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Introduction: In hepatocellular carcinoma (HCC), alternative splicing (AS) is

related to tumor invasion and progression.

Methods: We used HCC data from a public database to identify AS subtypes

by unsupervised clustering. Through feature analysis of different splicing

subtypes and acquisition of the differential alternative splicing events

(DASEs) combined with enrichment analysis, the differences in several

subtypes were explored, cell function studies have also demonstrated

that it plays an important role in HCC.

Results: Finally, in keeping with the differences between these subtypes,

DASEs identified survival-related AS times, and were used to construct risk

proportional regression models. AS was found to be useful for the

classification of HCC subtypes, which changed the activity of tumor-

related pathways through differential splicing effects, affected the tumor

microenvironment, and participated in immune reprogramming.

Conclusion: In this study, we described the clinical and molecular characteristics

providing a new approach for the personalized treatment of HCC patients.

OPEN ACCESS

EDITED BY

Zhijie Xu,
Central South University, China

REVIEWED BY

Zhengyi Zhu,
Nanjing Drum Tower Hospital, China
Jun Wang,
Sun Yat-sen University Cancer Center
(SYSUCC), China

*CORRESPONDENCE

Jian Wang,
wangjian197906@126.com
Tao Wang,
13061931996@163.com
Bo Zhai,
zhaiboshi@sina.com
Lei Pan,
10264@renji.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 15 August 2022
ACCEPTED 13 September 2022
PUBLISHED 03 October 2022

CITATION

Liu W, Zhao S, Xu W, Xiang J, Li C, Li J,
Ding H, Zhang H, Zhang Y, Huang H,
Wang J, Wang T, Zhai B and Pan L
(2022), Integrating machine learning to
construct aberrant alternative splicing
event related classifiers to predict
prognosis and immunotherapy
response in patients with
hepatocellular carcinoma.
Front. Pharmacol. 13:1019988.
doi: 10.3389/fphar.2022.1019988

COPYRIGHT

© 2022 Liu, Zhao, Xu, Xiang, Li, Li, Ding,
Zhang, Zhang, Huang, Wang, Wang,
Zhai and Pan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2022
DOI 10.3389/fphar.2022.1019988

https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1019988/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1019988&domain=pdf&date_stamp=2022-10-03
mailto:wangjian197906@126.com
mailto:13061931996@163.com
mailto:zhaiboshi@sina.com
mailto:10264@renji.com
https://doi.org/10.3389/fphar.2022.1019988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1019988


KEYWORDS

hepatocellular carcinoma, tumor microenvironment, immune checkpoint molecules,
alternative splicing event, machine learning

Introduction

Hepatocellular carcinoma (HCC) has become the second leading

cause of cancer-related deaths worldwide, with more than

800,000 deaths each year (Sung et al., 2021). Surgical resection, liver

transplantation, tumor ablation, and interventional techniques are all

potential treatment methods (Bishay et al., 2016; Guro et al., 2016; Sun

et al., 2019; Yoon and Lee, 2019). However, improvements in the

prognosis of liver cancer remain challenging. The therapeutic effects of

first-lineHCCdrugs such as sorafenib are poor (Galun et al., 2017; Saffo

and Taddei, 2019), and no prognostic classification and markers have

been identified to provide guidance for personalized treatment (Liu

et al., 2020a; Zhao et al., 2021a; Zhao et al., 2021b). Therefore, a new

treatment strategy is required to predict the prognosis of liver cancer.

Aberrant alternative splicing (AS) is the result of splicing

regulatory sequence mutations or ectopic RNA binding protein

regulation. It plays an indispensable role in cancer and many other

diseases (Gamundi et al., 2008; Fu and Ares, 2014; Shiraishi et al.,

2018). Although integrated multiomics analyses have been reported

in HCC subtypes, splicing characteristics and splicing regulatory

networks are rarely systematically discussed. We previously studied

the regulatorymechanism of AS-related genes and their effect on the

prognosis of somemalignant tumors (Liu et al., 2020b). On this basis

in the current study, we conducted a comprehensive analysis of

HCC subtype classification and splicing characteristics and their

relationship with clinical characteristics, gene mutations, pathway

changes, and immune heterogeneity.

Materials and methods

Patients and tissue samples from online
databases and real-world cohorts

All splicing data for liver cancer were downloaded from the cancer

genome atlas (TCGA) SpliceSeq database includingAS data, expression

data, phenotype data, and survival data (Supplementary Table S1).

We also downloaded the human genome sequence from the

TCGA database (Barrett et al., 2013), the human gtf file from the

Ensembl database (Yates et al., 2020), and the Gene Set Variation

Analysis (GSVA) gene set (Hänzelmann et al., 2013) and immune

cell-related gene set.The variable splicing score was calculated by the

network tool Maximum Entropy (Kim et al., 2018).

Sample clustering and survival differences

We used the R package Rtsne (v0.15), which based on the

t-distributed stochastic neighbor embedding (t-SNE) method, to

cluster the samples according to their PSI values (Chen et al.,

2021). Because the clinical feature grouping is displayed in t-SNE,

the sample division was not obvious. Therefore, the R package

ConsensusClusterPlus (v1.50.0) was used to perform unsupervised

clustering of the samples (Zheng et al., 2020). The Kaplan–Meier

algorithm was used to obtain the PSI-based AS subtype, and t-SNE

was undertaken for verification and presentation of the results,

followed by analysis by the R packages survival (v3. 2–7) and

survminer (v0.4.8) to determine the survival of the samples and

construct Kaplan–Meier curves (Rizvi et al., 2019; Wang et al., 2020).

To further detect the differences in the distribution of age,

sex, grade, pathologic T stage, alcohol, hepatitis B, and hepatitis C

groups in the AS subtypes, Fisher test was applied (Di Francesco

et al., 2019).

Identification and presentation of subtype
differences in AS events, and analysis of
the differential alternative splicing events

DASEs of cancer samples and normal samples were called

according to the PSI value of AS. DASEs met two conditions: 1)

Wilcoxon rank-sum test between groups reached a significant

level (after Bonferroni correction adjustment p < 0.05); and 2)

Chi-squared test based on the median PSI reaching a significant

level (p < 0.05). After DASEs were obtained, those whose average

PSI of cancer samples were greater than the average PSI of

normal samples were regarded as upregulated, and those

whose PSI were less were regarded as downregulated. Next,

DASEs between samples of different subtypes and normal

samples were collected in the same way, and the number of

different AS types in the relevant subtypes was counted, with the

results included in a histogram. After obtaining the DASEs

between subtypes, the overlap similarity of the upregulated

and downregulated DASEs between subtypes was calculated as

follows: Overlapping similarity = intersection of two sets/

minimum value of the two sets. According to the obtained

DASEs, analysis of variance was used to screen differential AS

events between the two subtypes, with a threshold of p < 0.05, and

then the intersection was taken for subsequent analyses.

Analysis of splicing characteristics of
DASEs in alternative splicing subtypes,
corresponding gene expression display
and GSVA difference analysis

In a further analysis of the AS score, GC content, and AS

fragment length of DASEs, Python 3.8.8 (Spyder (Anaconda3)) was
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first used to obtain the reference sequence of each chromosome

from the reference genome (Paillusseau et al., 2020), and the splice

site positions provided by TCGA SpliceSeq database were combined

to obtain all DASEs with alternate acceptor site (AA), alternate

donor site (AD), exon skip (ES), retained intron (RI) sequence, and

5′ or 3′ splice site sequence splicing types. To calculate the AS score,
the first 3′ position sequence of AA, the second 3′ position sequence
of AA, the first 5′ position sequence of AD, and the second 5′
position sequence of AD were extracted according to the

requirements of MaxEntScan. The ’ site sequence, the 5′ and 3′
site sequence of ES, and the 5′ and 3′ site sequence of RI were

analyzed online to obtain the score of the corresponding site, which

was shown in a box plot. The GC content was the percentage of G

and C bases in the entire AS sequence. Alternative splicing length =

log10 (exon/intron length). Finally, a box plot was drawn to show

theGC content andAS length.We identified genes corresponding to

DASEs from the AS information, and then drew a heat map to show

the expression of the corresponding gene [log2 (fpkm-uq+1)].

All gene sets were downloaded from theMSigDB database (Guo

and Wan, 2014), and the R package GSVA (v1.34.0) was used to

calculate the enrichment scores of each sample for different gene sets

according to the expression data, and the cumulative distribution

curve of GSVA scores was drawn according to the different subtypes.

Then the R package limma (v3.42.2) was used to obtain the enriched

differential gene sets (DESs) in different subtype samples and

normal samples (Ritchie et al., 2015), and the threshold to |

logFC|> 0.5 and adj.P.Val<0.05 was called. A bar graph was

drawn to plot the upregulated and downregulated adjustments in

different subtypes of DESs.

Analysis of the correlation between
differential gene sets, AS events, and AS
factors

The correlation between the differential gene sets within the

subtypes and the AS events was further calculated. First, the AS

event was selected according to a PSI interquartile range of

greater than 0.05 as the threshold in the samples, and then

the screening results were used to calculate the Spearman’s

correlation coefficient (coef) for the differential gene set.

Alternative splicing-related pathways (SPs) in the MSigDB

database were searched using “splice”, “splicing”, and

“spliceosome” as keywords, and protein-coding genes in

related pathways were used as splicing factors (SFs). After

that, Spearman’s correlation coefficients of AS events and SPs

and SFs were further calculated, and then the largest |coef. of SP|

and |coef. of SF| corresponding to each AS event was selected to

construct a scatter plot. Because coef. of SP and coef. of SF had

the greatest number of AS events greater than 0.5 at the same

time, the relevant AS events were selected for further PSI display,

as well as the strongly correlated SP enrichment score of each

subtype and the strongly correlated SF differential expression

[edgeR (v3.28.1)] (Robinson et al., 2010). The R package estimate

(v1.0.13) was used to calculate the StromalScore, ImmuneScore,

ESTIMATEScore, and TumorPurity of all samples in TCGA-

LIHC data, and the immune cell-related gene set was used to

calculate the enrichment scores of 28 immune infiltrating cells,

combined with immune checkpoints.

Combining mRNA expression profiles to
predict differences in AS typing
immunotherapy and drug sensitivity

To predict whether an immunosuppressive agent has a

therapeutic effect on different AS subtypes, SubMap was used

to map different AS subtype samples to samples with inhibitor

processing information (Ay et al., 2011), as well as to calculate the

similarity between the samples and then predict the possible

effects of variant splicing subtypes on treatment with two

inhibitors.

The R package pRRophetic (v 0.5) was then to predict the

sample’s response to 138 drugs (Geeleher et al., 2014), generating

predicted IC50 values, and then the differences in the IC50 value of

the samples of different AS subtypes was further counted using

Kruskal’s algorithm to detect the significant differences. Next

adj.p < 0.05 was used to screen for significantly different drugs,

and the IC50 values of bosutinib, dasatinib, midostaurin,

elesclomol, pazopanib, bortezomib, sorafenib, docetaxel, and

gefitinib were plotted in box plots.

Construction of a prognostic model of AS

Cancer samples were collected according to the PSI value of

differential AS in the previous step combined with OS data, and

batch Cox one-way regression analysis was performed on

differential AS. After regression analysis, p < 0.05 was used as

a threshold to screen significantly related AS events for

subsequent analyses.

Lasso regression was further performed on the single-factor Cox

regression results and a risk scoring model was built. This process

mainly relied on the R package glmnet (v4.0–2). In the glmnet

function (Engebretsen and Bohlin, 2019), Y is Surv (time, event), and

family is Cox. To build a more accurate regression model, we first

used cross-validation for lambda screening, then selected the model

corresponding to lamdba.min, and further extracted the expression

matrix of related genes in the model, and then calculated the risk

score of each sample according to the following formula:

RScorei � ∑
n

j�1
PSIji × βj

Where PSI represents the PSI value of the corresponding AS,

β represents the regression coef. of the corresponding gene in the
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lasso regression result, and RScore represents the PSI value of the

significantly related AS event in each sample multiplied by the

corresponding AS event. The coef was then calculated, where i is

the sample and j is the AS event. On the basis of the risk score of

the sample, the high and low risk groups were divided by the

median as the node and combined with the overall survival (OS)

and disease-free interval (DFI) data to generate a Kaplan–Meier

curve, with a p-value of <0.05 indicating that the difference

between the high and low risk groups was significant.

Validation in human HCC tissues

Paired tumoral and adjacent normal samples were from

patients diagnosed with HCC and accepted surgery at the

Department of Transplantation, Xinhua Hospital affiliated to

Shanghai Jiao Tong University School of Medicine (Shanghai,

China) after the written informed consent. All these samples

were kept and processed as previously described. RT-PCR was

implemented using transcripts specific primers by 2 × Green

PCR Mix (Vazyme, Nanjing, China). Splicing specific transcripts

were distinguished using agarose gel electrophoresis and

grayscale-measured using software ImageJ (Rawak Software

Inc., Stuttgart, Germany). PSI of each lane was calculated by

the greyscale of the longer transcript divided by the sum greyscale

of the longer and the shorter transcripts.

Results

Splicing clustering and clinical features of
HCC subtypes

HCC AS data (percentage of samples with PSI value = 100%)

was downloaded from TCGA SpliceSeq database, and 11,179 AS

events were obtained, corresponding to 4423 genes, which

included 568 AAs, 469 ADs, 968 alternate promoters (APs),

6346 alternate terminators (ATs), 1992 ESs, 29 mutually

exclusive exons (MEs), and 807 retained introns (RIs). At the

same time, relevant HCC expression data and clinical data were

downloaded from the UCSC Xena database, and 370 cancer

samples and 50 normal samples were obtained after integration.

According to the t-SNE method, the PSI values of all samples

were displayed in clusters, and a scatter plot revealed that the

cancer samples could be clearly distinguished from the normal

samples (Figure 1A). Next, unsupervised clustering of cancer

samples was performed to obtain five subtype samples

(Figure 1B). The t-SNE method was used to demonstrate that

cluster 1 and cluster 2 samples were relatively similar in the five

subtype samples, and cluster 3 and cluster 5 samples were similar.

Therefore, cluster 1 and cluster 2 were merged into cluster 1, and

cluster 3 and cluster 5 were merged into cluster 3, and finally

three subtypes (cluster 1, cluster 3, cluster 4) were obtained. The

scatter plot shows that the three subtypes were more distinct

from each other (Figure 1C).Then, we analyzed the correlation

between cluster samples and clinical traits such as age, sex, grade,

pathological stage, type, alcohol consumption, and hepatitis B/C

infection, and found that AS also affects various clinical

characteristics of HCC (Figure 1D).

Analysis of differences in survival between
subtypes, clinical characteristics, and
distribution of typical types

The survival analysis of the three subtypes was further based on

OS, and a Kaplan–Meier curve was generated. The results showed

that the survival difference of the three subtypes was significant, and

the survival curve of cluster 4 samples dropped faster (Figure 1E).

The distribution differences of age, sex, grade, pathological T

stage, alcohol consumption, hepatitis B, and hepatitis C groupings in

AS subtypes were further examined (Figures 1F–M). The results

showed that there were significant differences in the distribution of

age, grade, pathological T stage, and hepatitis B groupings among the

subtypes. For age, cluster 1 was more than 65 years old and had

significantly more samples than cluster 4 (Figure 1F). For grade, the

number of G1–2 samples in cluster 1 was significantly higher than

that in cluster 3 and cluster 4 (Figure 1J). For pathological T stage, the

number of T3–4 samples in cluster 4 was significantly higher than in

cluster 1 (Figure 1K). For stage, the number of stage III–IV samples

in cluster 4 was significantly higher than that in cluster 1 and cluster

3 (Figure 1H). For hepatitis B, there were significantly more hepatitis

B patients in cluster 3 than cluster 1 (Figure 1L). These data indicate

that AS exhibits different patterns according to the histological type

of HCC and is closely related to clinical characteristics and patient

survival, and thus is suitable as a subtype classification.

Overall differences in AS events and
identification of subtype differences in AS
events

On the basis of the PSI value of AS, the DASEs of cancer

samples and normal samples were retrieved. After threshold

screening, 1,777 DASEs were obtained, of which 977 were

upregulated and 800 were downregulated, corresponding to

1,005 genes (Supplementary Table S2). According to the type

of AS, DASEs had the most AT events, followed by ES, RI, and

AP, and the corresponding genes also had the most AT events.

The UpSet chart showed that 17 genes had AT and ES at the

same time, and 11 genes had AP and ES at the same time

(Figures 2A–C, Supplementary Table S3).

Next, the DASEs between the three subtypes and the normal

samples were obtained. Cluster 1-normal had 1,681 DASEs,

including 948 that were upregulated and 733 that were

downregulated; cluster 3-normal had 2,545 DASEs, including
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FIGURE 1
Sample cluster display and survival differences and clinical analysis. (A) Cluster scatter plot display of cancer samples and normal samples. (B)
Unsupervised clustering scatter plot display of cancer samples in 5 categories. (C) Scatter plot display of 5 categories of samples merged into
3 categories.(D) Clustering Heat map display of samples and clinical traits. (E) KM curves of 3 alternative splicing subtypes. (F–M) Display of clinical
features and distribution of typical types. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05.
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FIGURE 2
Analysis of DASEs and DASEs between subtypes and alternative splicing fragment length and score of the overall DASEs. (A) Schematic diagram
of alternative splicing types. (B) Statistics of the number of splicing types of DASEs and corresponding gene splicing types. (C) UpSet diagram of the
different alternative splicing types of DASEs corresponding genes. (D)Statistics of alternative splicing types of DASEs of each subtype. (E)Overlap
similarity of DASEs up and down between subtypes. (F)Alternative splicing fragment length of overall DASEs. (G) GC content of overall DASEs.
(H) Alternative splicing score for overall DASEs.
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1,275 that were upregulated and 1,270 that were downregulated; and

cluster 4-normal had 2,862 DASEs, including 1,565 that were

upregulated and 1,297 that were downgraded. (Figure 2D,

Supplementary Table S4). After obtaining the DASEs between the

subtypes, the overlap similarity of the upregulated and

downregulated DASEs was calculated between the subtypes. The

heatmap in Figure 3E shows that in cluster 1 and cluster 4, regardless

of the upregulation or downregulation of DASEs, the overlap

similarity was relatively high, at greater than 0.8 in both (Figure 2E).

Analysis of splicing characteristics of
DASEs in AS subtypes

The AS score, GC content, and AS fragment length of the overall

DASEs were further analyzed. For the length of AS fragments, the AS

length of downregulated AAs was significantly higher than that of

upregulated AAs and unchanged AAs, while the AS length of

downregulated ADs was significantly lower than that of

unchanged ADs, ESs, and RIs. There were no significant

differences among the three groups (Figure 2F).

For GC content, the GC content of downregulated AAs was

significantly higher than that of upregulated AAs, and theGC content

of downregulated ESs was significantly higher than that of

upregulated ESs and unchanged ESs. The GC content of

upregulated RIs was significantly higher than that of upregulated

RIs (Figure 2G).

For the AS score, the score of the first 5′ site of upregulated ADs
was significantly higher than the score of the first 5′ site of

unchanged ADs (Figure 2I), and the score of the second 3′ site
of upregulated AAs was significantly higher than the score of the

second 3′ locus of unchanged AAs (Figure 2H). Conversely, the

score of the 3′ locus of downregulated ESs was significantly higher

than that of the other two groups (Figure 2H). Furthermore, the

score of the 5′ locus of upregulated RIs was significantly higher than
the score of 5′ sites with downregulated RIs and 5′ sites with no

change in RIs, and the score of 3’ sites with upregulated RIs was also

significantly higher than the other two groups (Figure 2H).

Correlation analysis of DASE-
corresponding genes in AS subtypes

Next, we analyzed the total DASEs corresponding to

1,005 genes, and drew heat maps based on the expression of

related genes. The heat map showed that the overall gene

expression of cluster 3 samples was high, while the overall

gene expression of cluster 4 samples was low (Figure 3A).

A total of 32,284 gene sets was downloaded from theMSigDB

database. The enrichment score of each sample for all gene sets

FIGURE 3
Analysis of DASEs Corresponding Genes and Alternative Splicing Events and GSVA Analysis. (A) Heat map of DASEs corresponding gene
expression. (B) Statistics of the number of differential enrichment pathways of each subtype compared with normal samples. (C) We exploited a
Nomogram to evaluate the prognosis of HCC with prediction model of POLD1 expression and pTNM stage. (D–F) Display of strong correlation
between differential gene sets and alternative splicing events.
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was obtained and the cumulative distribution curve of GSVA

scores according to different subtypes was generated. The score

curve showed that compared with normal samples, the GSVA

score distribution of samples of other subtypes was relatively. The

score distribution of cluster 1 samples among subtypes was the

most concentrated, while cluster 3 samples had more scores of

less than 0, and cluster 4 had more scores of greater than 0

(Figure 3B). After obtaining the DESs of different subtype

samples and normal samples, for all subtypes, there were

more downregulated enrichment pathways than upregulated

enrichment pathways, and cluster 4 samples and normal

samples had the most different pathways (Figure 3C,

Supplementary Tables S5, S6).

Correlations between differential gene sets within subtypes

and AS events were further calculated. According to the

interquartile range of the sample PSI, 3,662 AS events were

screened, and strong correlations were screened from each

subtype according to a Spearman’s correlation coefficient

greater than 0.6. Eighty-eight splicing events and 326 gene

sets in cluster 1 samples had a strong correlation, 519 splicing

events in cluster 3 samples and 1,103 gene sets had a strong

correlation, and 320 splicing events and 1,187 gene sets in cluster

4 samples were strongly correlated (Figures 3D–F). The above

research showed that cluster 4, which had the most splicing

events, gene sets, and differential pathways, was closely related to

worst overall survival. These results partly describe the

differences between the internal and external environments of

HCC subtypes and normal tissue cells and the corresponding

different splicing regulatory mechanisms.

Correlation analysis of AS pathways, AS
events, and AS factors

Twenty-four SPs and 370 SFs were identified from the MSigDB

database. In further calculations of the Spearman’s correlation

coefficients of AS events and SPs and SFs, a scatter plot showed

that the coef. of SP and coef. of SF at the same time were greater than

0.5 AS events, including 138 AS events in each subtype. A heat map

of the median of related events showed that the PSI value of cluster

3 samples was higher than that of the other subtypes, and the

enrichment score of SPs of cluster 3 samples was higher. For SFs, in

the cluster 4 samples, some SFs were significantly downregulated

(Figures 4A,B; Supplementary Table S7). AVenn diagramof SPs and

differential pathways showed that there was one pathway in

common, namely

GOMF_PRE_MRNA_5_SPLICE_SITE_BINDING (Figure 4C).

Therefore, these subtype-specific changes in HCC, including

pathway activation and SF expression, may be related to its

severe abnormal splicing (Supplementary Table S8). To

characterize the splicing-based mechanisms that may contribute

to the relative malignancy of HCC, we performed analyses according

to the up- and down-regulation of DASE-related gene formation in

subtypes. We selected PABPN1, CCDC12, ISY1 and PQBP1 for

analysis based on the effect of SFs on survival in HCC. The ΔPSI
values were determined for 25 each tumor-normal pair, and eight

out of nine AS events showed a significant positive correlation

(p < 0.01).

The longer spliced isoforms of these SFs were significantly

overexpressed in all HCC subtypes and validated by RT-PCR in

HCC tissues (Figures 4D,E). These may suggest that longer

transcripts of PABPN1, CCDC12 and ISY1 are important for

maintaining cancer cell survival (p < 0.01). The difference in PSI

of PQBP1 was not significant (p = 0.081), but the trend was

consistent with the other three SFs. Therefore, the upregulation

of PSI in HCC may be responsible for the upregulation of SFs

such as PABPN1, CCDC12, ISY1 and PQBP1. Overall, the

heterogeneity and homogeneity of splicing changes in HCC-

related pathways may suggest a distinct role for alternative

splicing in tumorigenesis and maintenance of cancer cell

survival. Irregular splicing may regulate isoform switching of

genes in cancer biological pathways and mRNA expression to

promote HCC infiltration and invasion.

Immune-related and clinically relevant
analysis of AS subtypes

We further explored the immune status of AS subtypes. A heat

map showed that the StromalScore, ImmuneScore, and

ESTIMATEScore of the cluster 3 samples were slightly lower

than the other two subtypes. From median data, the tumor

purity of cancer samples was significantly higher than that of

normal samples, and the immune-related scores were significantly

lower than normal samples. There was no significant difference in

the expression of immune checkpoints and the enrichment scores of

related pathways in each subtype. For most immune cells, the

immune cell score of normal samples was significantly higher

than that of cancer samples. In addition, cluster 4 samples had a

higher activated CD4 T cell enrichment score and a lower activated

CD8 T cell enrichment score. For G3–4 and hepatitis B patients, the

related differences were also obvious (Figure 5A).

Kaplan-Meier analysis was further performed within the

group for grade grouping and hepatitis B grouping. This

showed that for the G3–4 samples, the Kaplan–Meier curves

between the internal AS subtypes were significantly different, and

for the samples with hepatitis B, the Kaplan–Meier curves

between the internal AS subtypes were significantly different

(Figures 5B–E). The above results suggest that the anti-tumor

immune response produced by SF can be offset by the tumor

micro environment (TME), and aggressive cancer cells with a

large number of intracellular mutations and tumor-associated

antigens survive immune reprogramming. Therefore, blocking

these immunosuppressive molecular pathways should be

combined with immunotherapy against neoantigens to

regulate the immune response of HCC patients.
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FIGURE 4
Correlation analysis of alternative splicing pathways, alternative splicing events and alternative splicing factors. (A) Scatter plot showing the
association between alternative splicing events and SPs and SFs. (B) Heat map showing the association between alternative splicing events and SPs
and SFs. (C) Venn diagram shows the common pathways of SPs and differential pathways. (D)Differentially expressed splicing transcripts of CCDC12,
ISY1, PABPN1 and PQBP1 were validated in human HCC tissues by RT-PCR and consequent agarose gel electrophoresis. PSI of each lane was
calculated by the greyscale of the longer transcript divide the sum greyscale of the longer and the shorter transcripts. (E) Significance of difference
between HCC tumor and adjacent normal tissues for splicing of CCDC12, ISY1, PABPN1 and PQBP1 were evaluated separately by two-tailed paired
t-test.
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FIGURE 5
Analysis between alternative splicing subtypes and immunity and clinical survival. (A)The heat map shows the immune status of alternative
splicing subtypes. (B–E) KM curve between grade group and Hepatitis_B group.
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Combining mRNA expression profiles to
predict differences in AS for
immunotherapy and drug sensitivity

Using SubMap to predict the possible therapeutic effects of

related immunosuppressive agents on different AS subtypes, the

results showed that the similarity between cluster 4 samples and

CTLA4 response samples reached a significant level, suggesting

that CTLA4 inhibitors may have a better effect on cluster

4 samples. (Supplementary Figure S1).

We further predicted the samples’ responses to 138 drugs to

obtain predicted IC50 values. The results showed that there were

significant differences in the degree of response of 111 drugs

among the different subtypes (Supplementary Table S9). The

IC50 values of bosutinib, dasatinib, midostaurin, elesclomol,

pazopanib, bortezomib, sorafenib, docetaxel, and gefitinib

were plotted in box plots. For bosutinib, dasatinib,

midostaurin, elesclomol, pazopanib, and bortezomib, the

efficacy of cluster 1 and cluster 4 was relatively good and the

efficacy of cluster 3 was relatively poor, while cluster 3 mainly

FIGURE 6
Response of alternative splicing subtypes to drugs. (A) Bosutinib (B) Dasatinib (C)Midostaurin (D) Elesclomol (E) Pazopanib (F) Bortezomib (G)
Sorafenib (H) Docetaxel (I) Gefitinib.
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responded well to sorafenib, docetaxel, and gefitinib (Figures

6A–I) 0Screening of AS events and construction of a prognostic

model of AS.

According to the obtained PSI values of DASEs, the

differential AS events between subtypes were screened. There

were 1,109 DASEs between cluster 1 and cluster 3, 1,154 DASEs

between cluster 3 and cluster 4, and 1,177 DASEs between cluster

1 and cluster 4. Intersection of the three clusters resulted in a total

of 455 DASEs for subsequent analysis (Figure 7A). Using cancer

samples, on the basis of PSI values of the shared DASEs obtained

in the previous step combined with the OS data, batch Cox one-

way regression analysis was performed on differential AS, and

111 survival-related DASEs were obtained (Figure 7B).

Lasso regression was then performed on 111 survival-related

DASEs, and 20 AS events were obtained to construct a risk

model. Regression coefficients and PSI values were

analyzed to obtain the following risk scores: PSI39967 *

(−5.5748) + PSI64018 * (−2.0928) + PSI46796 * (−0.5633) +

PSI83140 * (−0.3544) + PSI44266 * (0.3162) + PSI85919 *

(−0.3101) + PSI50488 * (−0.2602) + PSI19307 * (−0.1502) +

PSI17008 * (−0.0950) + PSI19309 * (1.0474) E−13) + PSI50489 *

0.0014 + PSI85920 * 0.0023 + PSI85601 * 0.0223 + PSI58889 *

0.5534 + PSI1730 * 0.6888 + PSI24866 * 1.0308 + PSI61665 *

1.0423 + PSI 82016 * 1.6102 + PSI18599 * 40.6609 + PSI24760 *

51.4456 (Figures 7C–E).

Further validation of the prognostic model
of AS

According to the risk score of the samples, the high and

low risk groups were divided by the median as the node, and a

Kaplan–Meier curve was drawn on the basis of the OS data

and DFI data. The results showed that the difference between

FIGURE 7
Analysis of Differential Alternative Splicing Events between Subtypes. (A)Venn diagram of alternative splicing events for differences between
subtypes. (B) Top 20 single factor cox regression results. (C) Display the corresponding changes of lambda and variable coefficients. (D) Obtain
lambda.min through cross-validation. (E) Display the regression coefficients corresponding to the variables after screening.
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the high and low risk groups was significant (OS, p < 0.0001;

DFI, p = 0.0083; Figures 8A–F). The sample risk score was

used as the model prediction result, combined with the

survival data to calculate the AUC value of the model, and

then an ROC curve was drawn. The AUC values of 1-, 3-, and

5-year OS were all greater than 0.7, indicating that the model

has good performance (Figure 8G). A Sankey diagram was

constructed to show the relationship between risk score

grouping, AS subtypes, and stage and grade groupings. As

shown in Figure 8H, most of the cluster 1 samples belonged to

the low-risk group, most of the cluster 1 samples were G1 and

stage I samples, and most of the cluster 4 samples belonged to

the high-risk group, consistent with the results of the Kaplan-

Meier analysis.

Discussion/conclusion

HCC is the most common primary liver cancer. Liver cancer is

the sixth most common cancer and the second leading cause of

cancer-related deaths worldwide. In the past few decades, the

incidence of liver cancer and liver cancer-related deaths has

increased in many parts of the world, including China (Siegel

et al., 2021). Sorafenib remains the only targeted drug for the

treatment of advanced liver cancer. As a chemotherapy-resistant

tumor, HCC has an unsatisfactory response to radiotherapy and

chemotherapy. In addition, patients with advanced liver cancer

usually have obvious underlying liver disease, and thus the

prognosis of patients is often poor and the mechanism is not

understood.

FIGURE 8
Effectiveness verification of a risk model based on PSI events. (A)Build model KM curve verification based on OS-based lasso regression. (B)
Curve graph of risk scores of all samples based on OS. (C) Scatter plot of survival time of all samples based on OS. (D) Build model KM based on lasso
regression of DFI Curve verification. (E)Curve graph of risk scores of all samples based on DFI. (F) Scatter plot of survival time of all samples based on
DFI. (G) Time-based ROC curve. (H) Sankey diagram of clinical traits, risk grouping and alternative splicing subtype.
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Alternative splicing can be regulated by many different

mechanisms, such as histone modification and DNA

methylation, which are usually associated with specific SFs or

transcriptional elongation (Li et al., 2018; Sessa et al., 2019). The

latest research identified a significant correlation between

intragenic DNA methylation and exon usage in solid tumors

(Sun et al., 2020). There are also reports that mitochondria are

involved in the regulation of transcriptional activity, which has a

great influence on splicing regulation (Guantes et al., 2015).

Alternative splicing is the main mechanism to increase the

transcriptional diversity of eukaryotes (Pan et al., 2008; Wang

et al., 2008). Dozens of abnormal splice variants are associated

with human diseases (Schrock et al., 2016; Urbanski et al., 2018;

Di et al., 2019). Studies have shown that these AS events play

wide-ranging roles in the process of carcinogenesis, participating

in cell proliferation, apoptosis, epithelial–mesenchymal

transition, hypoxia, angiogenesis, and immune escape (Chen

et al., 2018; Du et al., 2022). These previous studies have

shown that in addition to classic cis-/trans-acting regulation,

there are many other mechanisms of AS regulation (Yae et al.,

2012; Picard, 2022; Zhang et al., 2022). Here, we use GSVA to

conduct a comprehensive pathway analysis of 32,284 gene sets in

MSigDB. We demonstrated that splicing regulation is also

affected by many pathways, including negative/positive

regulation of mRNA splicing by spliceosomes, pre-mRNA 5′-
splice site binding, and the mRNA splicing minor pathway,

among others. These pathways may constitute the basic

environment for irregular splicing in HCC subtypes and affect

the TME. We also observed changes in the mRNA expression of

several SFs in different HCC subtypes. To determine how these

changes are related to pathway activation and AS regulation,

more research is required.

Future research aims to determine the molecular drivers of the

transition from cluster 1 to cluster 4 subtypes. These changes may be

triggered by changes in the genome or by epigenetic or

transcriptional regulators that have been shown to drive splicing

factor changes in other tumor types. Understanding these

mechanisms will allow us to determine the development of AS-

based HCC treatments. AS research is moving in the direction of

making full use of the potential of AS in precision medicine.

In this analysis, we identified AS subtypes through

unsupervised clustering, analyzed the characteristics of

different spliced subtypes, obtained DASEs, and combined the

findings with GSVA enrichment analysis to explore the

differences in the subtypes. Finally, on the basis of the DASEs

of different subtypes, the survival-related AS time was identified,

and the PSI value was used to construct a risk proportional

regressionmodel to guide prognosis.We systematically described

clinical, splicing, transcriptomic, genomic, and immunological

characteristics, and identified the underlying regulatory

mechanisms of AS in HCC subtypes (Supplementary Figure S2).

Our research shows that the splicing regulation of SFs may

play a role in the transformation and survival of HCC cancer

cells. We studied AS comprehensively and systematically and

used TCGA data to explore possible non-classical regulatory

mechanisms in HCC. The data sample size of our research was

sufficient, and the results of the verification data are good and

have strong statistical significance, covering a wide range of

fields. Our findings may provide the foundation for more in-

depth research in the future, such as studies of the splicing

regulation mechanism, cancer biomarker design, targeted drug

screening, and other clinical applications.
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