with 

thumb and index finger was applied to each side of the joint every second for one minute. 

The pain responses during palpation were counted and totaled by a second observer for the 

evoked pain score (EPS). The normal right knee was always examined first. In preliminary 

experiments with tenderness testing, our group found slightly elevated tenderness scores 

in whichever knee was examined second. This phenomenon, known as wind up, has been 

well documented. Most recently, Ziv et al. found naïve mice submitted to low intensity 

stimulation exhibited heightened sensitivity in subsequent response tests.

2.5. Measurement of spontaneous pain behavior

Advanced Dynamic Weight Bearing (ADWB) (Bioseb In Vivo Research Instruments, 

Vitrolles, France) was used to quantify spontaneous nociceptive behavior in mice (Griffioen 

et al., 2015). The device was a 4.5 × 4.5 × 8.25 in3 plexiglass chamber with a floor 

consisting of 1936 pressure sensors. The sensors were calibrated prior to each experiment 

by placing a 2680-g weight on the pad and adjusting the individual sensors to a normalized 

mean. The animal’s weight was recorded in the software before placing the mouse in 

the chamber for a five-minute period. To ensure spontaneous behavior, mice were not 

acclimated to the chamber before the collection of data and were allowed to freely move 

once inside the chamber. All activity was recorded with synchronized video and sensor data, 

which was relayed to the ADWB software. The software partitioned the five-minute video 

into analyzable and non-analyzable segments. Segments were considered analyzable when 

at least one stable zone was detected. A zone was created when sensors detected ≥2g on 

one sensor with a minimum of one adjacent sensor detecting ≥1g and when the weight 

distribution of a zone was stable for more than 0.38 s. Zones that met these minimal criteria 

were presented to the observer for assignment as right hind, left hind, right fore, left fore, or 

both forepaws per the video and scaled map of activated sensors. Validation of stable zones 

occurred as the observer worked through the analyzable segments and defined a paw(s) to 

each stable zone. A minimum of 1.5 min of analyzable time was required to meet analysis 

thresholds. Analyzed segments were added and averaged for output per paw(s). The ADWB 

software then calculated the percentage of analyzed time spent and percentage of body 

weight (g) placed on each of the five limb options. At the end of the study period animals 
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were euthanized by CO2 inhalation followed by thoracotomy. Tissues were preserved for 

histology.

2.6. Histologic examination of normal and arthritic knees

The left hind limbs of one mouse in the following conditions: naïve, arthritic, and treated 

arthritic mice, were examined for histologic evidence of degenerative arthritis following 

conclusion of the study. Extremities were dissected. Articular specimens were fixed in 10% 

buffered formalin for 24 h and decalcified in Decal Stat™ Decalcifier (StatLab Medical 

Pro, McKinney, Texas) for 24 h before paraffin embedding. Paraffin-embedded blocks were 

serially sectioned into one hundred 4 μm sections. Twenty representative slides per mouse 

were stained for cartilage proteoglycans with Safranin O/Fast Green staining. OA severity 

was quantified using the Osteoarthritis Research Society International (OARSI) scoring 

system (Glasson et al., 2010). Stained sections were analyzed by a blinded researcher using 

the 0–6 subjective system outlined in Table 1. Individual scores for each treatment were 

averaged for the reported grade.

2.7. Statistical methods

EPS and ADWB results for the five independent groups (naïve, BoNT/A, Col, Col+Sham, 

and Col+BoNT/A) were compared using an ANOVA one-way analysis of variance. 

Dunnett’s post hoc t-test was used for comparing groups whenever the overall analysis of 

variance was significant. In all cases, differences were considered significant when P values 

were less than 0.05. Throughout the manuscript the term significant is used to describe 

statistical significance.

3. Results

3.1. Measurement of evoked pain behaviors

EPS from the left hind knee of naïve mice was 3.0 fights and vocalizations (SEM 0.62). 

This score significantly increased to 6.73 (SEM 1.19, P = 0.011) in mice with Col induced 

arthritis. BoNT/A treatment of arthritic left hind knees reduced EPS to 4.73 (SEM 0.58); 

however, this was not a significant difference when compared to arthritic mice (Fig. 2).

3.2. Measurement of spontaneous pain behaviors

3.2.1. Weight—Weight bearing on the left hind limb of naïve mice was 42.0% (SEM 

1.3) of the total body weight. Mice with Col induced arthritis significantly decreased weight 

bearing to 36.79% (SEM 1.52) of the total body weight compared to naïve mice (P = 0.041). 

BoNT/A treated arthritic mice increased weight bearing to 37.73% (SEM 1.61); however, 

there was no significant difference when compared to arthritic mice (Fig. 3a).

Forelimb weight bearing in naïve mice was 12.01% (SEM 1.77) of the total body weight. 

Mice with Col induced arthritis in the left hind limb significantly increased forelimb weight 

bearing to 22.07% (SEM 2.10) (P = 0.0017). BoNT/A treated arthritic mice significantly 

decreased forelimb weight bearing to 15.36% (SEM 1.53) (P = 0.049) total body weight 

compared to mice with Col induced arthritis (Fig. 3b).
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3.2.2. Time—The percent of total time spent on the left hind limbs of naïve mice was 

93.83% (SEM 1.20). This increased to 95.31% (SEM 1.17) in mice with Col induced 

arthritis. Treatment with BoNT/A slightly decreased the total time spent on the arthritic 

left hind limb to 94.67% (SEM 1.23). No significant difference was observed between any 

groups (Fig. 4a).

Interestingly, the percent of total time spent on the forelimbs was significantly increased to 

61.79% (SEM 4.92) in arthritic mice compared to 35.42% (SEM 5.0) in naïve (P = 0.0017). 

BoNT/A treated arthritic mice decreased the percentage of time spent on the forelimbs to 

47.07% (SEM 4.32). This difference was not significant when compared to arthritic mice 

(Fig. 4b).

3.2.3. Normal right limb controls—Throughout all stages of this study, the 

contralateral right limb was a normal, noninjected internal control. EPS of the right knees 

showed no significant differences between any of the groups. The ADWB measures for 

mean weight and time of the nonarthritic right hind limb were analyzed. Only the BoNT/A 

group (44.99%, SEM 1.23) showed a significant increase in weight bearing compared to 

arthritic mice (38.49%, SEM 1.67) (P = 0.0075). (Figs. 3–4).

3.2.4. Neurotoxin and puncture controls—Treatment control groups included 16 

naïve mice receiving BoNT/A only and 16 arthritic mice receiving sham injections into the 

left knee. Animals were examined three days following either BoNT/A or sham injection 

and compared with untreated arthritic mice. There were no significant changes in pain 

behavior scores from the left hind limb of Col+Sham compared to arthritic mice. EPS were 

significantly less in BoNT/A only (3.81, SEM 0.52) compared to arthritic mice (6.73, SEM 

1.19, P = 0.043). Compared to naïve (3.0), this group (BoNT/A only) had slightly elevated 

EPS, but no significance was observed. Weight bearing and time spent on the left hind limbs 

of BoNT/A only and arthritic mice were not significantly different (Figs. 3a–4a).

BoNT/A only mice bore significantly less weight (10.99%, SEM 1.70) and spent 

significantly less time (35.94%, SEM 5.14) on the forelimbs compared to arthritic mice 

(22.07%, SEM 2.10, P = 0.0003, 61.79%, SEM 4.92, P = 0.00082, respectively) (Figs. 

3b–4b).

3.2.5. Histological examination of knees—After sacrifice, the left knees of naïve, 

Col, and Col+BoNT/A mice were examined for histological evidence of degenerative 

arthritis. Safranin O/Fast green staining of naïve left knees showed only minor histologic 

alterations in the cartilage, meniscus and synovium with minor loss of proteoglycan (PG) 

staining of focal areas of articular cartilage. Staining of arthritic left knees showed more 

extensive PG loss in articular cartilage with irregularity and fissuring. There was minor 

inflammation of the arthritic knees that had been injected with BoNT/A 3 days prior to 

sacrifice. BoNT/A injection did not worsen the degenerative changes of cartilage in Col 

injected mice. Using the OARSI grading scale for murine osteoarthritis, arthritic knees and 

treated arthritic knees scored a maximum grade of 2. Naïve knees scored 0.5. (Fig. 5A–C).
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4. Discussion

This study demonstrated that Col induced chronic degenerative knee monoarthritis produced 

measurable evoked and spontaneous nociceptive behaviors that were used to measure the 

possible analgesic effects of BoNT/A. EPS significantly increased from 3.0 to 6.73 in mice 

with Col induced arthritis in the left hind knee (Fig. 2). Weight bearing on the left hind limb 

in this group significantly decreased from 41.98% to 36.79% of the total body weight (Fig. 

3a). When the arthritic limb was treated with BoNT/A, EPS decreased to 4.73 and weight 

bearing increased to 37.73%. However, this was not a significant improvement for either 

pain behavior measure (Figs. 2 and 3a). Percent time spent on the hind limbs was not a 

sensitive measure of arthritis pain for this model and therefore an analgesic affect could not 

be observed (Fig. 3b).

The limited changes in pain behavior in the hind limbs led us to more closely examine the 

forelimbs for evidence of analgesia using ADWB. Results showed a significant increase 

in percent weight bearing and time spent on the forelimbs of mice with Col induced 

monoarthritis. Treating the arthritic limb with BoNT/A decreased weight bearing on the 

forelimbs. Although time spent on the forelimbs decreased towards normal, we only 

observed a significant improvement in the weight bearing measure (Figs. 3b and 4b). 

While BoNT/A treated arthritic mice showed a decreased pain response in both evoked 

and spontaneous pain measures, it did not do so in a significant manner, apart from the 

forelimb weight distribution.

In earlier works studying BoNT/B, we utilized EPS to measure evoked pain and visual gait 

analysis to measure spontaneous pain behavior. EPS in the left hind knee of arthritic mice 

was 7.23 (SEM 0.953). Treatment with BoNT/B decreased this score to 3.58 (SEM 0.816). 

This was a 49.50% improvement. Treatment with BoNT/A also decreased evoked pain 

behaviors but a smaller improvement was observed 34.90%. The amount of improvement 

observed with BoNT treatment is similar but slightly less with BoNT/A. Explanation for 

this can be found in differences in binding mechanisms of the serotypes to the presynaptic 

membrane. It is known that BoNT/A binds to synaptic vesicle proteins SV2 and BoNT/B 

binds to synaptotagmin (Syt-I and II) (Berntsson et al., 2013; Rummel, 2017; Strotmeier et 

al., 2014). Recent work by Stern et al. shows that the binding of BoNT/B to its membrane 

protein receptors is one of higher affinity, thus less risk of dissociation before uptake into the 

neuron. The binding strength lies with a hydrophobic loop located on the heavy chain of the 

molecule. It mediates the formation of a highly stable BoNT-receptor complex comprised of 

the protein receptor, gangliosides and lipids (Stern et al., 2018).

For the purposes of this manuscript, it is important to note that these two studies were 

done years apart under similar but different conditions (location, time of year, observers) 

and should not be directly compared. A head-to-head comparison would be needed to 

definitively decide which is better and is beyond the scope of this paper.

Comparing spontaneous pain behaviors in arthritic animals treated with botulinum toxins 

elicited a 43% improvement with BoNT/B. ADWB parameters improved as follows with 

BoNT/A treatment: weight bearing on the arthritic hind limb 2.51%, weight bearing on 
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the forelimbs 35.87%, time spent on the arthritic hind limb 0.67% and time spent on 

the forelimbs 29.04%. The methods used in the BoNT/B study were a semiquantitative 

subjective visual gait analysis and quasi-spontaneous gait analysis, which were utilized prior 

our use of ADWB. Our group determined these methods to be less reliable (Dorman et 

al., 2013). Analysis with ADWB is more reproducible, sensitive and it shows that female 

mice may not consistently offload to the predicted contralateral hind limb. Our data suggests 

mice also depend on the forelimbs as the joint stability decreases and pain increases under 

arthritic conditions.

For example, the analgesic control group (BoNT/A only) in the current work, slightly 

decreased weight bearing on the left hind limb compared to naive. Simultaneously, the right 

hind limb of this group seemed to have a compensatory increase in weight bearing. When 

compared to arthritic mice, the BoNT/A only group bore significantly more weight on the 

right hind limb. This shows partial offloading. Interestingly, arthritic mice decreased weight 

bearing in both the right and left hind limbs (Fig. 3a). In the BoNT/A group, this is most 

likely due to discomfort associated with the injection as we do see a slight insignificant 

increase in EPS as well. In the more painful arthritic state, mice reduced weight bearing 

on both hind limbs, while forelimb measures significantly increased (Fig. 3b). This is an 

important observation and reminds us that in quadrupeds there may be multiple adaptive gait 

behaviors in response to pain (Anderson et al., 2010; Malfait et al., 2010; Mogil, 2009).

This is different than what we have seen previously in inflammatory models of arthritis and 

in males (unpublished data), suggesting that severity of pain and sex of mice may influence 

these adaptive behaviors (Abdullah et al., 2016; Bert et al., 2016; Lam et al., 2004; van 

der Kraan et al., 1990). Therefore, it is important to use both evoked and spontaneous pain 

behavior measures to analyze analgesic responses to articular pain. Future studies will need 

to take these observations into account.

This work does not support our hypothesis that BoNT/A treatment reduces evoked and 

spontaneous pain behaviors in female mice with chronic degenerative arthritis. The only 

significant pain reduction observed was in forelimb weight bearing. It is possible that in 

this arthritis pain model, the pain is not as severe as in other models. Inflammatory arthritis 

pain is amplified by release of inflammatory mediators in the painful joint. BoNT is anti

inflammatory in that it inhibits release of proinflammatory neuropeptides. The degenerative 

model of arthritis pain used in this work likely produces less inflammation; hence, the 

BoNT/A has a less potent effect.

Our study has several potential limitations. The groups were small so slight differences may 

not have been detected statistically. The results cannot be extrapolated to other models of 

experimental arthritis. The use of only a single time point of arthritis duration and treatment 

may have missed the point of greatest pain and efficacy. Histologically, this was very mild 

degenerative arthritis. Evaluation of efficacy of BoNT/A in more advanced degenerative 

arthritis pain may be informative. We were not able to directly compare responses from 

BoNT/B and BoNT/A treated mice due to differing analysis methods of spontaneous pain 

behaviors.
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Despite these technical hurdles, the most notable strengths of this study are the use 

of standardized measures that reproducibly quantitate spontaneous and evoked pain 

behaviors. These findings provide evidence to move forward with investigation of additional 

neurotoxins for arthritis pain. The advantage of using animal models for these studies is that 

we can examine directly the effect of these neurotoxins on the nervous system. This will be 

a major advantage as we move forward with studies of combination IA toxins for intractable 

arthritis pain.
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Fig. 1. 
Overview of Study. A total of 76 animals were studied in six groups of 14–16 mice. 

Forty-six arthritic animals were separated into three groups: arthritic (Col), treated arthritic 

(Col+BoNT/A) and arthritic plus puncture control (Col+Sham). Thirty nonarthritic animals 

were separated into two groups: uninjected nonarthritic control (naïve) and treatment control 

(BoNT/A).
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Fig. 2. 
Evoked pain scores for left (solid column) and right (striped column) hind limbs. Right 

hind limbs served as internal controls and did not undergo any IA injections. Measurements 

were taken in the following conditions: uninjected naïve, treatment only (BoNT/A), arthritic 

(Col), arthritic puncture control (Col+Sham), and treated arthritic (Col+BoNT/A). One-way 

analysis of variance comparing evoked pain in all treatment groups found a significant 

difference (P = 0.0065). To explore differences between groups, post hoc analysis using 

Dunnett’s t-test was performed. Analysis found that the mean EPS was significantly higher 

(6.73, SEM 1.19) in mice with monoarthritis than naïve (3.0, SEM 0.62) (P = 0.011). 

Treatment with BoNT/A decreased EPS to 4.73 (SEM 0.58) in the arthritic limb. This failed 

to be significantly different from arthritic. The treatment only group (BoNT/A) exhibited 

significantly lower EPS (3.81, SEM 0.52) than arthritic mice (P = 0.043). The arthritic 

puncture control group (Col+Sham) had slightly elevated EPS (7.20, SEM 1.30) compared 

to arthritic but did not show significance. EPS in the contralateral knee fell slightly from a 

baseline mean of 1.14 (SEM 0.58) in all treatment groups except Col+BoNT/A (2.07, SEM 

0.52) which increased slightly. These values failed to show any significant difference when 

compared to the right hind limb of arthritic mice. (* = P < 0.05).
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Fig. 3. 
a. Spontaneous pain behavior measured by total percent body weight on the left (solid 

column) and right (striped column) hind limbs. One-way analysis of variance comparing 

weight bearing in the left hind limbs of all treatment groups found a significant difference 

(P = 0.0084). Post hoc analysis found that mice with monoarthritis bore significantly less 

weight (36.79%, SEM 1.52) on the affected limb than naïve (41.98%, SEM 1.33) (P = 

0.041). Treatment with BoNT/A increased weight bearing to 37.73% (SEM 1.61) on the 

left hind limb but was not significantly different when compared with arthritic or naïve 

mice. The treatment control group (BoNT/A) (40.4% SEM 1.8) and the puncture control 

group (Col+Sham) (34.3%, SEM 1.5) showed no significant difference in weight bearing 

on the left hind limb compared to arthritic mice. Statistical difference in weight bearing 
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on the contralateral, nonarthritic right hind limb was not found when comparing groups 

to arthritic mice. Except in the treatment only group (BoNT/A) (45.0%, SEM 1.23) which 

bore significantly more weight on the right hind limb than arthritic mice (P = 0.0075). 

(* = P < 0.05). 3b. Spontaneous pain behavior measured by total percent body weight 

placed on the forelimbs. One-way analysis of variance comparing spontaneous pain of 

all treatment groups found a significant difference (P < 0.0001). Post hoc analysis found 

that mice with monoarthritis in the left hind limb bore significantly more weight (22.07%, 

SEM 2.10) on their forelimbs than naïve (12.01%, SEM 1.77) (P = 0.0017). Treatment 

with BoNT/A significantly decreased this weight distribution to 15.36% (SEM 1.53) (P = 

0.049). The treatment only control group (BoNT/A) bore significantly less weight on the 

forelimbs (10.99%, SEM 1.70) than arthritic mice (P = 0.0003) which would be expected 

for a treatment without significant toxicity. Forelimb weightbearing in the arthritic puncture 

control group (Col+Sham) (25.8%, SEM 2.18) showed no significant difference compared to 

arthritic mice. (* = P < 0.05).
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Fig. 4. 
a. Spontaneous pain behavior measured by total percent time spent on the left (solid column) 

and right (striped column) hind limbs. One-way analysis of variance comparing percent time 

spent on the left hind limbs of all treatment groups found no significant difference. The 

same was done for the right hind limbs. No significant difference was found between any 

groups. (* = P < 0.05). 4b. Spontaneous pain behavior measured by total amount of time 

spent on the forelimbs. One-way analysis of variance comparing spontaneous pain behaviors 

of all groups found a significant difference (P < 0.0001). Post hoc analysis found that mice 

with monoarthritis in the left hind limb spent significantly more time (61.79%, SEM 4.92) 

on their forelimbs than naïve (35.42%, SEM 5.0) (P = 0.001). Treatment with BoNT/A 
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decreased this percent time to 47.07% (SEM 4.32) which was not significantly different 

when compared with arthritic mice but also was not different from naive. The treatment 

only control group (BoNT/A) spent significantly less time on the forelimbs (35.94%, SEM 

5.14) than arthritic mice (P = 0.00082) which would be expected. The arthritic puncture 

control group (Col+Sham) spent slightly more time (70.07%, SEM 4.21) on the forelimbs 

than arthritic mice but it was not significant. (* = P < 0.05).
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Fig. 5. 
(A–C). Safranin O/Fast Green stained 4 μm thick sections. Magnification 10x. (A) 

Uninjected naive left knee. Normal appearing articular cartilage (arrowhead) and synovium 

(circle). (B) Col injected left knee. Proteoglycan loss of articular cartilage (arrowhead) 

consistent with early degenerative arthritis. Cruciate ligament (arrow). (C) Col+BoNT/A 

injected left knee. Proteoglycan loss of articular cartilage (arrowhead), irregularity and 

fissuring of the superficial cartilage layers (*) and minor inflammation at injection site (#). 

BoNT/A injection did not improve or worsen the degenerative changes in the arthritic knee.
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