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Sfrp5/Wnt Pathway:
A Protective Regulatory System
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Adipose tissue stores energy and is the largest endocrine organ in the body, producing several adipokines.
However, among these adipokines, few play a role in the positive metabolism that promotes good health.
Secreted frizzled-related protein (Sfrp)-5, an antagonist that directly binds to Wnt, has attracted interest due to
its favorable effects on atherosclerotic cardiovascular disease (ASCVD). This review focuses on Sfrp5 biology
and the roles of the Sfrp5/Wnt system in ASCVD.
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Background

Cardiovascular diseases (CVD) are a growing global
health problem that results in increased health care

burden and decreased life expectancy. Atherosclerotic car-
diovascular disease (ASCVD) is the most common cardio-
vascular disease (CVD). The basic pathological changes
during ASCVD include atherosclerosis (AS), obesity, insu-
lin resistance, lipid metabolism disorders, and chronic in-
flammation. An increasing number of researchers have
reported that adipose tissue stores energy and is the largest
endocrine organ in the body. Adipose tissue, especially
visceral fat, can secrete a variety of fat factors (adipokines),
such as leptin, adiponectin, resistin, tumor necrosis factor
(TNF-a), interleukin (IL)-6, visfatin, omentin, retinol bind-
ing protein, and secreted frizzled-related protein (Sfrp). These
factors may alter the metabolism and functions of cardiac
cells, endothelial cells, arterial smooth muscle cells, and in-
flammatory cells, leading to the development of AS and CVD.

However, few of these factors play a positive role in the
metabolism, promoting good health. Sfrp5, a member of the
Sfrps family, has been recently identified as a novel adipo-
cytokine that belongs to the category of ‘‘good’’ adipokines
(Ouchi and others 2010). Plasma Sfrp5 levels are significantly

decreased in patients with obesity, insulin resistance, and
related diseases, such as diabetes, AS, and CVD. Recent
studies showed that Wnt signaling plays a major role in the
progression of heart disease (Gay and Towler 2017) and
Sfrp5 acts primarily by inhibiting the Wnt signaling path-
way, thereby suppressing the development of AS and CVD
(Jaikanth and others 2017). This review focuses on specific
aspects of Sfrp5s physiological and pathological functions
mediated via the Wnt pathway in the cardiovascular system.

Sfrp5 Structure, Distribution, and Biology

Sfrps and Wnt signaling pathways

The Wnt signaling pathway is closely associated with the
process of cell proliferation and differentiation. This path-
way not only participates in human embryonic development
and organ formation but also plays a crucial role in some
pathophysiological processes, such as tumor formation,
obesity, insulin resistance, fibrosis, and inflammatory re-
sponses (Hermans and Blankesteijn 2015; Gay and Towler
2017; Liu and others 2018; Yin and others 2018). Wnt
signaling pathway consists of the Wnt protein family, cell
membrane receptor frizzled (frizzled, Fz), cytoplasmic
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protein beta-catenin (b-catenin), co-receptor low-density
lipoprotein receptor-related protein 5/6 (LRP5/6), dishev-
eled (DVL), adenomatous polyposis coli (APC), glycogen
synthase kinase (GSK)-3b, axin, and transcription factors of
the T cell factor/lymphocyte enhancer factor (TCF/LEF).
The Wnt protein family consists of a group of proteins that
contain cysteine-rich glycosylated ligands and 350–400
amino acid residues, and these proteins are highly conserved
signaling molecules exhibiting high degree of homology. Fz
consists of 1 N-terminal cysteine-enriched regions [cysteine-
rich domain (CRD)] as well as 7 transmembrane regions
and cytoplasmic regions (cytoplasmic domain) (Kawano
and Kypta 2003). The Wnt ligands activate at least 3 dif-
ferent signaling pathways: the canonical Wnt//b-catenin, the
noncanonical Wnt/Jun N-terminal kinase ( JNK), and the
noncanonical Wnt/Ca2+ pathways (Pawar and Rao 2018). In
the canonical Wnt/b-catenin pathway, certain Wnts in-
teract with specific Fz in complex with LRP5/6 to activate
the pivotal protein Dvl. Dvl inhibits phosphorylation of
cytoplasmic b-catenin by forming a complex consisting
of GSK, APC, and axin. In its nonphosphorylated state,
b-catenin is no longer targeted for degradation. Accumula-
tion of b-catenin (transferring from the cytoplasm to the
nucleus) leads to transcription of the downstream target
genes [such as PPAR-g, C/EBPa, vascular endothelial
growth factor (VEGF), TCF-4, and BMP2] via the TCF/LEF
promotor. In the noncanonical Wnt/JNK pathway, Wnt
binds to Frizzled receptors on the surface of cells and sub-
sequently delivers signals into the cells to activate the
downstream GTPase Rho and JNK, thus participating in the
cytoskeleton activities and regulation of downstream genes
via AP-1 promotor (such as TNF-a, monocyte chemotactic
protein-1, and IL-6). The third pathway is noncanonical
Wnt/Ca2+ pathway. Wnt signals through Fz, in the ab-
sence of LRP5/6, to activate G-protein and phospholipase C,
which leads to enhanced intracellular Ca2+levels and acti-
vation of protein kinase C (PKC). Activation of PKC, in
turn, leads to the transcription of the downstream target
genes (such as IL-6, IL-4, and fibronectin) via the nuclear

factor of activated T cells promotor. In turn, Ca2+-dependent
calmodulin kinase is activated and represses the activation
of b-catenin (Fig. 1I).

Sfrps are antagonists that directly bind to Wnt proteins.
They have a molecular weight ranging between 30 and 40 kD.
The CRDs of Sfrps, which lie in the N-terminal half of the
protein, are the most important structural characteristic fea-
tures and consist of 10 conserved cysteine residues and several
other conserved segments (Agostino and others 2017). The C-
terminal half of Sfrps contains a netrin, which is composed of
6 cysteine residues and several conserved segments of hy-
drophobic residues. Sfrps represent 5 types of proteins in
mammals. Sfrps were initially given several names, reflecting
their simultaneous discovery by different approaches, but a
unifying nomenclature now exists for 5 of these (Sfrp1–Sfrp5).
Sfrps, a modulator protein of Wnt proteins, contains a CRD,
which is homologous to that of Wnt receptor, Fz proteins.
Thus, Sfrps may block Wnt signaling either by binding to Fz
proteins or by forming nonfunctional complexes with Fz
(Schulte and others 2015). However, Bovolenta and others
(2008) confirmed that Sfrps have more than a simple inhibi-
tory effect on the Wnt pathway via other putative mechanisms.

Sfrp5 distribution and biology

The Sfrp5 gene consists of 317 amino acid residues and 3
coding exons and maps to chromosome 10q24.1 in humans.
Sfrp5 was initially found to be highly expressed in retinal
pigment epithelium cells and moderately expressed in the
pancreas (Chang and others 1999; Satoh and others 2008).
In 2010, Ouchi and others (2010) found that Sfrp5 was also
highly expressed in white adipose tissue. At present, Sfrp5 is
considered to be primarily secreted by adipocytes, espe-
cially by visceral adipocytes. However, some scholars have
speculated that Sfrp5 may be secreted by the vascular matrix
in adipose tissue. The biological function of Sfrp5 primarily
includes the regulation of cell polarity and organ formation
during embryonic development (Satoh and others 2008;
Stuckenholz and others 2013; Fujii and others 2017).

‰

FIG. 1. A signaling map and mechanistic map of the Sfrp5/Wnt signaling pathway in ASCVD. (A) The signaling map of
the Wnt signaling pathway. Wnt ligands signal through 3 major pathways. In the canonical Wnt/b-catenin (pathway A),
certain Wnts interact with specific Fzs in complex with LRP5/6 to activate the pivotal protein Dvl. Dvl inhibits phos-
phorylation of cytoplasmic b-catenin by a complex including glycogen synthase kinase-3b, adenomatous polyposis coli
protein, and axin. In its nonphosphorylated state, b-catenin is no longer targeted for degradation. The accumulation of b-
catenin (transferring from the cytoplasm to the nucleus) commits to the transcription of the target genes in the downstream
(such as PPAR-g, C/EBPa, VEGF, T cell factor-4, and BMP2) via the T cell factor/lymphoid enhancer factor promotor. In
the noncanonical Wnt/Ca2+ (pathway B), Wnt signals through Fz, again in the absence of LRP5/6, activate G-protein and
phospholipase C and lead to raised intracellular Ca2+levels and activation of PKC. The activation of PKC commits to the
transcription of the target genes in the downstream (such as IL-6, IL-4, and fibronectin) via the nuclear factor of activated T
cells promotor. In turn, Ca2+-dependent calmodulin kinase is activated and represses the activation of b-catenin. In the
noncanonical Wnt/JNK (pathway C): Wnt binds to Frizzled receptors on the surface of cells and subsequently delivers
signals into the cells to activate the downstream GTPase Rho and JNK, thus participating in the cytoskeleton and regulation
of downstream genes via AP-1 promotor (such as tumor necrosis factor-a, monocyte chemotactic protein-1, and IL-6).
(B) The mechanistic of physiological and pathological effect of the Wnt signaling pathway in ASCVD. The activation of
Wnt signaling pathway could result in neovascularization, vulnerable plaque, myocardial healing, vascular calcification,
obesity, dyslipidemia, insulin resistance, inflammation, myocardial remodeling, and myocardial fibrosis and then lead to AS
and CVD. Sfrp5 is capable of preventing the binding of Wnt and Frizzled proteins through its combination with Wnt
protein, thus blockading the Wnt signaling, inhibiting the transcription of the target genes in the downstream and cyto-
skeleton. In addition, Sfrp5 has the ability to repress the JNK signaling via its combination with Wnt5a; as a result, it plays a
protective effect against AS and ASCVD. VEGF, vascular endothelial growth factor; PKC, protein kinase C; ASCVD,
atherosclerotic cardiovascular disease; IL, interleukin; Sfrp, secreted frizzled-related protein; LRP5/6, lipoprotein receptor-
related protein 5/6; Dvl, Disheveled; JNK, Jun N-terminal kinase; AS, atherosclerosis. Color images are available online.
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Hypermethylation of Sfrp5 gene contributes to the forma-
tion and development of tumors (Maman and others 2011).
Sfrp5 has been implicated in the modification of metabolic
homeostasis, leading to insulin resistance and obesity-linked
metabolic disorders (Ouchi and others 2010; Ouchi 2011)
and in the suppressions of inflammatory reactions (Kwon
and others 2014; Schulte and others 2015). The effect of
Sfrp5 in ASCVD is relatively unexplored; however, several

recent studies have suggested that this may be an interesting
area to investigate.

Role of Sfrp5/Wnt in the Physiological
and Pathological Development of ASCVD

As is evident, human and murine molecular genetics
converge to indicate the important role for Wnt signaling in
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terms of cardiometabolic health (Cheng and others 2015b;
Srivastava and others 2015). Wnt signaling plays a major
role in the physiological and pathological development of
ASCVD, in terms of both metabolic alterations (insulin
sensitivity) and cardiovascular remodeling and structural
changes (fibrosis, sclerosis, atheroma formation, smooth
muscle cell proliferation, and hypertrophy) (Hermans and
Blankesteijn 2015). Sfrp5, as faux receptor of Wnt ligands,
can restrict Wnt signaling and inactivate specific Wnt ac-
tions (Suzuki and others 2004; He and others 2006; Wang
and others 2017) (Fig. 1II).

Sfrp5/Wnt and obesity

Obesity, as an emerging cardiovascular risk factor, is
strongly associated with metabolic and cardiovascular dis-
orders. Adipose tissue has been identified as a complex
endocrine organ that exerts a wide array of regulatory
functions at cellular, tissue, and systemic levels, all of which
can have profound effects on the cardiovascular system.
Epicardial adipose tissue (EAT), directly surrounding the
heart, is a unique and multifaceted fat depot with local and
systemic effects (Patel and others 2017). Obesity leads to
increased expression of proinflammatory adipokines (such
as leptin, adiponectin, and resistin) and inhibited expression
of anti-inflammatory adipokines (such as omentin and
Sfrp5) in EAT, resulting in the development of a chronic,
low-grade inflammatory state (Vural and others 2008; Balta
and others 2016). These factors may alter cardiac cell
metabolism and functions of endothelial cells, arterial
smooth muscle cells, and inflammatory cells, leading to the
development of ASCVD (Lastra and Manrique 2015; Patel
and others 2017).

Previous studies on the regulation of Sfrp5 in obesity in
in vitro show conflicting data. Several groups have reported
that Sfrp5 is strongly induced with genetic- and/or diet-
induced obesity in mice (Koza and others 2006; Lagathu and
others 2009; Okada and others 2009; Mori and others 2012).
However, Ouchi and others (2010) reported very different
findings from the previous literature. They found that Sfrp5
gene expression downregulated when the volume of adipo-
cytes increased to the platform stage, indicating that there
may be a feedback regulation of Sfrp5 expression and adi-
pocyte volume. The authors pointed out the transient role of
Sfrp5, suggesting that Sfrp5 expression is increased in
adipose tissue but is reduced in response to serious obesity-
related metabolic dysfunctions. This proved that the upregu-
lation of Sfrp5 in obese mice alleviates metabolic disorders
and suppresses inflammation. In our opinion, these dis-
crepancies may be accounted for by the different animal
models, in terms of age of the animals at the time of detec-
tion, and different measurements. Previous studies have
shown that the Wnt signaling pathway can inhibit the for-
mation of adipose tissue by suppressing PPAR-g function and
C/EBPb (CCATT enhancer-binding protein beta) (Takada
and others 2007; Tang and Lane 2012). Inhibiting the Wnt
signaling pathway in myocytes can induce myoblasts to
transform into adipocytes (Guo and others 2012). Through
both canonical Wnt pathways and noncanonical Wnt path-
ways, GSK activates STAT5 (signal transducer and activator
of transcription 5) phosphorylation to bind to the promoter of
Sfrp genes, and PPAR-g gene, to stimulate Sfrp5 gene ex-
pression, which could ultimately lead to a modulated adipo-

genic process (Wang and others 2018). Mori and others
(2012) found that adipose tissue from Sfrp5-deficient mice
exhibited similar number of adipocytes, indicating that Sfrp5
did not affect the proliferation of adipocytes. Nevertheless,
the number of large fat cells in these mice was less than that
in wild-type mice, suggesting that Sfrp5 affects adipocyte
hypertrophy. Through further studies on molecular mecha-
nisms, the authors supported a model of adipogenesis in
which Sfrp5 inhibits Wnt signaling to suppress oxidative
metabolism and stimulates adipocyte growth during obesity.

In contrast with in vitro studies, Sfrp5 plasma levels
were also shown to be lower than those in lean participants
and were negatively correlated with the markers of obe-
sity, such as body mass index (BMI) and waist circum-
ference (Schulte and others 2012; Hu and others 2013b;
Tan and others 2014). Reduced circulating Sfrp5 levels
may play a role in the etiopathogenesis of obesity. Fur-
thermore, decreases in weight through life intervention
significantly correlated with the upregulation of Sfrp5
(Schulte and others 2012; Tan and others 2014). Schulte
and others (2012) showed that Sfrp5 expression is not
significantly different between obese and lean individuals,
unlike Wnt5a, which is significantly upregulated in obese
subjects. To date, the first study to investigate the poly-
morphisms in the Sfrp5 gene was performed in a large
population cohort of obese and nonobese individuals (Van
Camp and others 2016). The results showed that Sfrp5
single nucleotide polymorphisms (c.-3G>A) are associated
with BMI. The Sfrp5 rs7072751 in male obese patients is
associated with obesity, which can explain the 1.8% var-
iance of abdominal obesity in general population. The
roles of Sfrp5 in weight loss need to be further elucidated.

Sfrp5/Wnt and insulin resistance

Type 2 diabetes (T2D) is considered to be an equivalent
risk factor of CVD. Abnormalities in insulin resistance and
glucose metabolism play a key role in the development of
AS and CVD. The Wnt pathway and related signaling fac-
tors, including Sfrp5, are important in the development of
diabetes and insulin resistance. It is generally considered
that the Wnt signaling pathway participates in the prolifer-
ation of b cells; however, b-catenin may also play an im-
portant role in this process (Rulifson and others 2007;
Rebuffat and others 2013). Several in vitro experiments
have shown that the level of Sfrp5 was significantly reduced
when insulin levels were high (Lv and others 2012; Guan
and others 2016); however, Sfrp5 expression upregulated
upon treatment with rosiglitazone and metformin (Lv and
others 2012). Sfrp5-/- mice exhibited glucose metabolic
dysfunction when fed a high-calorie diet compared with
wild-type mice (Ouchi and others 2010). In contrast, in
in vitro conditions (Mori and others 2012), the silencing of
Sfrp5 did not influence signaling events implicated in
insulin resistance (including the phosphorylation of Ser307-
IRS1 or JNK) and glucose uptake in the primary or im-
mortalized adipocytes. These data provided no support for
the hypothesis that Wnt5a or Sfrp5 regulates the insulin
sensitivity of adipocytes. The disparity in results may be due
to the use of different models and different detection times.
Therefore, although the pleiotropic activity and insulin-
sensitizing effect of Sfrp5 have been demonstrated, its
specific mechanism remains unclear.
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Circulating Sfrp5 levels were examined with respect to
abnormal glucose metabolism in clinical cross-sectional
studies in humans. Three studies on Chinese subjects re-
ported that circulating Sfrp5 levels were lower in indi-
viduals with impaired glucose tolerance and T2D than in
those with normal glucose tolerance (Hu and others 2013b;
Cheng and others 2015a). Moreover, circulating Sfrp5 le-
vel is negatively correlated with BMI, waist-to-hip ratio,
and homeostatic model assessment for insulin resistance
(Hu and others 2013b; Cheng and others 2015a). In addi-
tion, decreased serum Sfrp5 is more closely related to the
function of b cells than insulin sensitivity (Carstensen-
Kirberg and others 2016). Furthermore, after the applica-
tion of liraglutide, the level of Sfrp5 increased accordingly
with improved blood glucose control and insulin resistance
(Hu and others 2013a). Recently, the German KORA F4
study investigated a cross-sectional association between
serum Sfrp5 level and cardiometabolic risk factors, and
prediabetes/T2D, in 1,096 participants, 666 of whom had
prediabetes or T2D (Carstensen-Kirberg and others 2017).
The results showed that serum Sfrp5 levels were lower in
participants with prediabetes or T2D than in those with nor-
mal glucose tolerance. In the fully adjusted model, higher
Sfrp5 level was associated with lower incidence of predia-
betes/T2D [odds ratio (OR) 0.72; 95% confidence interval
(CI) 0.58–0.89], and this association was independent of
BMI. Higher serum Sfrp5 level was inversely correlated with
multiple risk factors for T2D and CVD, suggesting that it
may be a novel biomarker of CVD. However, the afore-
mentioned data are in contrast to 2 other studies (Lu and
others 2013; Canivell and others 2015), both of which
showed that serum Sfrp5 level was upregulated in T2D and
that serum Wnt5a level was reduced (Lu and others 2013). In
the second study (Canivell and others 2015), after adjusting
for potential confounders [age, gender, BMI, triglycerides,
high-density lipoprotein cholesterol (HDL-C), and blood
pressure], T2D was still associated with higher levels of Sfrp5
compared with prediabetes as revealed by multinomial lo-
gistic regression analysis (OR 3.50; 95% CI 1.40–8.79). The
association was more subtle when comparing with the normal
glucose tolerance state (OR 2.18; 95% CI 0.91–5.21). Such
inconsistencies were mainly caused by different subjects
(patients and controls), detection methods, and sample size.
Above all, the exact roles of Sfrp5 in insulin resistance need
to be further investigated.

Sfrp5/Wnt and lipid metabolism

Lipid metabolism disorder is key part of AS and is an
important risk factor for ASCVD. Increasing evidence
suggests that Sfrp5 may be a protective cytokine associated
with lipid metabolism. In an animal study, Sfrp5-deficient
mice were metabolically normal when maintained on a
regular diet but displayed increased fatty liver disease when
fed a high-calorie diet for 12 weeks. After Sfrp5 treatment,
the accumulation of lipids in the liver decreased, and the
degree of fatty liver disease was reversed (Ouchi and others
2010). Serum Sfrp5 level was significantly decreased in rats
that were fed a high-fat diet, whereas dephosphorylated beta
protein levels increased compared with the total levels of
beta protein in islet cells, suggesting that Sfrp5 silencing
promotes b cell proliferation by activating the canonical
Wnt pathway (Rebuffat and others 2013). Meanwhile,

population-based studies have suggested that Sfrp5 func-
tions to protect lipid metabolism. Serum Sfrp5 level was
negatively correlated with triglycerides (Hu and others
2013a; Xu and others 2017), free fatty acids (Hu and others
2013a), low-density lipoprotein cholesterol (Almario and
Karakas 2015), and apolipoprotein B (Almario and Karakas
2015) and was positively correlated with HDL-C (Hu and
others 2013a; Xu and others 2017). However, no significant
correlation was found between the plasma Sfrp5 level and
lipid metabolism in another study (Carstensen and others
2013). Nevertheless, the increasing number of recent studies
suggests that Sfrp5 plays a role in improving lipid metab-
olism, but its mechanism of action has yet to be clarified.

Sfrp5/Wnt and inflammation

Accumulating evidence indicates that the obese state is
characterized by chronic low-grade inflammation. In the
human body, Wnt5a is expressed by macrophages in adipose
tissue and may be an important proinflammatory factor as-
sociated with low inflammation (Festa and others 2000;
Zuriaga and others 2017). As an inhibitor of Wnt5a, Sfrp5
inhibits the activation of downstream molecules of the Wnt
pathway and reduces the secretion of inflammatory factors
(Ouchi and others 2010). On one hand, decreased Sfrp5
level during obesity is associated with inflammation, indi-
cated by increased TNF-a and IL-6 levels and activation of
toll-like receptor-4 and nuclear factor light-chain kappa B
signaling pathways. Furthermore, the activation of these
adipocytokines promotes weight loss and reduces inflam-
mation (Festa and others 2000). On the other hand, obese
patients exhibited increased Wnt5a mRNA levels in visceral
adipose tissue and downregulated Sfrp5 gene expression.
The expression of Wnt5a mRNA was significantly enhanced
by lipopolysaccharide and TNF-a treatment, and exogenous
Wnt5a treatment induced the expression of IL-6, IL-1B,
MMP2, MMP9, and SSP1 mRNA in human adipocytes
(Catalan and others 2014). Taken together, the activation of
noncanonical Wnt signaling through upregulation of Wnt5a
and downregulation of Sfrp5 may promote a proin-
flammatory state in visceral adipose tissue, contributing to
the development of ASCVD.

The Sfrp5/Wnt5a-mediated noncanonical pathways are
associated with the pathogenesis of many inflammation-
related diseases. First, Wnt5a levels were found to be sig-
nificantly increased in septic patients compared with healthy
controls and exhibited a significant positive correlation with
the leukocyte count. Interestingly, in patients recovering
from sepsis, Wnt5a levels significantly declined. In contrast,
as sepsis progressed, Wnt5a levels increased in a time-
dependent manner (Schulte and others 2015). Second, Kwon
and others (2014) revealed that Sfrp5 suppressed the in-
flammatory response by preventing JNK activation in
rheumatoid arthritis, which proved the anti-inflammatory
effect of Sfrp5. Third, several clinical studies have reported
the association between decreased Sfrp5 levels and inflam-
mation in T2D patients (Hu and others 2013b; Almario and
Karakas 2015). Fourth, human periodontitis was associated
with high expression level of Wnt5a and low expression
level of Sfrp5, although this expression profile was reversed
after treatment with Sfrp5 in mouse model (Maekawa and
others 2017). The role of the Sfrp5/Wnt5a regulatory system
in CVD is, thus far, relatively unexplored; however, several
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recent studies have suggested that this topic may be an in-
teresting area to investigate (Kitagawa and others 2017). In
contrast, Carstensen and others (2013) obtained contradictory
results, that is, there is no significant correlation between
serum Sfrp5 levels and inflammation markers. Another study
demonstrated that the cellular actions of Sfrp5 seem to de-
pend on the type of tissue as well as its inflammatory and
metabolic states. Sfrp5 inhibited IL-6 release in TNF-treated
human adipocytes but did not act on skeletal muscle cells
(Carstensen and others 2014). Therefore, further studies on
the relationship between Wnt pathway, its inhibitor Sfrp5,
and inflammation are needed.

Sfrp5/Wnt and fibrosis

The Wnt pathway regulates the process of fibrosis in
different organs. Sfrps, as an inhibitor of Wnt, plays an
important role in inhibiting fibrosis (He and others 2010;
Matsushima and others 2010). Wnt5a mediates the differ-
entiation of adipocytes into fibroblasts in the pancreas that
may create a microenvironment for carcinoma (Zoico and
others 2016). Moreover, Sfrp5 can alleviate liver fibrosis in
mice by inhibiting Wnt5a/Fz2 (Chatani and others 2015). In
addition, indoxyl sulfate-induced renal fibrosis occurred due
to Sfrp5 hypermethylation in chronic kidney disease mice.
Sfrp5 upregulation attenuated renal fibrosis by inhibiting
Wnt signaling (Yu and others 2017). Finally, several studies
have demonstrated that the transfection of miR-125b mimics
into cardiac fibroblasts (CFs) resulted in significantly in-
creased expression of the myofibroblast markers, alpha-
smooth muscle actin (a-SMA), and vinculin, whereas the
transfection of Sfrp5 resulted in the opposite effect. Sfrp5
inhibited the expression of a-SMA and collagen I and III in
CFs. Further analysis revealed that miR-125b promotes the
proliferation and migration of CFs and inhibits their apo-

ptosis, whereas Sfrp5 exhibits the opposite effect (Bie and
others 2016).

Role of Sfrp5/Wnt in ASCVD

Wnt signals act not only as regulators of the dysmeta-
bolic milieu driving CVD but also as mediators of CVD
in response to the dysmetabolic milieu (Matsushima
and others 2010; Gay and Towler 2017). Sfrps, the fam-
ily of Wnt antagonists, exhibit different functions in the
progression of CVD (Barandon and others 2003; Ezan
and others 2004; Mirotsou and others 2007; Kobayashi and
others 2009; Matsushima and others 2010; Mastri and
others 2014; Miyoshi and others 2014; Lin and others
2016; Nakamura and others 2016; Ji and others 2017b)
(Table 1). Similarly, Sfrp5 inhibits the binding of Wnt and
Frizzled proteins by binding with Wnt protein and thus
suppressing the Wnt signaling, inhibiting the transcription
of the downstream target genes and cytoskeleton. In ad-
dition, Sfrp5 suppresses JNK signaling by binding with
Wnt5a and thus exhibits a protective effect against AS and
ASCVD (Fig. 1I).

Sfrp5/Wnt in AS

Sfrp5 participates in the pathogenesis of AS, such as
inflammatory reactions, cell proliferation, and macrophage
chemotaxis. Sfrp5 levels are significantly lower in patients
with obesity, insulin resistance, and diabetes, which lead to
the development of metabolic syndrome, AS, and auto-
immune disorders (Jaikanth and others 2017). Christman
and others (2008) first confirmed the hypothesis that Wnt5a
plays a role in AS pathogenesis in vitro. Sfrp5, an antag-
onist of Wnt5a, suppressed the activation of JNK in adi-
pose tissue and macrophages and inhibited the release of

Table 1. Summary of Some Findings Related to Sfrps in Cardiovascular Disease

Sfrps Subject Finding Study

Sfrp1 Mice Overexpression of Sfrp1 reduces myocardial infarction size and improves cardiac
function

Barandon and others
(2003)

Mice Reduces endothelial and vascular smooth muscle cell proliferation Ezan and others
(2004)

Sfrp2 Mice Promoting myocardial stem cell survival and repair with ischemia Mirotsou and others
(2007)

Mice Antagonism in controlling fibrosis in the infarcted heart Kobayashi and
others (2009)

Mice Sfrp2 blockade increased myocardial levels of vascular endothelial growth factor and
hepatocyte growth factor along with increased angiogenesis

Mastri and others
(2014)

Mice Srp2 may regulate the growth and extracellular matrix remodeling of adult mouse
cardiac fibroblasts after myocardial infarction

Lin and others
(2016)

Sfrp4 Mice Administration of Sfrp4 interferes could mediate the formation of acellular scar and
consequently contributes to the prevention of aggravation of cardiac function

Matsushima and
others (2010)

Human EAT-derived and circulating Sfrp4 expression levels were increased in patients with
CAD. EAT Sfrp4 mRNA levels and plasma Sfrp4 concentrations were
independently associated with the presence of CAD

Ji and others (2017b)

Sfrp5 Mice Inhibits myocardial inflammation and injury in a preclinical ischemia/reperfusion
mode

Nakamura and others
(2016)

Human Serum SfrpP5 levels were significantly associated with CAD in humans, suggesting
that low Sfrp5 levels may contribute to CAD

Miyoshi and others
(2014)

Human A high serum concentration of Sfrp5 was associated with the occurrence of future
cardiovascular events, especially in the elderly patients

Ji and others (2017a)

Sfrp, secreted frizzled-related protein; EAT, epicardial adipose tissue; CAD, coronary artery disease.
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proinflammatory cytokines mediated by Wnt5a. Peripheral
artery disease is associated with the elevation in levels
of an anti-angiogenic, VEGF-A splice isoform (VEGF-
A165b), and a corresponding reduction in levels of the
proangiogenic, VEGF-A165a splice isoform, which is the
primary indicator of AS. In mice, VEGF-A165b expression
was upregulated by the genetic ablation of Sfrp5 (Kikuchi
and others 2014). Malgor and others (2014) assessed
Wnt5a expression in different sections of atherosclerotic
plaque tissues isolated from human subjects undergoing
elective carotid endarterectomy. The data analysis revealed
that Wnt5a transcripts and proteins were elevated in more
advanced arterial lesions relative to less advanced arterial
lesions and that the average amount of Wnt5a protein
present in atherosclerotic patient serum was significantly
higher than those in the healthy controls. Recently, a case–
control study showed that the incidence and severity of
coronary AS are also associated with Sfrp5 levels (Miyoshi
and others 2014). A Korean study showed that the serum
level of Sfrp5 is associated with AS in humans with T2D
mellitus. Furthermore, in the in vitro study, they reported
that Sfrp5 ameliorated Wnt5a-induced endothelial dys-
function (Cho and others 2018).

Plaque rupture or bleeding is an important cause of se-
vere events of AS or other complications, and the sta-
bility of plaque is closely related to the density of the
neovascularization in the lesion. Meanwhile, the number of
new vessels in the plaques increases significantly during
moderate and severe inflammation, and the degree of new
vessel formation was the highest in ruptured plaques, in-
dicating that neovascularization is closely related to plaque
inflammation. During the early stage of angiogenesis,
consisting of endothelial differentiation and other patho-
physiological activities, Wnt protein is secreted as a sig-
naling protein that can control various cell life activities,
such as cell differentiation and proliferation. Functional
studies indicate that the Wnt/b-catenin pathway, which can
be detected in the vascular system, is needed for angio-
genesis, suggesting that suppressing its expression would
inhibit angiogenesis. The Wnt/b-catenin pathway can
promote retinal vascularization and is accompanied by the
enhancement of b-catenin expression in the nucleus. The
target gene of Wnt can encode angiogenic factor VEGF
and regulate endothelial cells and angiogenesis, which
further validates the role of this pathway in the vascular
system. Considering that Sfrp5 is an inhibitor of the Wnt
pathway, it is possible that Sfrp5 can reduce the occurrence
of neovascularization in plaques and inhibit the rupture and
bleeding of plaques.

Vascular calcification is another important characteris-
tic of AS and is positively correlated with the size of
the plaque. During vascular calcification, vascular smooth
muscle cells (VSMCs) undergo apoptosis or are trans-
formed into osteoblast-like cells, and then, calcium and
phosphorus become concentrated in the extracellular ma-
trix and promote calcification. Osteoblast differentiation
can be regulated by the Wnt/b-catenin signaling pathway,
where b-catenin and BMP2 play an important role. An
in vitro study in human VSMCs (Gherghe and others
2011), cultivated in high phosphate (HP) medium, showed
that the translocation of b-catenin into the nucleus was
enhanced and that the expression of osteogenic factors,
such as BMP2, Msx2, and osteocalcin, was upregulated

(Gherghe and others 2011). These changes can be in-
hibited by DKK-1, a specific natural antagonist of the Wnt/
b-catenin signaling pathway. Furthermore, the addition of
Sfrp5 significantly inhibited HP-induced calcification of
VSMCs, which was recovered by anti-Sfrp5 treatment. In
addition, Sfrp5 abrogated HP-induced activation via the
Wnt/b-catenin pathway (Deng and others 2016). These
results suggested that Sfrp5 inhibits the calcification of
VSMCs as well as the Wnt/b-catenin pathway.

Therefore, Sfrp5 might have protective effects against
AS, plaque stability, and vascular calcification. However,
future studies are needed to further elucidate the significance
of these discoveries.

Sfrp5/Wnt in coronary artery disease

To date, there are 2 clinical correlation studies related to
circulating Sfrp5 in coronary artery disease (CAD), which
reached opposite conclusions. A case–control study from
Japan (Miyoshi and others 2014) showed that serum Sfrp5
levels in CAD patients, compared with those in non-CAD
individuals, were lower and closely related to BMI, insulin
resistance, adiponectin level, and CAD sensitivity. In the
multivariate logistic regression analysis, the serum Sfrp5
level was an independent decisive factor for the presence of
CAD (OR 0.36; 95% CI 0.14–0.94). It was confirmed that
serum Sfrp5 level is closely related to CAD, and low serum
Sfrp5 levels may lead to CAD incidence. In addition, the
levels of Sfrp5 were even lower in patients with multiple
lesions than those with single-branch lesions, and the Gen-
sini score was negatively correlated with Sfrp5 levels,
suggesting that Sfrp5 was associated with the severity of
CAD. However, the aforementioned results were opposite to
those obtained after a 4-year follow-up prospective study on
168 Chinese individuals ( Ji and others 2017a), which in-
vestigated whether Sfrp5 is associated with future cardio-
vascular events in both CAG(+) and CAG(-) subgroups in
terms of a composite primary endpoint of combined oc-
currence of major adverse cardiovascular events (MACE).
The result showed that a high serum concentration of Sfrp5
is associated with the occurrence of future cardiovascular
events, especially in the elderly patients. In the multivariate
Cox regression analysis, high Sfrp5 significantly predicted
patients’ MACE with an hazard ratio (HR) of 2.174 (95%
CI: 1.169–4.041) at 2-year follow-up and an HR of 1.974
(95% CI: 1.138–3.426) at 4-year follow-up. The incidence
of MACE was significantly increased in the high Sfrp5
expression group for CAG(-) patients, as well as for those
older than 65 years. In our opinion, the opposing result may
be mainly due to the different types of study: case–control
study versus prospective study. Recently, in a Northern
Shanghai study (involving 1,745 community-dwelling sub-
jects aged older than 65 years from northern China) reported
that plasma Sfrp5 level was inversely correlated with con-
ventional cardiovascular risk factors, and low plasma Sfrp5
level was also significantly associated with asymptomatic
hypertensive target organ damages in the elderly Chinese
population (Teliewubai and others 2018). Thus, Sfrp5 may
potentially become a future therapeutic target as well as a
potential biomarker of CVD.

The mechanism of Sfrp5 in CAD is still unclear. Animal
studies have shown that the Wnt pathway can inhibit the
incidence of coronary heart disease (Miyoshi and others
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2014). However, the cause-or-effect relationship between
Sfrp5 and CAD has not been established and should be
explored in future studies.

Conclusions

To summarize, here we reviewed the recent progress
made in the relationship between Sfrp5 and ASCVD. Al-
though both in vitro and in vivo studies proved that Sfrp5 is
involved in the pathological process of obesity, insulin re-
sistance, dyslipidemia, inflammation, and fibrosis and is
associated with obesity, T2D, and ASCVD, the results are
still conflicting. These discrepancies may arise due to di-
verse reasons: on one hand, Sfrp5 level may have a cutoff
effect on glucose and lipid metabolism; on the other hand,
such discrepancy may be related to the different study de-
sign, inclusion criteria of the study subjects, measurements
conducted, and the sample size of study. In addition, sys-
temic and local effects of Sfrp5 are different because the
in vitro study concentrated on the impact of Sfrp5 in cell and
did not consider its interaction with other cells as well as
potential locally occurring binding partners. As a secreted
protein, circulatory Sfrp5 has been shown to be responsible
for ASCVD and conventional cardiovascular risk factors.
Therefore, we propose that Sfrp5 could be exploited as a
novel biomarker for early detection of ASCVD. In vitro
experiments have demonstrated that treatment with recom-
binant Sfrp5 reduces the ischemic myocardial injuries,
which indicated that it may be a promising novel therapeutic
target. The potential therapeutic role of Sfrp5 in ASCVD
and the identification of Sfrp5 receptors will be challenging
topics for future investigations.
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