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Abstract

Given the difficulty in factoring out typical age effects from subtle Alzheimer's dis-

ease (AD) effects on brain structure, identification of very early, as well as younger

preclinical “at-risk” individuals has unique challenges. We examined whether age-

correction procedures could be used to better identify individuals at very early poten-

tial risk from adults who did not have any existing cognitive diagnosis. First, we

obtained cross-sectional age effects for each structural feature using data from a

selected portion of the Human Connectome Project Aging (HCP-A) cohort. After age

detrending, we weighted AD structural deterioration with patterns quantified from

data of the Alzheimer's Disease Neuroimaging Initiative. Support vector machine was

then used to classify individuals with brains that most resembled atrophy in AD

across the entire HCP-A sample. Additionally, we iteratively adjusted the pipeline by

removing individuals classified as AD-like from the HCP-A cohort to minimize atypical

brain structural contributions to the age detrending. The classifier had a mean cross-

validation accuracy of 94.0% for AD recognition. It also could identify mild cognitive

impairment with more severe AD-specific biomarkers and worse cognition. In an

independent HCP-A cohort, 8.8% were identified as AD-like, and they trended

toward worse cognition. An “AD risk” score derived from the machine learning

models also significantly correlated with cognition. This work provides a proof of
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concept for the potential to use structural brain imaging to identify asymptomatic

individuals at young ages who show structural brain patterns similar to AD and are

potentially at risk for a future clinical disorder.
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1 | INTRODUCTION

Alzheimer's disease (AD) pathologic and structural brain changes begin

subtly, decades prior to symptom onset. β-Amyloid (Aβ), one of the

hallmark pathologies of AD, appears 10 years or more before cogni-

tive problems (Buchhave et al., 2012; Hanseeuw et al., 2019; Jack

et al., 2019; Landau et al., 2012) and therefore could serve as an early

marker of future cognitive impairment. However, currently, Aβ can

only be measured in the brain in vivo by positron emission tomogra-

phy (PET) and it is currently clinically impractical to apply this proce-

dure before the symptomatic stage. As an alternative, MRI is less

invasive, less costly, and more available in clinical settings. Recent

advances in structural brain imaging provide powerful tools for

changes in the brain linked to neurodegeneration that can be used for

the early identification of individuals at risk for future dementia.

The combination of different structures lends itself to machine

learning and multivariate data methods for AD recognition or mild

cognitive impairment (MCI) prediction (Duraisamy, Shanmugam, &

Annamalai, 2019; Li et al., 2020; Spasov et al., 2019; Ten Kate

et al., 2018; Wachinger et al., 2016). Although structural change is

subtle in preclinical AD, these measures have significant relation-

ships with local tauopathy (LaPoint et al., 2017), hypometabolism,

and amyloid pathology (Benvenutto et al., 2018; Landau

et al., 2012; Voevodskaya et al., 2018). These biomarkers are inter-

active and indicative of cognitive decline (Pettigrew et al., 2017;

Wirth et al., 2013). Thus, it is possible that structural brain imaging

can be used to identify individuals with slight cognitive problems,

as well as individuals with specific biomarkers in the AD continuum.

To date, however, structural imaging classification has primarily

been applied in older samples (>55–60 years) in the age-range that

is high risk for symptom expression (Belathur Suresh et al., 2018;

Qiu et al., 2020; Yuan et al., 2019). The identification of “at risk”
individuals who have no previous clinical diagnosis, as well as youn-

ger individuals with structural abnormalities, is more challenging as

changes related to later-life disease are extremely subtle at young

ages and will be difficult to distinguish from typical age-related

structural change.

Recent work has demonstrated that deviation in brain structure

from healthy aging is related to cognitive status (Gaser et al., 2013;

Liem et al., 2017), as well as AD in the context of some genotypes

(J�onsson et al., 2019; Kaufmann et al., 2019). As aging and AD have

overlapping patterns of brain atrophy (Bakkour, Morris, Wolk, &

Dickerson, 2013), studies have developed robust age correction pro-

cedures for AD recognition (Dukart et al., 2011; Falahati et al., 2016;

Li et al., 2020). However, to the best of our knowledge, no prior

work has specifically removed age trends using an adult age-span

sample and weighted AD trends to identify very early AD-like atro-

phy patterns in non-diagnosed and younger, asymptomatic non-

clinical adults.

In this study, we examined the utility of a novel classification pro-

cedure that minimizes age effects through modeling from a large adult

sample. Weighting patterns of atrophy due to AD could correctly

identify individuals with subtle cognitive changes at relatively young

ages using an adult cohort from the Human Connectome Project

Aging (HCP-A) study (Bookheimer et al., 2019; Harms et al., 2018).

The HCP-A enrolled a sample of generally healthy adults ranging from

36 to >90 years of age. A range of cognitive variation exists in the

sample allowing for potential discrimination of high- and low-risk indi-

viduals from structural imaging measures spanning the wide range of

the adult lifespan.

2 | MATERIALS AND METHODS

2.1 | Participants

2.1.1 | Data one (D1) for age correction

A total of 272 typically healthy adults from the HCP-A cohort were

included in the study. Of these, 50% participants (136 participants,

age range: 36 to >90, Table 1) were selected as D1 to model age

trends in brain structure. To make full use of the wide age range of

HCP-A for further age modeling and correction, we selected every

other individual for D1 from the whole 272 participants which had

been sorted by age. Thus, D1 and the rest HCP-A participants (D3 in

Table 1) had a similar age span. HCP-A exclusion criteria include any

clinical diagnosis of a cognitive or neurodegenerative disorder and

therefore these participants were not considered “at risk” at

enrollment. Structural brain images were acquired using T1 weighted

multi-echo MPRAGE with prospective navigator motion correction

(TE = 1.8/3.6/5.4/7.2 ms [multi-echo], TR = 2,500 ms, field of

view = 256 � 256 mm2, number of slices = 208, voxel size

= 0.8 � 0.8 � 0.8 mm3, flip angle = 8�; Bookheimer et al., 2019;

Harms et al., 2018).
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2.1.2 | Data two (D2) for AD classifier

Structural data of 136 AD and 268 normal controls (CN) from ADNI

were used for AD effect estimation (Table 1). Besides cross-validation

in AD/CN, we also validated the estimation by classifying 180 early

MCI (EMCI) and 96 late MCI (LMCI) patients from ADNI. MRI scans

were acquired on 3.0 T Siemens and GE scanners according to the

ADNI-2 protocols. Siemens: 3D Magnetization Prepared-Rapid Gradi-

ent Echo (MPRAGE), TR = 2,300 ms, TE = 2.98 ms, flip angle = 9�,

voxel size = 1 � 1 � 1.2 mm3. Philips: 3D MPRAGE, TR = 6.8 ms,

TE = 3.1 ms, flip angle = 9�, voxel size = 1 � 1 � 1.2 mm3. GE: 3D

inversion-recovery spoiled gradient-recalled (IR-SPGR), TR =

2,300 ms, TE = Min Full, flip angle = 11�, voxel size = 1 � 1 �
1.2 mm3. PET scans using 18F florbetapir (AV45) tracer were per-

formed for imaging Aβ. We obtained AD-specific biomarkers (Aβ,

CSF phospho-tau, and brain metabolism by 8F-fluorodeoxyglucose

[FDG] PET) from the ADNIMERGE dataset (https://adni.bitbucket.

io/reference/adnimerge.html). The averaged whole-brain standard-

ized uptake value ratios (SUVR) for Aβ were calculated as mean cor-

tical values normalized by whole cerebellum, and SUVR for

FDG-PET was calculated from the averaged value of angular, tem-

poral, and posterior cingulate cortex divided by pons/vermis

(Landau et al., 2011).

2.1.3 | Data three (D3) for validation in HCP-A

Another 136 adults from the HCP-A cohort (Table 1) were used to

find whether the classifier from D1 and D2 could correctly identify

high AD risk individuals with subtle cognitive changes. Assessments in

the HCP-A cohort included Montreal cognitive assessment (MoCA),

trail-making test A/B (TMT-A/B), and Rey Auditory Verbal Learning

Test (RAVLT). The MRI protocols were identical to D1.

2.2 | Structural features

The preprocessing pipeline of structural images was performed using

FreeSurfer version 6.0 (https://surfer.nmr.mgh.harvard.edu/; Dale,

Fischl, & Sereno, 1999; Fischl et al., 2002; Fischl, Sereno, &

Dale, 1999) as described in our prior publications (Belathur Suresh

et al., 2018; Salat et al., 2009). Processing steps included spatial and

intensity normalization and skull stripping. The resulting volume was

segmented into gray matter, white matter, and CSF, and a deformable

surface algorithm was used to identify the pial surface. Cortical thick-

ness was determined by measuring the distance between the white

matter and pial surfaces. We extracted averaged cortical thickness in

74 labels per hemisphere from the Destrieux atlas (Destrieux, Fischl,

Dale, & Halgren, 2010) respectively, and thus each participant had

148 cortical thickness features from the brain surface.

The automatic subcortical segmentation of brain volume used an

atlas containing probabilistic information on the location of structures as

described previously (Fischl et al., 2002). Volumes of 16 regions of inter-

est (ROI) were extracted and corrected by total intracranial volume,

including cerebellum white matter, cerebellum cortex, thalamus, caudate,

putamen, pallidum, hippocampus, and amygdala in each hemisphere. A

total of 164 features for each participant were used for classification.

2.3 | Age detrending

We applied the natural cubic spline regression to compute the rela-

tionship between age and each raw structural feature of D1. We

placed age bins at 40, 60, and 80 throughout the full range of age to

increase the flexibility of regression which could be done at each age

range (younger: <40, middle-age: 40–60, old: 60–80, and oldest-old:

>80). The coefficient of determination regression score (R2) was used

to evaluate each feature–age relationship. Thus, we built 164 age

TABLE 1 Demographics from the
three datasets

D1 D2 D3

HCP-A AD Controls HCP-A

Number 136 136 268 136

Sex (female/male) 68/68 57/79 148/120 78/58

Age (year) 62.6 ± 16.6 74.2 ± 8.2 72.9 ± 6.0 62.9 ± 16.9

Education (year) 14.8 ± 4.9 15.7 ± 2.5 16. 6 ± 2.5 15.8 ± 4.1

MoCA 26.2 ± 2.4 17.2 ± 4.5 25.8 ± 2.4* 26.2 ± 2.7

RAVLT 58.9 ± 13.2 22.35 ± 7.6 46.1 ± 10.2* 57.7 ± 14.1

TMT-A 35.2 ± 16.9 65.8 ± 37.3 33.1 ± 10.9* 35.2 ± 17.8

TMT-B 90.2 ± 62.4 194.4 ± 85.1 81.8 ± 41.4* 89.3 ± 103.2

Aβ SUVR – 1.39 ± 0.22 1.11 ± 0.18* –

CSF p-tau – 383.2 ± 156.7 238.3 ± 92.7* –

FDG SUVR – 1.06 ± 0.15 1.32 ± 0.10* –

Abbreviations: Aβ, β amyloid; CSF, cerebrospinal fluid; FDG, 18F-fluorodeoxyglucose; MoCA, Montreal

cognitive assessment; p-Tau, phospho-tau; RAVLT, Rey auditory verbal learning test-immediate recall;

SUVR, standardized uptake value ratio; TMT, trail-making test A and B.
*p < .01 for comparisons between AD and ADNI controls.
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models from age and 164 features in D1. We put ages from D2 and

D3 into age models and got their predicted features (i.e., 164

predicted features for each participant). Age detrending was defined

as the subtraction of predicted features from their real features.

After detrending, each participant had a vector of 164 residuals

of fit (defined as “deviation”) which represented the features remov-

ing the age effect. Thus, there was a 136 � 164 final deviation matrix

for AD and 268 � 164 deviation matrix for CN in D2.

2.4 | AD effect estimation

Feature-wise comparisons were performed on deviations between the AD

and CN groups by independent two-tail t-tests (CN � AD). The deviation

in each group was evaluated before each t-test. If the variances were not

equal in both groups, the Welch's t-test was used alternatively. The

p values from t-tests were corrected for multiple comparisons using the

Benjamini–Hochberg procedure at the level of 0.05. The nonsignificant

t values (corrected p > .05) were set as zero, and then all t values were

standardized into the range between 1 and 2. Weighted deviation

(WD) was defined as the multiplication by deviation and the corresponding

t value. In this way, deviations that were different between AD and CN

were amplified by standardized t values. Finally, AD had a 136 � 164 WD

matrix and CN had a 268 � 164WDmatrix for the next step.

2.5 | Support vector machine classifier

Support vector machine (SVM) is a commonly utilized, supervised,

and multivariate classification method. In this study, we input WDs

as covariates for AD and CN, and used the SVM implementation

publicly available in the scikit-learn package based on python

(Pedregosa et al., 2011). We exhaustively searched the kernel func-

tions including radial basis, linear, polynomial and sigmoid function,

and their parameters (e.g., regularization parameter C, kernel coef-

ficient γ) for optimal accuracy by five-fold cross-validation via grid

search. During each fold, the classifier was trained using data from

80% of the participants and tested using data from the remaining

20% of the participants. The grid search range for radial basis, poly-

nomial, and sigmoid function was performed over the ranges

C = 2�5, 2�4,…, 215, γ = 2�15, 2�14,…, 25. The C for linear function

had the range: 2�5, 2�4,…, 215.

The optimized model from AD and CN was used to classify D1

into two groups: AD-like (ADL) and non-AD-like (NADL). As an

exploratory final tuning, we iteratively repeated the above steps

after removing ADL participants in D1 to minimize the impact of

atypical brain structure on the quantification of age trends

(Figure 1), until ADL were no longer identified in D1. The pure NADL

D1 and AD/CN in D2 were finally used to build the final SVM

classifier.

F IGURE 1 Pipeline of the study. Age models were built on HCP-A healthy participants and classifiers were trained by AD/controls. Iteration
was made to exclude ADL participants from HCP-A for age detrending. AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging
Initiative; HCP-A, human connectome project-aging; ADL, Alzheimer's disease-like; NADL, non-Alzheimer's disease-like
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2.6 | Classifier performance

First, the classifier was applied to MCI from D2 and validated against

diagnosis, biomarker, and cognitive status to demonstrate the general-

izability in an earlier and more heterogeneous disease cohort. Second,

the classifier was applied to D3 to determine if the classifier could

identify nondiagnosed and younger at-risk individuals. In D3, ADL and

NADL were compared for demographic and cognitive measures after

adjusting for age effect. Finally, to validate that the results in the

HCP-A sample were related to specific patterns of Alzheimer's-like

atrophy as opposed to global or nonspecific atrophy, we applied a

general linear model to adjust for age effect and compared vertex-

wise thickness maps in the ADL to the NADL in D3.

In addition, we explored whether gender effect affected classifier

performance. The subgroup of male participants (n = 68) in D1 was

used for age modeling (Table S1). After the identical SVM training, we

checked the performance of male brain-based classifier in the female

participants of D2 MCI and D3 HCP-P.

To determine how age detrending and AD effect estimation

improved the model, we repeated SVM and group comparisons by

inputting raw features without age detrending and unweighted devia-

tions (UD), respectively. Second, we examined whether the effects in

the ADL group were specific or if individuals showing more global/

nonspecific atrophy would show similar cognitive effects. In this case,

the D3 participants with mean cortical thickness below the 95% confi-

dential interval of age regression line were used as a “nonspecific
global atrophy” sample to compare with the rest D3 participants.

Finally, we explored the performance of other machine learning classi-

fiers, random forest, and gradient boosting models, which were

described in the Supporting Information.

3 | RESULTS

3.1 | Age detrending

In 164 natural cubic spline regressions, R2 ranged from 0.03 to 0.54.

The relationships between age and cortical thickness were more

prominent (R2 > 0.35) in the left superior frontal gyrus, precentral

thickness, rectus gyrus, superior temporal gyrus (Figure 2), and

matching patterns previously described (Salat et al., 2004). Among

subcortical volumes, the cubic relationships had R2 > 0.35 between

age and bilateral hippocampus, amygdala, cerebellum white matter,

left putamen, and pallidum.

As expected, after detrending, the deviations in CN were less cor-

related with age than the original features (Pearson's r: mean devia-

tions of left hemisphere: �.243 vs. �.390; right hemisphere: �.192

vs. �.335; mean deviations of subcortical volume: �.053 vs. �.458,

Figure 3). The HCP-A and CN from ADNI had generally similar devia-

tions in the mean cortical thickness of bilateral hemispheres

(p = .043/.110 in left/right hemisphere) and subcortical volume

(p = .666). The deviations of cortical thickness in AD were generally

more negative than those in CN (left hemisphere: �.157 vs. �.029;

right hemisphere: �.133 vs. �.021, all p < .001). However, they had

similar deviations in subcortical volumes (�.004 vs. �.001, p = .123).

3.2 | AD effect estimation

The AD and CN were similar in age, sex, and education, while AD

had worse general cognition, higher Aβ/p-Tau and lower FDG

(Table 1). As expected, after adjustment for age, AD showed region-

ally stereotyped cortical thinning compared to CN (Figure 4a for

vertex-wise comparison) and subcortical atrophy (bilateral hippo-

campus, putamen, and left amygdala, ROI-wise p < .05 after permu-

tation simulation correction). Several surface parcellations in AD had

lower deviations than CN (Figure 4b). AD also showed greater nega-

tive deviation in the bilateral amygdala, hippocampus, pallidum, and

cerebellar white matter. The extent of difference in deviation

between AD and CN of each parcellation weighted the importance

of deviation in AD/CN classification. In contrast to the results of

deviation comparison between AD and CN listed in Section 3.1, the

WDs of subcortical volumes in AD were lower than CN (�.008

vs. .003, p = .037).

3.3 | ADNI classification

After SVM training for the first time, we applied the classifier in D1. In

136 D1 participants, 9 (6.7%) were classified as ADL and 127 (93.3%)

were classified as NADL. After excluding the nine ADLs, we repeated

the SVM training in the 127 NADL. When applied to D1 again, the

updated classifier recognized no more ADL participants. Thus, the final

F IGURE 2 Mapping the relationships between age and cortical
thickness by coefficients of determination regression score (R2) in
each parcellation from the Destrieux Atlas. The relationships were
more prominent (R2 > 0.35) in the left superior frontal gyrus,
precentral thickness, rectus gyrus, and superior temporal gyrus

LI ET AL. 5539



F IGURE 3 Participant-wise mean cortical thickness/subcortical volume and their deviations from age regression of AD/CN. Subcortical
volumes were log-transformed and corrected by total intracranial volume. After detrending, the deviations in CN were less correlated with age
than raw features. AD, Alzheimer's disease; CN, control; HCP-A, human connectome project-aging

F IGURE 4 Comparison of cortical features between groups. (a) Voxel-wise comparison of cortical thickness between CN and AD, adjusting
for age by the generalized linear model. (b) Parcellation-wise comparison of deviations in cortical thickness after age detrending between CN and
AD. In a and b, the p values of significance were corrected by permutation simulation at level of .05. (c) Cortical thickness comparison between
participants classified as ADL and NADL from HCP-A with uncorrected p values. It is important to note that this comparison includes participants
across a wide adult age span (36 to >90 years), however, the group contrast shows effects similar to the cortical signature defined from older
cohorts. AD, Alzheimer's disease; CN, control; HCP-A, human connectome project; ADL, Alzheimer's disease-like; NADL, non-Alzheimer's
disease-like
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SVM classifier was based on the 127 NADLs from D1 for age detrending

and AD/CN from D2 for AD effect estimation and SVM training.

In the final SVM, the mean 10-fold cross-validation accuracy for

AD/CN reached 94.0% (optimal sensitivity 95.6%, specificity 99.6%,

and accuracy 98.3%) when RBF served as kernel function with C = 22

and γ = 2�9. We applied the classifier in MCI of D2. In the

180 EMCI, 30 patients were classified as ADL (EMCI-ADL), and in

the 96 LMCI, 41 were classified as ADL (LMCI-ADL). After adjusting

for age, sex, and education, the ADL in EMCI and LMCI both had

worse general cognition, memory, and trail-making speed than

NADL (Table 2). For AD biomarkers, in the general linear model

controlling the age and sex, the EMCI-ADL and LMCI-ADL both

had significantly lower FDG SUVR (EMCI: β = �.60, p = .002;

LMCI: β = �1.10, p < .001, Figure 5). Moreover, LMCI-ADL had

higher β-amyloid SUVR (β = .73, p < .001) and CSF p-tau level

(β = .66, p = .001). Without age detrending, the EMCI-ADL and

EMCI-NADL had similar FDG SUVR (p = .105). The LMCI-ADL and

LMCI-NADL had a smaller difference in β-amyloid SUVR (β = .67,

p = .002) and CSF p-tau level (β = .45, p = .042).

3.4 | D3 HCP-A classification

We applied the final classifier in D3. Among 136 D3 participants,

12 (8.8%) were classified as D3-ADL and 124 (91.2%) were regarded as

D3-NADL. The two groups were similar in age, education level, and sex

(Table 3). The ADL group showed cortical thinning in bilateral middle/

superior temporal gyrus, left parahippocampal gyrus, and right temporal

pole, where the difference was also prominent in the AD/CN compari-

son here (Figure 4c) as well as described in several prior studies.

Although the classifier was trained based on such patterns, these maps

provide a proof of concept that individuals identified show specific

regional patterns of atrophy that are similar to the AD signature as

opposed to general or global patterns of atrophy. In participants

between 40–59 years of D3 (n = 65), five (7.7%) were classified as

ADL. As expected, we observed a larger proportion of ADL participants

(21.4%) in the subgroup of individuals 80+ years (n = 28).

After adjusting for age, D3-ADL had worse performance in trail

making test-A (52.4 vs. 33.5, p = .002), trail making test-B (182.2

vs. 80.0, p = .002), and RAVLT (47.1 vs. 58.6, p = .050) compared to

NADL by analysis of covariance (ANCOVA).

In addition, each D3 participant had a probability score of ADL

and NADL derived from the SVM by scikit-learn package. We

defined the ADL risk score by subtracting NADL probability score

from ADL probability. AD risk was significantly correlated with

MoCA (r = �.18, p = .029), TMT-A (r = .20, p = .022), and RAVLT

(r = �.30, p < .001).

The classifier without age detrending showed an accuracy of

91.3% when a polynomial model served as kernel function with

C = 2�5 and γ = 2�6. In D3, 26 participants (19.1%) were grouped in

the AD. In contrast with the SVM model based on age detrending, the

ADLs here were significantly older than NADL (74.8 ± 15.1 vs. 60.0

± 16.1, p < .001). However, after adjustment for age, we did not

observe any difference in cognitive performance between ADL and

NADL. Similarly, in the classifier trained from unweighted deviations,

it had optimal mean accuracy of 92.1% with sigmoid kernel function

of C = 16 and γ = 2�6. The ADL from the classifier neither had a dif-

ference in cognitive performance compared to NADL (Table 3).

To test whether cortical variation among D3 affected classifica-

tion, we compared the cognition between D3 participants with non-

specific global atrophy to the rest of D3 sample. Six of

136 participants had mean cortical thickness below the 95% confi-

dence interval of age regression line. The global atrophy group had

lower MoCA scores (23.7 ± 3.1 vs. 26.3 ± 2.6, p = .026), but the two

TABLE 2 Classification results to detect AD-like individuals from ADNI MCI cohort

EMCI LMCI

EMCI-ADL EMCI-NADL p LMCI-ADL LMCI-NADL p

Number 30 150 – 41 55

Sex (F/M) 13/17 65/85 .840 21/20 28/27 .976

Age (year) 72.6 ± 6.0 70.2 ± 6.8 .075 72.6 ± 6.7 69.4 ± 7.3 .032

Education (year) 16.7 ± 2.6 16.1 ± 2.7 .244 16.8 ± 2.2 16.3 ± 2.5 .513

MoCAa 22.5 ± 2.1 24.4 ± 2.8 .001 20.8 ± 2.6 23.4 ± 3.2 <.001

RAVLT-immediatea 34.9 ± 5.9 39.6 ± 10.9 .026 28.5 ± 8.6 35.1 ± 10.7 .002

RAVLT-forgettinga 6.2 ± 2.2 3.9 ± 2.5 <.001 5.4 ± 2.1 5.2 ± 2.6 .608

TMT-Aa 35.1 ± 13.0 36.3 ± 14.7 .829 40.8 ± 14.5 39.0 ± 14.4 .574

TMT-Ba 103.8 ± 50.1 90.9 ± 40.8 .191 141.7 ± 85.2 96.6 ± 45.4 .005

ADAS-13a 17.3 ± 5.9 11.9 ± 4.9 <.001 22.0 ± 5.8 16.7 ± 6.6 <.001

Note: Data were shown as mean ± SD. Italic values were presented for p < .05.

Abbreviations: ADAS, Alzheimer's disease assessment scale; ADL, Alzheimer's disease-like; EMCI, early mild cognitive impairment; LMCI, late mild

cognitive impairment; MoCA, Montreal cognitive assessment; NADL, non-ADL; RAVLT, Rey auditory verbal learning test-immediate recall; TMT, trail-

making test.
aAfter adjustment for age, sex, and education.
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groups were similar in RAVLT (p = .112), trail making test-A

(p = .326), and trail making test-B (p = .742).

For the exploration of gender effect, the male brain-based SVM

classifier could also identify ADL participants with lower global cogni-

tion and verbal memory, as well as higher level of AD-specific bio-

markers in female MCI participants (Table S2). It could also identify

ADL in female D3 with longer trail-making time and lower MoCA

(Table S3).

Gradient boosting and random forest models, in place of the SVM

described, performed similarly well; identifying MCI-ADL with lower

cognition as well as greater AD biomarkers (details in Tables S4 and

S5). Furthermore, gradient boosting classifier found D3-ADL with

F IGURE 5 AD biomarker comparisons between MCI groups classified as ADL or NADL by the general linear model after adjusting for age,
sex, and education. AV45, 18F florbetapir standardized uptake value ratio for β-amyloid; PTAU, phospho-tau in cerebrospinal fluid; FDG, 18F-
fluorodeoxyglucose standardized uptake value ratio for glucose metabolism; EMCI, early mild cognitive impairment; LMCI, late mild cognitive
impairment; ADL, Alzheimer's disease-like; NADL, non-Alzheimer's disease-like

TABLE 3 Classification results to detect AD-like individuals from D3 HCP

Feature weighting schemes

WD UD No detrending

ADL NADL ADL NADL ADL NADL

Number 12 124 22 114 26 110

Sex (female/male) 4/8 50/74 8/14 70/44 12/14 66/44

Age (year) 70.7 ± 22.0 62.1 ± 16.1 68.7 ± 16.9 61.8 ± 16.7 74.8 ± 15.1** 60.0 ± 16.1

Education (year) 16.8 ± 2.9 15.7 ± 4.1 17.1 ± 4.3 15.6 ± 3.9 16.7 ± 3.9 15.6 ± 4.1

MoCAa 24.9 ± 2.8 26.6 ± 2.6 25.2 ± 2.4 26.4 ± 2.7 25.7 ± 2.4 26.4 ± 2.7

RAVLTa 47.1 ± 9.5** 58.6 ± 14.1 51.8 ± 10.7 58.7 ± 14.4 52.0 ± 11.6 58.9 ± 14.3

TMT-Aa 52.4 ± 35.9* 33.5 ± 13.7 40.1 ± 22.8 34.3 ± 16.4 39.0 ± 21.4 34.3 ± 16.7

TMT-Ba 182.2 ± 296* 80.0 ± 45.1 90.1 ± 39.2 89.1 ± 111.7 86.7 ± 37.2 89.9 ± 113.1

Note: Data were shown as mean ± SD. *p < .05; **p < .01 for comparisons between ADL and NADL in each model.

Abbreviations: ADL, Alzheimer's disease-like; HCP, human connectome project; MoCA, Montreal cognitive assessment; NADL, non-Alzheimer's disease-

like; RAVLT, Rey auditory verbal learning test-immediate recall; TMT, trail making test; UD, unweighted deviations; WD, weighted deviations.
aAge was adjusted in analysis of covariance.
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longer trail-making time and lower MoCA scores, while the random

forest classifier also identified D3-ADL with differences in MoCA,

TMT, and RAVLT (Table S5).

4 | DISCUSSION

We describe a proof-of-concept procedure for the classification of

individuals as having AD-like brain structure that was applied in a non-

clinical sample that included young and middle-aged adults. To do so,

we used a large adult age-span sample to perform age correction to

minimize the age effect on cortical thickness and subcortical volumes.

We then weighted AD pattern of deviations after this age correction.

After the first SVM classifier training, we iterated the pipeline remov-

ing any data classified as ADL to enhance the normative age estimates

in NADL HCP-A participants and generated the final classifier with

improved accuracy in AD/CN recognition. The procedure was vali-

dated using clinical performance as well as biomarkers in data from

classically defined MCI. After this validation, we applied the classifier

to an independent adult sample from the HCP-A cohort. The structur-

ally AD-like participants from HCP-A had worse cognition, suggesting

that the classifier was identifying individuals with subtle but meaning-

ful brain changes. In contrast, when more generally selecting partici-

pants based on being below 95% age regression line (nonspecific

structural abnormalities), cognitive effects were not as apparent com-

pared to the selection of AD-specific patterns of atrophy suggesting

that the effects are specific to AD atrophy patterns. These findings

support the identification of individuals with ADL patterns of atrophy

and subtle cognitive dysfunction in a nonclinical sample.

As age could negatively affect the performance of machine learn-

ing and multivariate models in AD recognition (Holland et al., 2012),

and partially mask other disease-related factors such as ApoE geno-

type, global cognitive impairment, and sex (Falahati et al., 2016), we

explicitly removed the age confound from the classifier based on the

wide span of HCP-A age trajectory. One of the main ideas behind

the detrending method was to remove age-related changes while pre-

serving the disease-related changes for each variable separately. Gray

matter volumes in most regions have linear relationship with age, and

the recent study with a larger sample size also suggested that

parahippocampus and temporal pole-related structural components

exhibited a quadratic relationship with age (Luo et al., 2020). Com-

pared to linear detrending (Dukart et al., 2011; Koikkalainen

et al., 2012), the cubic spline regression would be more flexible than

polynomial regression as it fits each age-bin with a separate model:

younger (<40), middle-age (40–60), elder (60–80), and eldest

elder (>80).

After age detrending, we observed that the T value weighted

deviations had the strongest capability to pool individuals with worse

cognition. The T values represented AD-specific features and ampli-

fied differences between AD and controls before SVM training. This

approach is different from prior work which directly used SVM train-

ing for deviations without weight and had accuracy ranging from 85%

to 91% (Belathur Suresh et al., 2018; Dukart et al., 2011; Li

et al., 2020), the present study introduced the AD weighting step. We

compared a biomarker-based classifier using only AD positive for Aβ

and controls negative for Aβ from ADNI in our previous study (Li

et al., 2020). The results suggested that the clinical diagnosis from

ADNI promoted more balanced sensitivity and specificity, and we also

used the AD and CN group here.

However, it is important to note that there were also differences

in feature selection across studies. The sensitivity and specificity were

also consistent with models from the cortical thickness in AD signa-

ture regions, including hippocampus volume and global atrophy, with

sensitivity from 80% to 95%, specificity from 85% to 90% (Allison

et al., 2019). Importantly, the classifications found in the ADNI dataset

here are likely at a ceiling performance due to potential inaccuracies

in clinical labels as discussed in our prior work (Belathur Suresh

et al., 2018). The multi-collinearity of age-detrended features posed

arbitral variation in weight vector-based classification such as logistic

regression and SVM with linear function as kernel. In our final SVM

classifier, we used RBF as kernel function which is based on the dis-

tance between the data points. The input variables for model are first

projected onto a higher dimensional space before they are employed

in the estimation process in SVM. Multiple variables that represent

the same feature of the data will be contributing more to the distance

than other features, hence the model would probably be more

impacted by this feature. Such SVM classification results are merely

affected by collinearity (Morlini, 2006). For more reproducible results,

we tried gradient boosting and random forest classifier instead of

SVM and got similar classification performance.

After D3 HCP-A classification, the pattern of thickness difference

between ADL and NADL D3 HCP-A groups had a similar pattern to

the AD-signature cortical regions (bilateral middle/superior temporal

gyrus, left parahippocampal gyrus, and right temporal pole) that were

inversely correlated with the severity of clinical impairment

(Dickerson et al., 2009). Moreover, the pattern was also generally in

line with previous studies that found correlations between temporal/

parahippocampal thinning and positive β-amyloid in MCI or healthy

controls (Becker et al., 2011; Dickerson et al., 2009; Ten Kate

et al., 2017).

Importantly, the structure-derived classifier provided inspection

of cross-sectional AD-specific biomarkers. Reduced FDG-PET was

observed in EMCI-ADL and LMCI-ADL, and the reduced general cog-

nition and memory as well. Reduced metabolism measured by FDG

and structural atrophy are both indicative of neurodegeneration in

AD, and reduced FDG-PET brain metabolism predicts clinical severity

and progression well (Benvenutto et al., 2018; Ewers et al., 2014). The

clinical implication of detecting FDG changes was in line with the rec-

ommendation, which suggested that changes in FDG-PET track pro-

gression to clinical disease in asymptomatic biomarker-positive

subjects (Dubois et al., 2016). Moreover, the Aβ deposition was asso-

ciated with cortical thinning and lower baseline global cognition

(Knopman et al., 2018), and CSF p-tau could help differentiate MCI

due to Alzheimer's disease from those with stable MCI (Olsson

et al., 2016). Along with these studies, our classifiers helped to find

individuals with a higher level of Aβ and tau accumulation in MCI

LI ET AL. 5543



population, suggesting their poor prognosis. Similarly, it also indicated

faster cognitive decline in ADL from HCP-A in the longitudinal follow-

up. Interestingly, FDG and structural classification were coupled in the

EMCI whereas biomarkers of amyloid and tau were not coupled with

these measures until LMCI. These results may suggest that structural

and metabolic deficits are apparent and linked even before the accu-

mulation of amyloid and tau pathology. Such speculation could be

explored through longitudinal biomarker and cognition characteriza-

tion of ADL from HCP-A, and it is being performed in ongoing work.

In addition to biomarkers, the classifier based on AD-patterns of

brain structure revealed cognitive differences in MCI from ADNI, and

recognized ADL in younger participants of D3 (40–59 years old). In

prior studies, younger AD patients were more likely to be misclassified

as controls (Dukart et al., 2011; Falahati et al., 2016). This may be due

to the fact that most machine-learning/deep learning studies for AD

recognition built and tested their classifiers only in participants older

than 55 (Lu et al., 2018; Qiu et al., 2020). The current work demon-

strates the potential to apply these procedures to detect subtle AD

signals in younger nonclinical samples.

The importance of age detrending was addressed after we tested

the classifier derived without age detrending. It could not differentiate

FDG difference in EMCI, and its classified LMCI-ADL and LMCI-NADL

had a smaller difference in AD biomarkers (lower β value in the gener-

alized linear model) than those classified by model with age

detrending. Moreover, it only identified elder ADL in D3, but with no

difference in cognitive performance from NADL after adjustment

for age.

We refer to this as a “proof of concept” as several limitations of

the current work are being explored in ongoing research. First, HCP-A

data were acquired using different imaging protocols compared to the

ADNI sample, and it is possible that this could have negatively

impacted performance of the classifier. As HCP-A is a community-

based cohort for generally healthy participants, the HCP-A protocol

did not include radioactive PET scans. Thus, we did not have AD-

specific biomarkers in our validation for the final HCP-A sample. We

hope to acquire and explore these markers in future studies of this

cohort, especially for those who were classified as “AD-like”. How-

ever, we proved the capability of AD biomarker recognition of our

classification in ADNI MCI. The classifier was built from cross-

sectional data. Given differential rates of atrophy with age, it is likely

that utilization of longitudinal information would improve classifica-

tion performance. It is also important to note that AD is a clinically

heterogeneous disease and there are atrophy subtypes (Ten Kate

et al., 2018) that should be identified in future work. Finally, although

cognitive effects were detected in the HCP-A sample, the 8.8% classi-

fication of ADL in HCP-A resulted in small samples of ADL within

age-bins and cognitive effects were generally mild in this sample. The

small sample size of HCP-A could also be impacted by other factors

such as sex effects. Although the classifier was generated based on

features in patients with AD biasing the identification of individuals

with similar patterns, it was encouraging that the ADL participants in

HCP-A showed thinning patterns similar to AD signature regions

(Figure 4c) as opposed to general/global atrophy supporting the

performance of the classifier to identify this unique signature of

pathology in this sample. The effects were most apparent when using

the AD features and were less apparent when using a more general-

ized pattern of atrophy. We did not expect that cognitive differentia-

tion would be large and these subtle effects are encouraging that the

performance procedures can be successfully applied in this context.

Due to practical reasons, we were not able to include the entire

HCP-A sample in this study; however, we aim to further validate this

approach in this larger sample in future work.

5 | CONCLUSION

We demonstrated the potential to apply machine learning a brain

structural classifier to detect subtle brain and cognitive alterations in a

nonclinical sample at even young ages. These results suggested that

such procedures can potentially be used as a very early indicator for

individuals with AD risk in relatively young community population and

help screen participation in very early intervention clinical trials.
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